openocd/src/flash/nor/at91samd.c

1275 lines
36 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andrey Yurovsky *
* Andrey Yurovsky <yurovsky@gmail.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "helper/binarybuffer.h"
#include <jtag/jtag.h>
#include <target/cortex_m.h>
#define SAMD_NUM_PROT_BLOCKS 16
#define SAMD_PAGE_SIZE_MAX 1024
#define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
#define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
#define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
#define SAMD_DSU 0x41002000 /* Device Service Unit */
#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
#define SAMD_DSU_STATUSA 1 /* DSU status register */
#define SAMD_DSU_DID 0x18 /* Device ID register */
#define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interrupt Flag Status & Clear */
#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
#define SAMD_CMDEX_KEY 0xA5UL
#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
/* NVMCTRL commands. See Table 20-4 in 42129FSAM10/2013 */
#define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
#define SAMD_NVM_CMD_WP 0x04 /* Write Page */
#define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxiliary Row */
#define SAMD_NVM_CMD_WAP 0x06 /* Write Auxiliary Page */
#define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
#define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
#define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
#define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
#define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
#define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
#define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
/* NVMCTRL bits */
#define SAMD_NVM_CTRLB_MANW 0x80
/* Known identifiers */
#define SAMD_PROCESSOR_M0 0x01
#define SAMD_FAMILY_D 0x00
#define SAMD_FAMILY_L 0x01
#define SAMD_FAMILY_C 0x02
#define SAMD_SERIES_20 0x00
#define SAMD_SERIES_21 0x01
#define SAMD_SERIES_22 0x02
#define SAMD_SERIES_10 0x02
#define SAMD_SERIES_11 0x03
#define SAMD_SERIES_09 0x04
/* Device ID macros */
#define SAMD_GET_PROCESSOR(id) (id >> 28)
#define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
#define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
#define SAMD_GET_DEVSEL(id) (id & 0xFF)
/* Bits to mask out lockbits in user row */
#define NVMUSERROW_LOCKBIT_MASK ((uint64_t)0x0000FFFFFFFFFFFF)
struct samd_part {
uint8_t id;
const char *name;
uint32_t flash_kb;
uint32_t ram_kb;
};
/* Known SAMD09 parts. DID reset values missing in RM, see
* https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
static const struct samd_part samd09_parts[] = {
{ 0x0, "SAMD09D14A", 16, 4 },
{ 0x7, "SAMD09C13A", 8, 4 },
};
/* Known SAMD10 parts */
static const struct samd_part samd10_parts[] = {
{ 0x0, "SAMD10D14AMU", 16, 4 },
{ 0x1, "SAMD10D13AMU", 8, 4 },
{ 0x2, "SAMD10D12AMU", 4, 4 },
