openocd/src/flash/nor/ath79.c

904 lines
24 KiB
C

/***************************************************************************
* Copyright (C) 2015 by Tobias Diedrich *
* <ranma+openwrt@tdiedrich.de> *
* *
* based on the stmsmi code written by Antonio Borneo *
* <borneo.antonio@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc. *
* *
***************************************************************************/
/*
* Driver for the Atheros AR7xxx/AR9xxx SPI flash interface.
*
* Since no SPI mode register is present, presumably only
* SPI "mode 3" (CPOL=1 and CPHA=1) is supported.
*
* The SPI interface supports up to 3 chip selects, however the SPI flash
* used for booting the system must be connected to CS0.
*
* On boot, the first 4MiB of flash space are memory-mapped into the
* area bf000000 - bfffffff (4 copies), so the MIPS bootstrap
* vector bfc00000 is mapped to the beginning of the flash.
*
* By writing a 1 to the REMAP_DISABLE bit in the SPI_CONTROL register,
* the full area of 16MiB is mapped.
*
* By writing a 0 to the SPI_FUNCTION_SELECT register (write-only dword
* register @bf000000), memory mapping is disabled and the SPI registers
* are exposed to the CPU instead:
* bf000000 SPI_FUNCTION_SELECT
* bf000004 SPI_CONTROL
* bf000008 SPI_IO_CONTROL
* bf00000c SPI_READ_DATA
*
* When not memory-mapped, the SPI interface is essentially bitbanged
* using SPI_CONTROL and SPI_IO_CONTROL with the only hardware-assistance
* being the 32bit read-only shift-register SPI_READ_DATA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "spi.h"
#include <jtag/jtag.h>
#include <helper/time_support.h>
#include <helper/types.h>
#include <target/mips32.h>
#include <target/mips32_pracc.h>
#include <target/target.h>
#define BITS_PER_BYTE 8
#define ATH79_REG_FS 0
#define ATH79_REG_CLOCK 4
#define ATH79_REG_WRITE 8
#define ATH79_REG_DATA 12
#define ATH79_SPI_CS_ALLHI 0x70000
#define ATH79_SPI_CS0_HI 0x10000
#define ATH79_SPI_CS1_HI 0x20000
#define ATH79_SPI_CS2_HI 0x40000
#define ATH79_SPI_CE_HI 0x00100
#define ATH79_SPI_DO_HI 0x00001
#define ATH79_XFER_FINAL 0x00000001
#define ATH79_XFER_PARTIAL 0x00000000
/* Timeout in ms */
#define ATH79_MAX_TIMEOUT (3000)
struct ath79_spi_ctx {
uint8_t *page_buf;
int pre_deselect;
int post_deselect;
};
struct ath79_flash_bank {
int probed;
int chipselect;
uint32_t io_base;
const struct flash_device *dev;
struct ath79_spi_ctx spi;
};
struct ath79_target {
char *name;
uint32_t tap_idcode;
uint32_t io_base;
};
static const struct ath79_target target_devices[] = {
/* name, tap_idcode, io_base */
{ "ATH79", 0x00000001, 0xbf000000 },
{ NULL, 0, 0 }
};
static const uint32_t ath79_chipselects[] = {
(~ATH79_SPI_CS0_HI & ATH79_SPI_CS_ALLHI),
(~ATH79_SPI_CS1_HI & ATH79_SPI_CS_ALLHI),
(~ATH79_SPI_CS2_HI & ATH79_SPI_CS_ALLHI),
};
static void ath79_pracc_addn(struct pracc_queue_info *ctx,
const uint32_t *instr,
int n)
{
for (int i = 0; i < n; i++)
pracc_add(ctx, 0, instr[i]);
}
static int ath79_spi_bitbang_codegen(struct ath79_flash_bank *ath79_info,
struct pracc_queue_info *ctx,
uint8_t *data, int len,
int partial_xfer)
{
uint32_t cs_high = ATH79_SPI_CS_ALLHI;
uint32_t cs_low = ath79_chipselects[ath79_info->chipselect];
uint32_t clock_high = cs_low | ATH79_SPI_CE_HI;
uint32_t clock_low = cs_low;
uint32_t pracc_out = 0;
uint32_t io_base = ath79_info->io_base;
const uint32_t preamble1[] = {
/* $15 = MIPS32_PRACC_BASE_ADDR */
MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR),
/* $1 = io_base */
MIPS32_LUI(1, UPPER16(io_base)),
};
ath79_pracc_addn(ctx, preamble1, ARRAY_SIZE(preamble1));
if (ath79_info->spi.pre_deselect) {
/* Clear deselect flag so we don't deselect again if
* this is a partial xfer.
