openocd/src/rtos/rtos.c

701 lines
20 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2011 by Broadcom Corporation *
* Evan Hunter - ehunter@broadcom.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "rtos.h"
#include "target/target.h"
#include "helper/log.h"
#include "helper/binarybuffer.h"
#include "server/gdb_server.h"
/* RTOSs */
extern struct rtos_type freertos_rtos;
extern struct rtos_type threadx_rtos;
extern struct rtos_type ecos_rtos;
extern struct rtos_type linux_rtos;
extern struct rtos_type chibios_rtos;
extern struct rtos_type chromium_ec_rtos;
extern struct rtos_type embkernel_rtos;
extern struct rtos_type mqx_rtos;
extern struct rtos_type ucos_iii_rtos;
extern struct rtos_type nuttx_rtos;
extern struct rtos_type hwthread_rtos;
extern struct rtos_type riot_rtos;
extern struct rtos_type zephyr_rtos;
static struct rtos_type *rtos_types[] = {
&threadx_rtos,
&freertos_rtos,
&ecos_rtos,
&linux_rtos,
&chibios_rtos,
&chromium_ec_rtos,
&embkernel_rtos,
&mqx_rtos,
&ucos_iii_rtos,
&nuttx_rtos,
&riot_rtos,
&zephyr_rtos,
/* keep this as last, as it always matches with rtos auto */
&hwthread_rtos,
NULL
};
static int rtos_try_next(struct target *target);
int rtos_thread_packet(struct connection *connection, const char *packet, int packet_size);
int rtos_smp_init(struct target *target)
{
if (target->rtos->type->smp_init)
return target->rtos->type->smp_init(target);
return ERROR_TARGET_INIT_FAILED;
}
static int rtos_target_for_threadid(struct connection *connection, int64_t threadid, struct target **t)
{
struct target *curr = get_target_from_connection(connection);
if (t)
*t = curr;
return ERROR_OK;
}
static int os_alloc(struct target *target, struct rtos_type *ostype)
{
struct rtos *os = target->rtos = calloc(1, sizeof(struct rtos));
if (!os)
return JIM_ERR;
os->type = ostype;
os->current_threadid = -1;
os->current_thread = 0;
os->symbols = NULL;
os->target = target;
/* RTOS drivers can override the packet handler in _create(). */
os->gdb_thread_packet = rtos_thread_packet;
os->gdb_target_for_threadid = rtos_target_for_threadid;
return JIM_OK;
}
static void os_free(struct target *target)
{
if (!target->rtos)
return;
free(target->rtos->symbols);
free(target->rtos);
target->rtos = NULL;
}
static int os_alloc_create(struct target *target, struct rtos_type *ostype)
{
int ret = os_alloc(target, ostype);
if (ret == JIM_OK) {
ret = target->rtos->type->create(target);
if (ret != JIM_OK)
os_free(target);
}
return ret;
}
int rtos_create(struct jim_getopt_info *goi, struct target *target)
{
int x;
const char *cp;
Jim_Obj *res;
int e;
if (!goi->isconfigure && goi->argc != 0) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
return JIM_ERR;
}
os_free(target);
e = jim_getopt_string(goi, &cp, NULL);
if (e != JIM_OK)
return e;
if (strcmp(cp, "none") == 0)
return JIM_OK;
if (strcmp(cp, "auto") == 0) {
/* Auto detect tries to look up all symbols for each RTOS,
* and runs the RTOS driver's _detect() function when GDB
* finds all symbols for any RTOS. See rtos_qsymbol(). */
target->rtos_auto_detect = true;
/* rtos_qsymbol() will iterate over all RTOSes. Allocate
* target->rtos here, and set it to the first RTOS type. */
return os_alloc(target, rtos_types[0]);
}
for (x = 0; rtos_types[x]; x++)
if (strcmp(cp, rtos_types[x]->name) == 0)
return os_alloc_create(target, rtos_types[x]);
Jim_SetResultFormatted(goi->interp, "Unknown RTOS type %s, try one of: ", cp);
res = Jim_GetResult(goi->interp);
for (x = 0; rtos_types[x]; x++)
Jim_AppendStrings(goi->interp, res, rtos_types[x]->name, ", ", NULL);
Jim_AppendStrings(goi->interp, res, ", auto or none", NULL);
return JIM_ERR;
}
void rtos_destroy(struct target *target)
{
os_free(target);
}
int gdb_thread_packet(struct connection *connection, char const *packet, int packet_size)
{
struct target *target = get_target_from_connection(connection);
if (!target->rtos)
return rtos_thread_packet(connection, packet, packet_size); /* thread not
*found*/
return target->rtos->gdb_thread_packet(connection, packet, packet_size);
}
static struct symbol_table_elem *next_symbol(struct rtos *os, char *cur_symbol, uint64_t cur_addr)
{
struct symbol_table_elem *s;
if (!os->symbols)
os->type->get_symbol_list_to_lookup(&os->symbols);
if (!cur_symbol[0])
return &os->symbols[0];
for (s = os->symbols; s->symbol_name; s++)
if (!strcmp(s->symbol_name, cur_symbol)) {
s->address = cur_addr;
s++;
return s;
}
return NULL;
}
/* searches for 'symbol' in the lookup table for 'os' and returns TRUE,
* if 'symbol' is not declared optional */
static bool is_symbol_mandatory(const struct rtos *os, const char *symbol)
{
for (struct symbol_table_elem *s = os->symbols; s->symbol_name; ++s) {
if (!strcmp(s->symbol_name, symbol))
return !s->optional;
}
return false;
}
/* rtos_qsymbol() processes and replies to all qSymbol packets from GDB.