{ 0x3, "SAMD10D14ASU", 16, 4 },
{ 0x4, "SAMD10D13ASU", 8, 4 },
{ 0x5, "SAMD10D12ASU", 4, 4 },
{ 0x6, "SAMD10C14A", 16, 4 },
{ 0x7, "SAMD10C13A", 8, 4 },
{ 0x8, "SAMD10C12A", 4, 4 },
};
/* Known SAMD11 parts */
static const struct samd_part samd11_parts[] = {
{ 0x0, "SAMD11D14AM", 16, 4 },
{ 0x1, "SAMD11D13AMU", 8, 4 },
{ 0x2, "SAMD11D12AMU", 4, 4 },
{ 0x3, "SAMD11D14ASS", 16, 4 },
{ 0x4, "SAMD11D13ASU", 8, 4 },
{ 0x5, "SAMD11D12ASU", 4, 4 },
{ 0x6, "SAMD11C14A", 16, 4 },
{ 0x7, "SAMD11C13A", 8, 4 },
{ 0x8, "SAMD11C12A", 4, 4 },
{ 0x9, "SAMD11D14AU", 16, 4 },
};
/* Known SAMD20 parts. See Table 12-8 in 42129FSAM10/2013 */
static const struct samd_part samd20_parts[] = {
{ 0x0, "SAMD20J18A", 256, 32 },
{ 0x1, "SAMD20J17A", 128, 16 },
{ 0x2, "SAMD20J16A", 64, 8 },
{ 0x3, "SAMD20J15A", 32, 4 },
{ 0x4, "SAMD20J14A", 16, 2 },
{ 0x5, "SAMD20G18A", 256, 32 },
{ 0x6, "SAMD20G17A", 128, 16 },
{ 0x7, "SAMD20G16A", 64, 8 },
{ 0x8, "SAMD20G15A", 32, 4 },
{ 0x9, "SAMD20G14A", 16, 2 },
{ 0xA, "SAMD20E18A", 256, 32 },
{ 0xB, "SAMD20E17A", 128, 16 },
{ 0xC, "SAMD20E16A", 64, 8 },
{ 0xD, "SAMD20E15A", 32, 4 },
{ 0xE, "SAMD20E14A", 16, 2 },
};
/* Known SAMD21 parts. */
static const struct samd_part samd21_parts[] = {
{ 0x0, "SAMD21J18A", 256, 32 },
{ 0x1, "SAMD21J17A", 128, 16 },
{ 0x2, "SAMD21J16A", 64, 8 },
{ 0x3, "SAMD21J15A", 32, 4 },
{ 0x4, "SAMD21J14A", 16, 2 },
{ 0x5, "SAMD21G18A", 256, 32 },
{ 0x6, "SAMD21G17A", 128, 16 },
{ 0x7, "SAMD21G16A", 64, 8 },
{ 0x8, "SAMD21G15A", 32, 4 },
{ 0x9, "SAMD21G14A", 16, 2 },
{ 0xA, "SAMD21E18A", 256, 32 },
{ 0xB, "SAMD21E17A", 128, 16 },
{ 0xC, "SAMD21E16A", 64, 8 },
{ 0xD, "SAMD21E15A", 32, 4 },
{ 0xE, "SAMD21E14A", 16, 2 },
/* SAMR21 parts have integrated SAMD21 with a radio */
{ 0x18, "SAMR21G19A", 256, 32 }, /* with 512k of serial flash */
{ 0x19, "SAMR21G18A", 256, 32 },
{ 0x1A, "SAMR21G17A", 128, 32 },
{ 0x1B, "SAMR21G16A", 64, 16 },
{ 0x1C, "SAMR21E18A", 256, 32 },
{ 0x1D, "SAMR21E17A", 128, 32 },
{ 0x1E, "SAMR21E16A", 64, 16 },
/* SAMD21 B Variants (Table 3-7 from rev I of datasheet) */
{ 0x20, "SAMD21J16B", 64, 8 },
{ 0x21, "SAMD21J15B", 32, 4 },
{ 0x23, "SAMD21G16B", 64, 8 },
{ 0x24, "SAMD21G15B", 32, 4 },
{ 0x26, "SAMD21E16B", 64, 8 },
{ 0x27, "SAMD21E15B", 32, 4 },
/* SAMD21 D and L Variants (from Errata)
http://ww1.microchip.com/downloads/en/DeviceDoc/
SAM-D21-Family-Silicon-Errata-and-DataSheet-Clarification-DS80000760D.pdf */
{ 0x55, "SAMD21E16BU", 64, 8 },
{ 0x56, "SAMD21E15BU", 32, 4 },
{ 0x57, "SAMD21G16L", 64, 8 },
{ 0x3E, "SAMD21E16L", 64, 8 },
{ 0x3F, "SAMD21E15L", 32, 4 },
{ 0x62, "SAMD21E16CU", 64, 8 },
{ 0x63, "SAMD21E15CU", 32, 4 },
{ 0x92, "SAMD21J17D", 128, 16 },
{ 0x93, "SAMD21G17D", 128, 16 },
{ 0x94, "SAMD21E17D", 128, 16 },
{ 0x95, "SAMD21E17DU", 128, 16 },
{ 0x96, "SAMD21G17L", 128, 16 },
{ 0x97, "SAMD21E17L", 128, 16 },
/* Known SAMDA1 parts.