*/
ath79_info->spi.pre_deselect = 0;
const uint32_t pre_deselect[] = {
/* [$1 + FS] = 1 (enable flash io register access) */
MIPS32_LUI(2, UPPER16(1)),
MIPS32_ORI(2, 2, LOWER16(1)),
MIPS32_SW(2, ATH79_REG_FS, 1),
/* deselect flash just in case */
/* $2 = SPI_CS_DIS */
MIPS32_LUI(2, UPPER16(cs_high)),
MIPS32_ORI(2, 2, LOWER16(cs_high)),
/* [$1 + WRITE] = $2 */
MIPS32_SW(2, ATH79_REG_WRITE, 1),
};
ath79_pracc_addn(ctx, pre_deselect, ARRAY_SIZE(pre_deselect));
}
const uint32_t preamble2[] = {
/* t0 = CLOCK_LOW + 0-bit */
MIPS32_LUI(8, UPPER16((clock_low + 0))),
MIPS32_ORI(8, 8, LOWER16((clock_low + 0))),
/* t1 = CLOCK_LOW + 1-bit */
MIPS32_LUI(9, UPPER16((clock_low + 1))),
MIPS32_ORI(9, 9, LOWER16((clock_low + 1))),
/* t2 = CLOCK_HIGH + 0-bit */
MIPS32_LUI(10, UPPER16((clock_high + 0))),
MIPS32_ORI(10, 10, LOWER16((clock_high + 0))),
/* t3 = CLOCK_HIGH + 1-bit */
MIPS32_LUI(11, UPPER16((clock_high + 1))),
MIPS32_ORI(11, 11, LOWER16((clock_high + 1))),
};
ath79_pracc_addn(ctx, preamble2, ARRAY_SIZE(preamble2));
for (int i = 0; i < len; i++) {
uint8_t x = data[i];
/* Generate bitbang code for one byte, highest bit first .*/
for (int j = BITS_PER_BYTE - 1; j >= 0; j--) {
int bit = ((x >> j) & 1);
if (bit) {
/* [$1 + WRITE] = t1 */
pracc_add(ctx, 0,
MIPS32_SW(9, ATH79_REG_WRITE, 1));
/* [$1 + WRITE] = t3 */
pracc_add(ctx, 0,
MIPS32_SW(11, ATH79_REG_WRITE, 1));
} else {
/* [$1 + WRITE] = t0 */
pracc_add(ctx, 0,
MIPS32_SW(8, ATH79_REG_WRITE, 1));
/* [$1 + WRITE] = t2 */
pracc_add(ctx, 0,
MIPS32_SW(10, ATH79_REG_WRITE, 1));
}
}
if (i % 4 == 3) {
/* $3 = [$1 + DATA] */
pracc_add(ctx, 0, MIPS32_LW(3, ATH79_REG_DATA, 1));
/* [OUTi] = $3 */
pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + pracc_out,
MIPS32_SW(3, PRACC_OUT_OFFSET +
pracc_out, 15));
pracc_out += 4;
}
}
if (len & 3) { /* not a multiple of 4 bytes */
/* $3 = [$1 + DATA] */
pracc_add(ctx, 0, MIPS32_LW(3, ATH79_REG_DATA, 1));
/* [OUTi] = $3 */
pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + pracc_out,
MIPS32_SW(3, PRACC_OUT_OFFSET + pracc_out, 15));
pracc_out += 4;
}
if (ath79_info->spi.post_deselect && !partial_xfer) {
const uint32_t post_deselect[] = {
/* $2 = SPI_CS_DIS */
MIPS32_LUI(2, UPPER16(cs_high)),
MIPS32_ORI(2, 2, LOWER16(cs_high)),
/* [$1 + WRITE] = $2 */
MIPS32_SW(2, ATH79_REG_WRITE, 1),
/* [$1 + FS] = 0 (disable flash io register access) */
MIPS32_XORI(2, 2, 0),
MIPS32_SW(2, ATH79_REG_FS, 1),
};
ath79_pracc_addn(ctx, post_deselect, ARRAY_SIZE(post_deselect));
}
/* common pracc epilogue */
/* jump to start */
pracc_add(ctx, 0, MIPS32_B(NEG16(ctx->code_count + 1)));
/* restore $15 from DeSave */
pracc_add(ctx, 0, MIPS32_MFC0(15, 31, 0));
return pracc_out / 4;
}
static int ath79_spi_bitbang_chunk(struct flash_bank *bank,
uint8_t *data, int len, int *transferred)
{
struct target *target = bank->target;
struct ath79_flash_bank *ath79_info = bank->driver_priv;
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int pracc_words;
/*
* These constants must match the worst case in the above code
* generator function ath79_spi_bitbang_codegen.