*
* GDB sends a qSymbol:: packet (empty address, empty name) to notify
* that it can now answer qSymbol::hexcodedname queries, to look up symbols.
*
* If the qSymbol packet has no address that means GDB did not find the
* symbol, in which case auto-detect will move on to try the next RTOS.
*
* rtos_qsymbol() then calls the next_symbol() helper function, which
* iterates over symbol names for the current RTOS until it finds the
* symbol in the received GDB packet, and then returns the next entry
* in the list of symbols.
*
* If GDB replied about the last symbol for the RTOS and the RTOS was
* specified explicitly, then no further symbol lookup is done. When
* auto-detecting, the RTOS driver _detect() function must return success.
*
* rtos_qsymbol() returns 1 if an RTOS has been detected, or 0 otherwise.
*/
int rtos_qsymbol(struct connection *connection, char const *packet, int packet_size)
{
int rtos_detected = 0;
uint64_t addr = 0;
size_t reply_len;
char reply[GDB_BUFFER_SIZE + 1], cur_sym[GDB_BUFFER_SIZE / 2 + 1] = ""; /* Extra byte for null-termination */
struct symbol_table_elem *next_sym;
struct target *target = get_target_from_connection(connection);
struct rtos *os = target->rtos;
reply_len = sprintf(reply, "OK");
if (!os)
goto done;
/* Decode any symbol name in the packet*/
size_t len = unhexify((uint8_t *)cur_sym, strchr(packet + 8, ':') + 1, strlen(strchr(packet + 8, ':') + 1));
cur_sym[len] = 0;
if ((strcmp(packet, "qSymbol::") != 0) && /* GDB is not offering symbol lookup for the first time */
(!sscanf(packet, "qSymbol:%" SCNx64 ":", &addr)) && /* GDB did not find an address for a symbol */
is_symbol_mandatory(os, cur_sym)) { /* the symbol is mandatory for this RTOS */
/* GDB could not find an address for the previous symbol */
if (!target->rtos_auto_detect) {
LOG_WARNING("RTOS %s not detected. (GDB could not find symbol \'%s\')", os->type->name, cur_sym);
goto done;
} else {
/* Autodetecting RTOS - try next RTOS */
if (!rtos_try_next(target)) {
LOG_WARNING("No RTOS could be auto-detected!");
goto done;
}
/* Next RTOS selected - invalidate current symbol */
cur_sym[0] = '\x00';
}
}
LOG_DEBUG("RTOS: Address of symbol '%s' is 0x%" PRIx64, cur_sym, addr);
next_sym = next_symbol(os, cur_sym, addr);
/* Should never happen unless the debugger misbehaves */
if (!next_sym) {
LOG_WARNING("RTOS: Debugger sent us qSymbol with '%s' that we did not ask for", cur_sym);
goto done;
}
if (!next_sym->symbol_name) {
/* No more symbols need looking up */
if (!target->rtos_auto_detect) {
rtos_detected = 1;
goto done;
}
if (os->type->detect_rtos(target)) {
LOG_INFO("Auto-detected RTOS: %s", os->type->name);
rtos_detected = 1;
goto done;
} else {
LOG_WARNING("No RTOS could be auto-detected!");
goto done;
}
}
if (8 + (strlen(next_sym->symbol_name) * 2) + 1 > sizeof(reply)) {
LOG_ERROR("ERROR: RTOS symbol '%s' name is too long for GDB!", next_sym->symbol_name);
goto done;
}
LOG_DEBUG("RTOS: Requesting symbol lookup of '%s' from the debugger", next_sym->symbol_name);
reply_len = snprintf(reply, sizeof(reply), "qSymbol:");
reply_len += hexify(reply + reply_len,
(const uint8_t *)next_sym->symbol_name, strlen(next_sym->symbol_name),
sizeof(reply) - reply_len);
done:
gdb_put_packet(connection, reply, reply_len);
return rtos_detected;
}
int rtos_thread_packet(struct connection *connection, char const *packet, int packet_size)
{
struct target *target = get_target_from_connection(connection);
if (strncmp(packet, "qThreadExtraInfo,", 17) == 0) {
if ((target->rtos) && (target->rtos->thread_details) &&
(target->rtos->thread_count != 0)) {