SAMD-A1 series uses the same series identifier like the SAMD21
taken from http://ww1.microchip.com/downloads/en/DeviceDoc/40001895A.pdf (pages 14-17) */
{ 0x29, "SAMDA1J16A", 64, 8 },
{ 0x2A, "SAMDA1J15A", 32, 4 },
{ 0x2B, "SAMDA1J14A", 16, 4 },
{ 0x2C, "SAMDA1G16A", 64, 8 },
{ 0x2D, "SAMDA1G15A", 32, 4 },
{ 0x2E, "SAMDA1G14A", 16, 4 },
{ 0x2F, "SAMDA1E16A", 64, 8 },
{ 0x30, "SAMDA1E15A", 32, 4 },
{ 0x31, "SAMDA1E14A", 16, 4 },
{ 0x64, "SAMDA1J16B", 64, 8 },
{ 0x65, "SAMDA1J15B", 32, 4 },
{ 0x66, "SAMDA1J14B", 16, 4 },
{ 0x67, "SAMDA1G16B", 64, 8 },
{ 0x68, "SAMDA1G15B", 32, 4 },
{ 0x69, "SAMDA1G14B", 16, 4 },
{ 0x6A, "SAMDA1E16B", 64, 8 },
{ 0x6B, "SAMDA1E15B", 32, 4 },
{ 0x6C, "SAMDA1E14B", 16, 4 },
};
/* Known SAML21 parts. */
static const struct samd_part saml21_parts[] = {
{ 0x00, "SAML21J18A", 256, 32 },
{ 0x01, "SAML21J17A", 128, 16 },
{ 0x02, "SAML21J16A", 64, 8 },
{ 0x05, "SAML21G18A", 256, 32 },
{ 0x06, "SAML21G17A", 128, 16 },
{ 0x07, "SAML21G16A", 64, 8 },
{ 0x0A, "SAML21E18A", 256, 32 },
{ 0x0B, "SAML21E17A", 128, 16 },
{ 0x0C, "SAML21E16A", 64, 8 },
{ 0x0D, "SAML21E15A", 32, 4 },
{ 0x0F, "SAML21J18B", 256, 32 },
{ 0x10, "SAML21J17B", 128, 16 },
{ 0x11, "SAML21J16B", 64, 8 },
{ 0x14, "SAML21G18B", 256, 32 },
{ 0x15, "SAML21G17B", 128, 16 },
{ 0x16, "SAML21G16B", 64, 8 },
{ 0x19, "SAML21E18B", 256, 32 },
{ 0x1A, "SAML21E17B", 128, 16 },
{ 0x1B, "SAML21E16B", 64, 8 },
{ 0x1C, "SAML21E15B", 32, 4 },
/* SAMR30 parts have integrated SAML21 with a radio */
{ 0x1E, "SAMR30G18A", 256, 32 },
{ 0x1F, "SAMR30E18A", 256, 32 },
/* SAMR34/R35 parts have integrated SAML21 with a lora radio */
{ 0x28, "SAMR34J18", 256, 32 },
{ 0x2B, "SAMR35J18", 256, 32 },
};
/* Known SAML22 parts. */
static const struct samd_part saml22_parts[] = {
{ 0x00, "SAML22N18A", 256, 32 },
{ 0x01, "SAML22N17A", 128, 16 },
{ 0x02, "SAML22N16A", 64, 8 },
{ 0x05, "SAML22J18A", 256, 32 },
{ 0x06, "SAML22J17A", 128, 16 },
{ 0x07, "SAML22J16A", 64, 8 },
{ 0x0A, "SAML22G18A", 256, 32 },
{ 0x0B, "SAML22G17A", 128, 16 },
{ 0x0C, "SAML22G16A", 64, 8 },
};
/* Known SAMC20 parts. */
static const struct samd_part samc20_parts[] = {
{ 0x00, "SAMC20J18A", 256, 32 },
{ 0x01, "SAMC20J17A", 128, 16 },
{ 0x02, "SAMC20J16A", 64, 8 },
{ 0x03, "SAMC20J15A", 32, 4 },
{ 0x05, "SAMC20G18A", 256, 32 },
{ 0x06, "SAMC20G17A", 128, 16 },
{ 0x07, "SAMC20G16A", 64, 8 },
{ 0x08, "SAMC20G15A", 32, 4 },
{ 0x0A, "SAMC20E18A", 256, 32 },
{ 0x0B, "SAMC20E17A", 128, 16 },
{ 0x0C, "SAMC20E16A", 64, 8 },
{ 0x0D, "SAMC20E15A", 32, 4 },
{ 0x20, "SAMC20N18A", 256, 32 },
{ 0x21, "SAMC20N17A", 128, 16 },
};
/* Known SAMC21 parts. */
static const struct samd_part samc21_parts[] = {
{ 0x00, "SAMC21J18A", 256, 32 },
{ 0x01, "SAMC21J17A", 128, 16 },
{ 0x02, "SAMC21J16A", 64, 8 },
{ 0x03, "SAMC21J15A", 32, 4 },
{ 0x05, "SAMC21G18A", 256, 32 },
{ 0x06, "SAMC21G17A", 128, 16 },
{ 0x07, "SAMC21G16A", 64, 8 },
{ 0x08, "SAMC21G15A", 32, 4 },
{ 0x0A, "SAMC21E18A", 256, 32 },
{ 0x0B, "SAMC21E17A", 128, 16 },
{ 0x0C, "SAMC21E16A", 64, 8 },
{ 0x0D, "SAMC21E15A", 32, 4 },
{ 0x20, "SAMC21N18A", 256, 32 },
{ 0x21, "SAMC21N17A", 128, 16 },
};
/* Each family of parts contains a parts table in the DEVSEL field of DID. The
* processor ID, family ID, and series ID are used to determine which exact
* family this is and then we can use the corresponding table. */
struct samd_family {
uint8_t processor;
uint8_t family;
uint8_t series;
const struct samd_part *parts;
size_t num_parts;
uint64_t nvm_userrow_res_mask; /* protect bits which are reserved, 0 -> protect */
};
/* Known SAMD families */
static const struct samd_family samd_families[] = {