*/
const int pracc_pre_post = 26;
const int pracc_loop_byte = 8 * 2 + 2;
struct pracc_queue_info ctx = {
.max_code = PRACC_MAX_INSTRUCTIONS
};
int max_len = (ctx.max_code - pracc_pre_post) / pracc_loop_byte;
int to_xfer = len > max_len ? max_len : len;
int partial_xfer = len != to_xfer;
int padded_len = (to_xfer + 3) & ~3;
uint32_t *out = malloc(padded_len);
if (!out) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
*transferred = 0;
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
LOG_DEBUG("ath79_spi_bitbang_bytes(%p, %08x, %p, %d)",
target, ath79_info->io_base, data, len);
LOG_DEBUG("max code %d => max len %d. to_xfer %d",
ctx.max_code, max_len, to_xfer);
pracc_words = ath79_spi_bitbang_codegen(
ath79_info, &ctx, data, to_xfer, partial_xfer);
LOG_DEBUG("Assembled %d instructions, %d stores",
ctx.code_count, ctx.store_count);
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, out);
if (ctx.retval != ERROR_OK)
goto exit;
if (to_xfer & 3) { /* Not a multiple of 4 bytes. */
/*
* Need to realign last word since we didn't shift the
* full 32 bits.
*/
int missed_bytes = 4 - (to_xfer & 3);
out[pracc_words - 1] <<= BITS_PER_BYTE * missed_bytes;
}
/*
* pracc reads return uint32_t in host endianness, convert to
* target endianness.
* Since we know the ATH79 target is big endian and the SPI
* shift register has the bytes in highest to lowest bit order,
* this will ensure correct memory byte order regardless of host
* endianness.
*/
target_buffer_set_u32_array(target, (uint8_t *)out, pracc_words, out);
if (LOG_LEVEL_IS(LOG_LVL_DEBUG)) {
for (int i = 0; i < to_xfer; i++) {
LOG_DEBUG("bitbang %02x => %02x",
data[i], ((uint8_t *)out)[i]);
}
}
memcpy(data, out, to_xfer);
*transferred = to_xfer;
exit:
pracc_queue_free(&ctx);
free(out);
return ctx.retval;
}
static void ath79_spi_bitbang_prepare(struct flash_bank *bank)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
ath79_info->spi.pre_deselect = 1;
}
static int ath79_spi_bitbang_bytes(struct flash_bank *bank,
uint8_t *data, int len, uint32_t flags)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
int retval;
int transferred;
ath79_info->spi.post_deselect = !!(flags & ATH79_XFER_FINAL);
do {
transferred = 0;
retval = ath79_spi_bitbang_chunk(
bank, data, len, &transferred);
if (retval != ERROR_OK)
return retval;
data += transferred;
len -= transferred;
} while (len > 0);
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(ath79_flash_bank_command)
{
struct ath79_flash_bank *ath79_info;
int chipselect = 0;
LOG_DEBUG("%s", __func__);
if (CMD_ARGC < 6 || CMD_ARGC > 7)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 7) {
if (strcmp(CMD_ARGV[6], "cs0") == 0)
chipselect = 0; /* default */
else if (strcmp(CMD_ARGV[6], "cs1") == 0)
chipselect = 1;
else if (strcmp(CMD_ARGV[6], "cs2") == 0)
chipselect = 2;
else {
LOG_ERROR("Unknown arg: %s", CMD_ARGV[6]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
ath79_info = calloc(1, sizeof(struct ath79_flash_bank));
if (!ath79_info) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
ath79_info->chipselect = chipselect;
bank->driver_priv = ath79_info;
return ERROR_OK;
}
/* Read the status register of the external SPI flash chip. */
static int read_status_reg(struct flash_bank *bank, uint32_t *status)
{
uint8_t spi_bytes[] = {SPIFLASH_READ_STATUS, 0};
int retval;
/* Send SPI command "read STATUS" */
ath79_spi_bitbang_prepare(bank);
retval = ath79_spi_bitbang_bytes(
bank, spi_bytes, sizeof(spi_bytes),
ATH79_XFER_FINAL);
*status = spi_bytes[1];
return retval;
}