threadid_t threadid = 0;
int found = -1;
sscanf(packet, "qThreadExtraInfo,%" SCNx64, &threadid);
if ((target->rtos) && (target->rtos->thread_details)) {
int thread_num;
for (thread_num = 0; thread_num < target->rtos->thread_count; thread_num++) {
if (target->rtos->thread_details[thread_num].threadid == threadid) {
if (target->rtos->thread_details[thread_num].exists)
found = thread_num;
}
}
}
if (found == -1) {
gdb_put_packet(connection, "E01", 3); /* thread not found */
return ERROR_OK;
}
struct thread_detail *detail = &target->rtos->thread_details[found];
int str_size = 0;
if (detail->thread_name_str)
str_size += strlen(detail->thread_name_str);
if (detail->extra_info_str)
str_size += strlen(detail->extra_info_str);
char *tmp_str = calloc(str_size + 9, sizeof(char));
char *tmp_str_ptr = tmp_str;
if (detail->thread_name_str)
tmp_str_ptr += sprintf(tmp_str_ptr, "Name: %s", detail->thread_name_str);
if (detail->extra_info_str) {
if (tmp_str_ptr != tmp_str)
tmp_str_ptr += sprintf(tmp_str_ptr, ", ");
tmp_str_ptr += sprintf(tmp_str_ptr, "%s", detail->extra_info_str);
}
assert(strlen(tmp_str) ==
(size_t) (tmp_str_ptr - tmp_str));
char *hex_str = malloc(strlen(tmp_str) * 2 + 1);
size_t pkt_len = hexify(hex_str, (const uint8_t *)tmp_str,
strlen(tmp_str), strlen(tmp_str) * 2 + 1);
gdb_put_packet(connection, hex_str, pkt_len);
free(hex_str);
free(tmp_str);
return ERROR_OK;
}
gdb_put_packet(connection, "", 0);
return ERROR_OK;
} else if (strncmp(packet, "qSymbol", 7) == 0) {
if (rtos_qsymbol(connection, packet, packet_size) == 1) {
if (target->rtos_auto_detect == true) {
target->rtos_auto_detect = false;
target->rtos->type->create(target);
}
target->rtos->type->update_threads(target->rtos);
}
return ERROR_OK;
} else if (strncmp(packet, "qfThreadInfo", 12) == 0) {
int i;
if (target->rtos) {
if (target->rtos->thread_count == 0) {
gdb_put_packet(connection, "l", 1);
} else {
/*thread id are 16 char +1 for ',' */
char *out_str = malloc(17 * target->rtos->thread_count + 1);
char *tmp_str = out_str;
for (i = 0; i < target->rtos->thread_count; i++) {
tmp_str += sprintf(tmp_str, "%c%016" PRIx64, i == 0 ? 'm' : ',',
target->rtos->thread_details[i].threadid);
}
gdb_put_packet(connection, out_str, strlen(out_str));
free(out_str);
}
} else
gdb_put_packet(connection, "l", 1);
return ERROR_OK;
} else if (strncmp(packet, "qsThreadInfo", 12) == 0) {
gdb_put_packet(connection, "l", 1);
return ERROR_OK;
} else if (strncmp(packet, "qAttached", 9) == 0) {
gdb_put_packet(connection, "1", 1);
return ERROR_OK;
} else if (strncmp(packet, "qOffsets", 8) == 0) {
char offsets[] = "Text=0;Data=0;Bss=0";
gdb_put_packet(connection, offsets, sizeof(offsets)-1);
return ERROR_OK;
} else if (strncmp(packet, "qCRC:", 5) == 0) {
/* make sure we check this before "qC" packet below
* otherwise it gets incorrectly handled */
return GDB_THREAD_PACKET_NOT_CONSUMED;
} else if (strncmp(packet, "qC", 2) == 0) {
if (target->rtos) {
char buffer[19];
int size;
size = snprintf(buffer, 19, "QC%016" PRIx64, target->rtos->current_thread);
gdb_put_packet(connection, buffer, size);
} else
gdb_put_packet(connection, "QC0", 3);
return ERROR_OK;
} else if (packet[0] == 'T') { /* Is thread alive? */
threadid_t threadid;
int found = -1;
sscanf(packet, "T%" SCNx64, &threadid);
if ((target->rtos) && (target->rtos->thread_details)) {
int thread_num;
for (thread_num = 0; thread_num < target->rtos->thread_count; thread_num++) {
if (target->rtos->thread_details[thread_num].threadid == threadid) {
if (target->rtos->thread_details[thread_num].exists)