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
samd20_parts, ARRAY_SIZE(samd20_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
samd21_parts, ARRAY_SIZE(samd21_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
samd09_parts, ARRAY_SIZE(samd09_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
samd10_parts, ARRAY_SIZE(samd10_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
samd11_parts, ARRAY_SIZE(samd11_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
saml21_parts, ARRAY_SIZE(saml21_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
saml22_parts, ARRAY_SIZE(saml22_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
samc20_parts, ARRAY_SIZE(samc20_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
samc21_parts, ARRAY_SIZE(samc21_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
};
struct samd_info {
uint32_t page_size;
int num_pages;
int sector_size;
int prot_block_size;
bool probed;
struct target *target;
};
/**
* Gives the family structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_family *samd_find_family(uint32_t id)
{
uint8_t processor = SAMD_GET_PROCESSOR(id);
uint8_t family = SAMD_GET_FAMILY(id);
uint8_t series = SAMD_GET_SERIES(id);
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
if (samd_families[i].processor == processor &&
samd_families[i].series == series &&
samd_families[i].family == family)
return &samd_families[i];
}
return NULL;
}
/**
* Gives the part structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_part *samd_find_part(uint32_t id)
{
uint8_t devsel = SAMD_GET_DEVSEL(id);
const struct samd_family *family = samd_find_family(id);
if (!family)
return NULL;
for (unsigned i = 0; i < family->num_parts; i++) {
if (family->parts[i].id == devsel)
return &family->parts[i];
}
return NULL;
}
static int samd_protect_check(struct flash_bank *bank)
{
int res;
uint16_t lock;
res = target_read_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
if (res != ERROR_OK)
return res;
/* Lock bits are active-low */
for (unsigned int prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
return ERROR_OK;
}
static int samd_get_flash_page_info(struct target *target,
uint32_t *sizep, int *nump)
{
int res;
uint32_t param;
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
if (res == ERROR_OK) {
/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
* so 0 is 8KB and 7 is 1024KB. */
if (sizep)
*sizep = (8 << ((param >> 16) & 0x7));
/* The NVMP field (bits 15:0) indicates the total number of pages */
if (nump)
*nump = param & 0xFFFF;
} else {
LOG_ERROR("Couldn't read NVM Parameters register");
}
return res;
}
static int samd_probe(struct flash_bank *bank)
{
uint32_t id;
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
const struct samd_part *part;
if (chip->probed)
return ERROR_OK;
res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
part = samd_find_part(id);
if (!part) {
LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
return ERROR_FAIL;
}
bank->size = part->flash_kb * 1024;
res = samd_get_flash_page_info(bank->target, &chip->page_size,
&chip->num_pages);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
/* Sanity check: the total flash size in the DSU should match the page size
* multiplied by the number of pages. */
if (bank->size != chip->num_pages * chip->page_size) {
LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
"Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
part->flash_kb, chip->num_pages, chip->page_size);
}
/* Erase granularity = 1 row = 4 pages */
chip->sector_size = chip->page_size * 4;