/* check for WIP (write in progress) bit in status register */
/* timeout in ms */
static int wait_till_ready(struct flash_bank *bank, int timeout)
{
uint32_t status;
int retval;
long long endtime;
endtime = timeval_ms() + timeout;
do {
/* read flash status register */
retval = read_status_reg(bank, &status);
if (retval != ERROR_OK)
return retval;
if ((status & SPIFLASH_BSY_BIT) == 0)
return ERROR_OK;
alive_sleep(1);
} while (timeval_ms() < endtime);
LOG_ERROR("timeout");
return ERROR_FAIL;
}
/* Send "write enable" command to SPI flash chip. */
static int ath79_write_enable(struct flash_bank *bank)
{
uint32_t status;
int retval;
uint8_t spi_bytes[] = {SPIFLASH_WRITE_ENABLE};
/* Send SPI command "write enable" */
ath79_spi_bitbang_prepare(bank);
retval = ath79_spi_bitbang_bytes(
bank, spi_bytes, sizeof(spi_bytes),
ATH79_XFER_FINAL);
if (retval != ERROR_OK)
return retval;
/* read flash status register */
retval = read_status_reg(bank, &status);
if (retval != ERROR_OK)
return retval;
/* Check write enabled */
if ((status & SPIFLASH_WE_BIT) == 0) {
LOG_ERROR("Cannot enable write to flash. Status=0x%08" PRIx32,
status);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int erase_command(struct flash_bank *bank, int sector)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
uint32_t offset = bank->sectors[sector].offset;
uint8_t spi_bytes[] = {
ath79_info->dev->erase_cmd,
offset >> 16,
offset >> 8,
offset
};
/* bitbang command */
ath79_spi_bitbang_prepare(bank);
return ath79_spi_bitbang_bytes(
bank, spi_bytes, sizeof(spi_bytes),
ATH79_XFER_FINAL);
}
static int ath79_erase_sector(struct flash_bank *bank, int sector)
{
int retval = ath79_write_enable(bank);
if (retval != ERROR_OK)
return retval;
/* send SPI command "block erase" */
retval = erase_command(bank, sector);
if (retval != ERROR_OK)
return retval;
/* poll WIP for end of self timed Sector Erase cycle */
return wait_till_ready(bank, ATH79_MAX_TIMEOUT);
}
static int ath79_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
struct ath79_flash_bank *ath79_info = bank->driver_priv;
int retval = ERROR_OK;
int sector;
LOG_DEBUG("%s: from sector %d to sector %d", __func__, first, last);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
LOG_ERROR("Flash sector invalid");
return ERROR_FLASH_SECTOR_INVALID;
}
if (!ath79_info->probed) {
LOG_ERROR("Flash bank not probed");
return ERROR_FLASH_BANK_NOT_PROBED;
}
for (sector = first; sector <= last; sector++) {
if (bank->sectors[sector].is_protected) {
LOG_ERROR("Flash sector %d protected", sector);
return ERROR_FAIL;
}
}
for (sector = first; sector <= last; sector++) {
retval = ath79_erase_sector(bank, sector);
if (retval != ERROR_OK)
break;
keep_alive();
}
return retval;
}
static int ath79_protect(struct flash_bank *bank, int set,
int first, int last)
{
int sector;
for (sector = first; sector <= last; sector++)
bank->sectors[sector].is_protected = set;
return ERROR_OK;
}
static int ath79_write_page(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t len)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
uint8_t spi_bytes[] = {
SPIFLASH_PAGE_PROGRAM,
address >> 16,
address >> 8,
address,
};
int retval;
uint32_t i;
if (address & 0xff) {
LOG_ERROR("ath79_write_page: unaligned write address: %08x",
address);
return ERROR_FAIL;
}
if (!ath79_info->spi.page_buf) {
LOG_ERROR("ath79_write_page: page buffer not initialized");
return ERROR_FAIL;
}
if (len > ath79_info->dev->pagesize) {
LOG_ERROR("ath79_write_page: len bigger than page size %d: %d",
ath79_info->dev->pagesize, len);