found = thread_num;
}
}
}
if (found != -1)
gdb_put_packet(connection, "OK", 2); /* thread alive */
else
gdb_put_packet(connection, "E01", 3); /* thread not found */
return ERROR_OK;
} else if (packet[0] == 'H') { /* Set current thread ( 'c' for step and continue, 'g' for
* all other operations ) */
if ((packet[1] == 'g') && (target->rtos)) {
threadid_t threadid;
sscanf(packet, "Hg%16" SCNx64, &threadid);
LOG_DEBUG("RTOS: GDB requested to set current thread to 0x%" PRIx64, threadid);
/* threadid of 0 indicates target should choose */
if (threadid == 0)
target->rtos->current_threadid = target->rtos->current_thread;
else
target->rtos->current_threadid = threadid;
}
gdb_put_packet(connection, "OK", 2);
return ERROR_OK;
}
return GDB_THREAD_PACKET_NOT_CONSUMED;
}
static int rtos_put_gdb_reg_list(struct connection *connection,
struct rtos_reg *reg_list, int num_regs)
{
size_t num_bytes = 1; /* NUL */
for (int i = 0; i < num_regs; ++i)
num_bytes += DIV_ROUND_UP(reg_list[i].size, 8) * 2;
char *hex = malloc(num_bytes);
char *hex_p = hex;
for (int i = 0; i < num_regs; ++i) {
size_t count = DIV_ROUND_UP(reg_list[i].size, 8);
size_t n = hexify(hex_p, reg_list[i].value, count, num_bytes);
hex_p += n;
num_bytes -= n;
}
gdb_put_packet(connection, hex, strlen(hex));
free(hex);
return ERROR_OK;
}
/** Look through all registers to find this register. */
int rtos_get_gdb_reg(struct connection *connection, int reg_num)
{
struct target *target = get_target_from_connection(connection);
int64_t current_threadid = target->rtos->current_threadid;
if ((target->rtos) && (current_threadid != -1) &&
(current_threadid != 0) &&
((current_threadid != target->rtos->current_thread) ||
(target->smp))) { /* in smp several current thread are possible */
struct rtos_reg *reg_list;
int num_regs;
LOG_DEBUG("getting register %d for thread 0x%" PRIx64
", target->rtos->current_thread=0x%" PRIx64,
reg_num,
current_threadid,
target->rtos->current_thread);
int retval;
if (target->rtos->type->get_thread_reg) {
reg_list = calloc(1, sizeof(*reg_list));
num_regs = 1;
retval = target->rtos->type->get_thread_reg(target->rtos,
current_threadid, reg_num, &reg_list[0]);
if (retval != ERROR_OK) {
LOG_ERROR("RTOS: failed to get register %d", reg_num);
return retval;
}
} else {
retval = target->rtos->type->get_thread_reg_list(target->rtos,
current_threadid,
&reg_list,
&num_regs);
if (retval != ERROR_OK) {
LOG_ERROR("RTOS: failed to get register list");
return retval;
}
}
for (int i = 0; i < num_regs; ++i) {
if (reg_list[i].number == (uint32_t)reg_num) {
rtos_put_gdb_reg_list(connection, reg_list + i, 1);
free(reg_list);
return ERROR_OK;
}
}
free(reg_list);
}
return ERROR_FAIL;
}
/** Return a list of general registers. */
int rtos_get_gdb_reg_list(struct connection *connection)
{
struct target *target = get_target_from_connection(connection);
int64_t current_threadid = target->rtos->current_threadid;
if ((target->rtos) && (current_threadid != -1) &&
(current_threadid != 0) &&
((current_threadid != target->rtos->current_thread) ||
(target->smp))) { /* in smp several current thread are possible */
struct rtos_reg *reg_list;
int num_regs;
LOG_DEBUG("RTOS: getting register list for thread 0x%" PRIx64
", target->rtos->current_thread=0x%" PRIx64 "\r\n",
current_threadid,
target->rtos->current_thread);
int retval = target->rtos->type->get_thread_reg_list(target->rtos,
current_threadid,
&reg_list,
&num_regs);
if (retval != ERROR_OK) {
LOG_ERROR("RTOS: failed to get register list");
return retval;
}
rtos_put_gdb_reg_list(connection, reg_list, num_regs);
free(reg_list);