/* Allocate the sector table */
bank->num_sectors = chip->num_pages / 4;
bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
/* 16 protection blocks per device */
chip->prot_block_size = bank->size / SAMD_NUM_PROT_BLOCKS;
/* Allocate the table of protection blocks */
bank->num_prot_blocks = SAMD_NUM_PROT_BLOCKS;
bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
samd_protect_check(bank);
/* Done */
chip->probed = true;
LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
part->flash_kb, part->ram_kb);
return ERROR_OK;
}
static int samd_check_error(struct target *target)
{
int ret, ret2;
uint16_t status;
ret = target_read_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
if (ret != ERROR_OK) {
LOG_ERROR("Can't read NVM status");
return ret;
}
if ((status & 0x001C) == 0)
return ERROR_OK;
if (status & (1 << 4)) { /* NVME */
LOG_ERROR("SAMD: NVM Error");
ret = ERROR_FLASH_OPERATION_FAILED;
}
if (status & (1 << 3)) { /* LOCKE */
LOG_ERROR("SAMD: NVM lock error");
ret = ERROR_FLASH_PROTECTED;
}
if (status & (1 << 2)) { /* PROGE */
LOG_ERROR("SAMD: NVM programming error");
ret = ERROR_FLASH_OPER_UNSUPPORTED;
}
/* Clear the error conditions by writing a one to them */
ret2 = target_write_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
if (ret2 != ERROR_OK)
LOG_ERROR("Can't clear NVM error conditions");
return ret;
}
static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
{
int res;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Issue the NVM command */
res = target_write_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
if (res != ERROR_OK)
return res;
/* Check to see if the NVM command resulted in an error condition. */
return samd_check_error(target);
}
/**
* Erases a flash-row at the given address.
* @param target Pointer to the target structure.
* @param address The address of the row.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_erase_row(struct target *target, uint32_t address)
{
int res;
/* Set an address contained in the row to be erased */
res = target_write_u32(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
/* Issue the Erase Row command to erase that row. */
if (res == ERROR_OK)
res = samd_issue_nvmctrl_command(target,
address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
if (res != ERROR_OK) {
LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
return ERROR_FAIL;
}
return ERROR_OK;
}
/**
* Returns the bitmask of reserved bits in register.
* @param target Pointer to the target structure.
* @param mask Bitmask, 0 -> value stays untouched.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_get_reservedmask(struct target *target, uint64_t *mask)
{
int res;
/* Get the devicetype */
uint32_t id;
res = target_read_u32(target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
const struct samd_family *family;
family = samd_find_family(id);
if (!family) {
LOG_ERROR("Couldn't determine device family");
return ERROR_FAIL;
}
*mask = family->nvm_userrow_res_mask;
return ERROR_OK;
}
static int read_userrow(struct target *target, uint64_t *userrow)
{
int res;
uint8_t buffer[8];
res = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
if (res != ERROR_OK)
return res;
*userrow = target_buffer_get_u64(target, buffer);
return ERROR_OK;
}
/**
* Modify the contents of the User Row in Flash. The User Row itself
* has a size of one page and contains a combination of "fuses" and
* calibration data. Bits which have a value of zero in the mask will
* not be changed. Up to now devices only use the first 64 bits.
* @param target Pointer to the target structure.
* @param value_input The value to write.