return ERROR_FAIL;
}
for (i = 0; i < len; i++) {
if (buffer[i] != 0xff)
break;
}
if (i == len) /* all 0xff, no need to program. */
return ERROR_OK;
LOG_INFO("writing %d bytes to flash page @0x%08x", len, address);
memcpy(ath79_info->spi.page_buf, buffer, len);
/* unlock writes */
retval = ath79_write_enable(bank);
if (retval != ERROR_OK)
return retval;
/* bitbang command */
ath79_spi_bitbang_prepare(bank);
retval = ath79_spi_bitbang_bytes(
bank, spi_bytes, sizeof(spi_bytes),
ATH79_XFER_PARTIAL);
if (retval != ERROR_OK)
return retval;
/* write data */
return ath79_spi_bitbang_bytes(
bank, ath79_info->spi.page_buf, len,
ATH79_XFER_FINAL);
}
static int ath79_write_buffer(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t len)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
const uint32_t page_size = ath79_info->dev->pagesize;
int retval;
LOG_DEBUG("%s: address=0x%08" PRIx32 " len=0x%08" PRIx32,
__func__, address, len);
while (len > 0) {
int page_len = len > page_size ? page_size : len;
retval = ath79_write_page(
bank, buffer, address, page_len);
if (retval != ERROR_OK)
return retval;
buffer += page_size;
address += page_size;
len -= page_len;
}
return ERROR_OK;
}
static int ath79_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
int sector;
LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32,
__func__, offset, count);
if (offset < bank->base || offset >= bank->base + bank->size) {
LOG_ERROR("Start address out of range");
return ERROR_FAIL;
}
offset -= bank->base;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size) {
LOG_WARNING("Write pasts end of flash. Extra data discarded.");
count = bank->size - offset;
}
/* Check sector protection */
for (sector = 0; sector < bank->num_sectors; sector++) {
/* Start offset in or before this sector? */
/* End offset in or behind this sector? */
struct flash_sector *bs = &bank->sectors[sector];
if ((offset < (bs->offset + bs->size)) &&
((offset + count - 1) >= bs->offset) &&
bs->is_protected) {
LOG_ERROR("Flash sector %d protected", sector);
return ERROR_FAIL;
}
}
return ath79_write_buffer(bank, buffer, offset, count);
}
static int ath79_read_buffer(struct flash_bank *bank, uint8_t *buffer,
uint32_t address, uint32_t len)
{
uint8_t spi_bytes[] = {
SPIFLASH_READ,
address >> 16,
address >> 8,
address,
};
int retval;
LOG_DEBUG("%s: address=0x%08" PRIx32 " len=0x%08" PRIx32,
__func__, address, len);
if (address & 0xff) {
LOG_ERROR("ath79_read_buffer: unaligned read address: %08x",
address);
return ERROR_FAIL;
}
LOG_INFO("reading %d bytes from flash @0x%08x", len, address);
/* bitbang command */
ath79_spi_bitbang_prepare(bank);
retval = ath79_spi_bitbang_bytes(
bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_PARTIAL);
if (retval != ERROR_OK)
return retval;
/* read data */
return ath79_spi_bitbang_bytes(
bank, buffer, len, ATH79_XFER_FINAL);
}
static int ath79_read(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32,
__func__, offset, count);
if (offset < bank->base || offset >= bank->base + bank->size) {
LOG_ERROR("Start address out of range");
return ERROR_FAIL;
}
offset -= bank->base;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size) {
LOG_WARNING("Reads past end of flash. Extra data discarded.");
count = bank->size - offset;
}
return ath79_read_buffer(bank, buffer, offset, count);
}
/* Return ID of flash device */
static int read_flash_id(struct flash_bank *bank, uint32_t *id)
{
struct target *target = bank->target;
int retval;
uint8_t spi_bytes[] = {SPIFLASH_READ_ID, 0, 0, 0};