return ERROR_OK;
}
return ERROR_FAIL;
}
int rtos_set_reg(struct connection *connection, int reg_num,
uint8_t *reg_value)
{
struct target *target = get_target_from_connection(connection);
int64_t current_threadid = target->rtos->current_threadid;
if ((target->rtos) &&
(target->rtos->type->set_reg) &&
(current_threadid != -1) &&
(current_threadid != 0)) {
return target->rtos->type->set_reg(target->rtos, reg_num, reg_value);
}
return ERROR_FAIL;
}
int rtos_generic_stack_read(struct target *target,
const struct rtos_register_stacking *stacking,
int64_t stack_ptr,
struct rtos_reg **reg_list,
int *num_regs)
{
int retval;
if (stack_ptr == 0) {
LOG_ERROR("Error: null stack pointer in thread");
return -5;
}
/* Read the stack */
uint8_t *stack_data = malloc(stacking->stack_registers_size);
uint32_t address = stack_ptr;
if (stacking->stack_growth_direction == 1)
address -= stacking->stack_registers_size;
retval = target_read_buffer(target, address, stacking->stack_registers_size, stack_data);
if (retval != ERROR_OK) {
free(stack_data);
LOG_ERROR("Error reading stack frame from thread");
return retval;
}
LOG_DEBUG("RTOS: Read stack frame at 0x%" PRIx32, address);
#if 0
LOG_OUTPUT("Stack Data :");
for (i = 0; i < stacking->stack_registers_size; i++)
LOG_OUTPUT("%02X", stack_data[i]);
LOG_OUTPUT("\r\n");
#endif
target_addr_t new_stack_ptr;
if (stacking->calculate_process_stack) {
new_stack_ptr = stacking->calculate_process_stack(target,
stack_data, stacking, stack_ptr);
} else {
new_stack_ptr = stack_ptr - stacking->stack_growth_direction *
stacking->stack_registers_size;
}
*reg_list = calloc(stacking->num_output_registers, sizeof(struct rtos_reg));
*num_regs = stacking->num_output_registers;
for (int i = 0; i < stacking->num_output_registers; ++i) {
(*reg_list)[i].number = stacking->register_offsets[i].number;
(*reg_list)[i].size = stacking->register_offsets[i].width_bits;
int offset = stacking->register_offsets[i].offset;
if (offset == -2)
buf_cpy(&new_stack_ptr, (*reg_list)[i].value, (*reg_list)[i].size);
else if (offset != -1)
buf_cpy(stack_data + offset, (*reg_list)[i].value, (*reg_list)[i].size);
}
free(stack_data);
/* LOG_OUTPUT("Output register string: %s\r\n", *hex_reg_list); */
return ERROR_OK;
}
static int rtos_try_next(struct target *target)
{
struct rtos *os = target->rtos;
struct rtos_type **type = rtos_types;
if (!os)
return 0;
while (*type && os->type != *type)
type++;
if (!*type || !*(++type))
return 0;
os->type = *type;
free(os->symbols);
os->symbols = NULL;
return 1;
}
int rtos_update_threads(struct target *target)
{
if ((target->rtos) && (target->rtos->type))
target->rtos->type->update_threads(target->rtos);
return ERROR_OK;
}
void rtos_free_threadlist(struct rtos *rtos)
{
if (rtos->thread_details) {
int j;
for (j = 0; j < rtos->thread_count; j++) {
struct thread_detail *current_thread = &rtos->thread_details[j];
free(current_thread->thread_name_str);
free(current_thread->extra_info_str);
}
free(rtos->thread_details);
rtos->thread_details = NULL;
rtos->thread_count = 0;
rtos->current_threadid = -1;
rtos->current_thread = 0;
}
}
int rtos_read_buffer(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
if (target->rtos->type->read_buffer)
return target->rtos->type->read_buffer(target->rtos, address, size, buffer);
return ERROR_NOT_IMPLEMENTED;
}
int rtos_write_buffer(struct target *target, target_addr_t address,
uint32_t size, const uint8_t *buffer)
{
if (target->rtos->type->write_buffer)
return target->rtos->type->write_buffer(target->rtos, address, size, buffer);
return ERROR_NOT_IMPLEMENTED;
}