* @param value_mask Bitmask, 0 -> value stays untouched.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_modify_user_row_masked(struct target *target,
uint64_t value_input, uint64_t value_mask)
{
int res;
uint32_t nvm_ctrlb;
bool manual_wp = true;
/* Retrieve the MCU's page size, in bytes. This is also the size of the
* entire User Row. */
uint32_t page_size;
res = samd_get_flash_page_info(target, &page_size, NULL);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
/* Make sure the size is sane. */
assert(page_size <= SAMD_PAGE_SIZE_MAX &&
page_size >= sizeof(value_input));
uint8_t buf[SAMD_PAGE_SIZE_MAX];
/* Read the user row (comprising one page) by words. */
res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
return res;
uint64_t value_device;
res = read_userrow(target, &value_device);
if (res != ERROR_OK)
return res;
uint64_t value_new = (value_input & value_mask) | (value_device & ~value_mask);
/* We will need to erase before writing if the new value needs a '1' in any
* position for which the current value had a '0'. Otherwise we can avoid
* erasing. */
if ((~value_device) & value_new) {
res = samd_erase_row(target, SAMD_USER_ROW);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't erase user row");
return res;
}
}
/* Modify */
target_buffer_set_u64(target, buf, value_new);
/* Write the page buffer back out to the target. */
res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
return res;
/* Check if we need to do manual page write commands */
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
if (res == ERROR_OK)
manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
else {
LOG_ERROR("Read of NVM register CTRKB failed.");
return ERROR_FAIL;
}
if (manual_wp) {
/* Trigger flash write */
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
} else {
res = samd_check_error(target);
}
return res;
}
/**
* Modifies the user row register to the given value.
* @param target Pointer to the target structure.
* @param value The value to write.
* @param startb The bit-offset by which the given value is shifted.
* @param endb The bit-offset of the last bit in value to write.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_modify_user_row(struct target *target, uint64_t value,
uint8_t startb, uint8_t endb)
{
uint64_t mask = 0;
int i;
for (i = startb ; i <= endb ; i++)
mask |= ((uint64_t)1) << i;
return samd_modify_user_row_masked(target, value << startb, mask);
}
static int samd_protect(struct flash_bank *bank, int set,
unsigned int first, unsigned int last)
{
int res = ERROR_OK;
/* We can issue lock/unlock region commands with the target running but
* the settings won't persist unless we're able to modify the LOCK regions
* and that requires the target to be halted. */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (unsigned int prot_block = first; prot_block <= last; prot_block++) {
if (set != bank->prot_blocks[prot_block].is_protected) {
/* Load an address that is within this protection block (we use offset 0) */
res = target_write_u32(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
bank->prot_blocks[prot_block].offset >> 1);
if (res != ERROR_OK)
goto exit;
/* Tell the controller to lock that block */
res = samd_issue_nvmctrl_command(bank->target,
set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
if (res != ERROR_OK)
goto exit;
}
}
/* We've now applied our changes, however they will be undone by the next
* reset unless we also apply them to the LOCK bits in the User Page. The
* LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
* corresponding to Sector 15. A '1' means unlocked and a '0' means
* locked. See Table 9-3 in the SAMD20 datasheet for more details. */
res = samd_modify_user_row(bank->target,
set ? (uint64_t)0 : (uint64_t)UINT64_MAX,
48 + first, 48 + last);
if (res != ERROR_OK)
LOG_WARNING("SAMD: protect settings were not made persistent!");
res = ERROR_OK;
exit:
samd_protect_check(bank);
return res;
}
static int samd_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (samd_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* For each sector to be erased */
for (unsigned int s = first; s <= last; s++) {
res = samd_erase_row(bank->target, bank->sectors[s].offset);
if (res != ERROR_OK) {
LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
return res;
}
}
return ERROR_OK;
}
static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
uint32_t nvm_ctrlb;
uint32_t address;
uint32_t pg_offset;
uint32_t nb;
uint32_t nw;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
uint8_t *pb = NULL;