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Send SPI command "read ID" */
ath79_spi_bitbang_prepare(bank);
retval = ath79_spi_bitbang_bytes(
bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_FINAL);
if (retval != ERROR_OK)
return retval;
*id = (spi_bytes[1] << 0)
| (spi_bytes[2] << 8)
| (spi_bytes[3] << 16);
if (*id == 0xffffff) {
LOG_ERROR("No SPI flash found");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int ath79_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct ath79_flash_bank *ath79_info = bank->driver_priv;
struct flash_sector *sectors;
uint32_t id = 0; /* silence uninitialized warning */
const struct ath79_target *target_device;
int retval;
if (ath79_info->probed) {
free(bank->sectors);
free(ath79_info->spi.page_buf);
}
ath79_info->probed = 0;
for (target_device = target_devices; target_device->name;
++target_device)
if (target_device->tap_idcode == target->tap->idcode)
break;
if (!target_device->name) {
LOG_ERROR("Device ID 0x%" PRIx32 " is not known",
target->tap->idcode);
return ERROR_FAIL;
}
ath79_info->io_base = target_device->io_base;
LOG_DEBUG("Found device %s at address 0x%" PRIx32,
target_device->name, bank->base);
retval = read_flash_id(bank, &id);
if (retval != ERROR_OK)
return retval;
ath79_info->dev = NULL;
for (const struct flash_device *p = flash_devices; p->name; p++)
if (p->device_id == id) {
ath79_info->dev = p;
break;
}
if (!ath79_info->dev) {
LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", id);
return ERROR_FAIL;
}
LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")",
ath79_info->dev->name, ath79_info->dev->device_id);
/* Set correct size value */
bank->size = ath79_info->dev->size_in_bytes;
/* create and fill sectors array */
bank->num_sectors =
ath79_info->dev->size_in_bytes / ath79_info->dev->sectorsize;
sectors = calloc(1, sizeof(struct flash_sector) * bank->num_sectors);
if (!sectors) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
ath79_info->spi.page_buf = malloc(ath79_info->dev->pagesize);
if (!ath79_info->spi.page_buf) {
LOG_ERROR("not enough memory");
free(sectors);
return ERROR_FAIL;
}
for (int sector = 0; sector < bank->num_sectors; sector++) {
sectors[sector].offset = sector * ath79_info->dev->sectorsize;
sectors[sector].size = ath79_info->dev->sectorsize;
sectors[sector].is_erased = 0;
sectors[sector].is_protected = 1;
}
bank->sectors = sectors;
ath79_info->probed = 1;
return ERROR_OK;
}
static int ath79_auto_probe(struct flash_bank *bank)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
if (ath79_info->probed)
return ERROR_OK;
return ath79_probe(bank);
}
static int ath79_flash_blank_check(struct flash_bank *bank)
{
/* Not implemented */
return ERROR_OK;
}
static int ath79_protect_check(struct flash_bank *bank)
{
/* Not implemented */
return ERROR_OK;
}
static int get_ath79_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct ath79_flash_bank *ath79_info = bank->driver_priv;
if (!ath79_info->probed) {
snprintf(buf, buf_size,
"\nATH79 flash bank not probed yet\n");
return ERROR_OK;
}
snprintf(buf, buf_size, "\nATH79 flash information:\n"
" Device \'%s\' (ID 0x%08" PRIx32 ")\n",
ath79_info->dev->name, ath79_info->dev->device_id);
return ERROR_OK;
}
struct flash_driver ath79_flash = {
.name = "ath79",
.flash_bank_command = ath79_flash_bank_command,
.erase = ath79_erase,
.protect = ath79_protect,
.write = ath79_write,
.read = ath79_read,
.probe = ath79_probe,
.auto_probe = ath79_auto_probe,
.erase_check = ath79_flash_blank_check,
.protect_check = ath79_protect_check,
.info = get_ath79_info,
};