bool manual_wp;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (samd_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* Check if we need to do manual page write commands */
res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
if (res != ERROR_OK)
return res;
if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
manual_wp = true;
else
manual_wp = false;
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
return res;
}
while (count) {
nb = chip->page_size - offset % chip->page_size;
if (count < nb)
nb = count;
address = bank->base + offset;
pg_offset = offset % chip->page_size;
if (offset % 4 || (offset + nb) % 4) {
/* Either start or end of write is not word aligned */
if (!pb) {
pb = malloc(chip->page_size);
if (!pb)
return ERROR_FAIL;
}
/* Set temporary page buffer to 0xff and overwrite the relevant part */
memset(pb, 0xff, chip->page_size);
memcpy(pb + pg_offset, buffer, nb);
/* Align start address to a word boundary */
address -= offset % 4;
pg_offset -= offset % 4;
assert(pg_offset % 4 == 0);
/* Extend length to whole words */
nw = (nb + offset % 4 + 3) / 4;
assert(pg_offset + 4 * nw <= chip->page_size);
/* Now we have original data extended by 0xff bytes
* to the nearest word boundary on both start and end */
res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
} else {
assert(nb % 4 == 0);
nw = nb / 4;
assert(pg_offset + 4 * nw <= chip->page_size);
/* Word aligned data, use direct write from buffer */
res = target_write_memory(bank->target, address, 4, nw, buffer);
}
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
goto free_pb;
}
/* Devices with errata 13134 have automatic page write enabled by default
* For other devices issue a write page CMD to the NVM
* If the page has not been written up to the last word
* then issue CMD_WP always */
if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
} else {
/* Access through AHB is stalled while flash is being programmed */
usleep(200);
res = samd_check_error(bank->target);
}
if (res != ERROR_OK) {
LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
goto free_pb;
}
/* We're done with the page contents */
count -= nb;
offset += nb;
buffer += nb;
}
free_pb:
free(pb);
return res;
}
FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
{
if (bank->base != SAMD_FLASH) {
LOG_ERROR("Address " TARGET_ADDR_FMT
" invalid bank address (try 0x%08" PRIx32
"[at91samd series] )",
bank->base, SAMD_FLASH);
return ERROR_FAIL;
}
struct samd_info *chip;
chip = calloc(1, sizeof(*chip));
if (!chip) {
LOG_ERROR("No memory for flash bank chip info");
return ERROR_FAIL;
}
chip->target = bank->target;
chip->probed = false;
bank->driver_priv = chip;
return ERROR_OK;
}
COMMAND_HANDLER(samd_handle_chip_erase_command)
{
struct target *target = get_current_target(CMD_CTX);
int res = ERROR_FAIL;
if (target) {
/* Enable access to the DSU by disabling the write protect bit */
target_write_u32(target, SAMD_PAC1, (1<<1));
/* intentionally without error checking - not accessible on secured chip */
/* Tell the DSU to perform a full chip erase. It takes about 240ms to
* perform the erase. */
res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
if (res == ERROR_OK)
command_print(CMD, "chip erase started");
else
command_print(CMD, "write to DSU CTRL failed");
}
return res;
}
COMMAND_HANDLER(samd_handle_set_security_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
command_print(CMD, "supply the \"enable\" argument to proceed.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (target) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
/* Check (and clear) error conditions */
if (res == ERROR_OK)
command_print(CMD, "chip secured on next power-cycle");
else
command_print(CMD, "failed to secure chip");
}
return res;
}
COMMAND_HANDLER(samd_handle_eeprom_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (CMD_ARGC >= 1) {
int val = atoi(CMD_ARGV[0]);
uint32_t code;
if (val == 0)
code = 7;
else {
/* Try to match size in bytes with corresponding size code */
for (code = 0; code <= 6; code++) {
if (val == (2 << (13 - code)))
break;
}
if (code > 6) {
command_print(CMD, "Invalid EEPROM size. Please see "
"datasheet for a list valid sizes.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
res = samd_modify_user_row(target, code, 4, 6);
} else {
uint16_t val;
res = target_read_u16(target, SAMD_USER_ROW, &val);
if (res == ERROR_OK) {
uint32_t size = ((val >> 4) & 0x7); /* grab size code */
if (size == 0x7)
command_print(CMD, "EEPROM is disabled");
else {
/* Otherwise, 6 is 256B, 0 is 16KB */
command_print(CMD, "EEPROM size is %u bytes",
(2 << (13 - size)));
}
}
}
}
return res;
}
COMMAND_HANDLER(samd_handle_nvmuserrow_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (CMD_ARGC > 2) {
command_print(CMD, "Too much Arguments given.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC > 0) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
uint64_t mask;
res = samd_get_reservedmask(target, &mask);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine the mask for reserved bits.");
return ERROR_FAIL;
}
mask &= NVMUSERROW_LOCKBIT_MASK;
uint64_t value;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], value);
if (CMD_ARGC == 2) {
uint64_t mask_temp;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], mask_temp);
mask &= mask_temp;
}
res = samd_modify_user_row_masked(target, value, mask);
if (res != ERROR_OK)
return res;
}
/* read register */
uint64_t value;
res = read_userrow(target, &value);
if (res == ERROR_OK)
command_print(CMD, "NVMUSERROW: 0x%016"PRIX64, value);
else
LOG_ERROR("NVMUSERROW could not be read.");
}
return res;
}
COMMAND_HANDLER(samd_handle_bootloader_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Retrieve the MCU's page size, in bytes. */
uint32_t page_size;
res = samd_get_flash_page_info(target, &page_size, NULL);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
if (CMD_ARGC >= 1) {
int val = atoi(CMD_ARGV[0]);
uint32_t code;
if (val == 0)
code = 7;
else {
/* Try to match size in bytes with corresponding size code */
for (code = 0; code <= 6; code++) {
if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
break;
}
if (code > 6) {
command_print(CMD, "Invalid bootloader size. Please "
"see datasheet for a list valid sizes.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
res = samd_modify_user_row(target, code, 0, 2);
} else {
uint16_t val;
res = target_read_u16(target, SAMD_USER_ROW, &val);
if (res == ERROR_OK) {
uint32_t size = (val & 0x7); /* grab size code */
uint32_t nb;
if (size == 0x7)
nb = 0;
else
nb = (2 << (8 - size)) * page_size;
/* There are 4 pages per row */
command_print(CMD, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
nb, (uint32_t)(nb / (page_size * 4)));
}
}
}
return res;
}
COMMAND_HANDLER(samd_handle_reset_deassert)
{
struct target *target = get_current_target(CMD_CTX);
int retval = ERROR_OK;
enum reset_types jtag_reset_config = jtag_get_reset_config();
/* If the target has been unresponsive before, try to re-establish
* communication now - CPU is held in reset by DSU, DAP is working */
if (!target_was_examined(target))
target_examine_one(target);
target_poll(target);
/* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
* so we just release reset held by DSU
*
* n_RESET (srst) clears the DP, so reenable debug and set vector catch here
*
* After vectreset DSU release is not needed however makes no harm
*/
if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
if (retval == ERROR_OK)
retval = target_write_u32(target, DCB_DEMCR,
TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
/* do not return on error here, releasing DSU reset is more important */
}
/* clear CPU Reset Phase Extension bit */
int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
if (retval2 != ERROR_OK)
return retval2;
return retval;
}
static const struct command_registration at91samd_exec_command_handlers[] = {
{
.name = "dsu_reset_deassert",
.handler = samd_handle_reset_deassert,
.mode = COMMAND_EXEC,
.help = "Deassert internal reset held by DSU.",
.usage = "",
},
{
.name = "chip-erase",
.handler = samd_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase the entire Flash by using the Chip-"
"Erase feature in the Device Service Unit (DSU).",
.usage = "",
},
{
.name = "set-security",
.handler = samd_handle_set_security_command,
.mode = COMMAND_EXEC,
.help = "Secure the chip's Flash by setting the Security Bit. "
"This makes it impossible to read the Flash contents. "
"The only way to undo this is to issue the chip-erase "
"command.",
.usage = "'enable'",
},
{
.name = "eeprom",
.usage = "[size_in_bytes]",
.handler = samd_handle_eeprom_command,
.mode = COMMAND_EXEC,
.help = "Show or set the EEPROM size setting, stored in the User Row. "
"Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
.name = "bootloader",
.usage = "[size_in_bytes]",
.handler = samd_handle_bootloader_command,
.mode = COMMAND_EXEC,
.help = "Show or set the bootloader size, stored in the User Row. "
"Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
.name = "nvmuserrow",
.usage = "[value] [mask]",
.handler = samd_handle_nvmuserrow_command,
.mode = COMMAND_EXEC,
.help = "Show or set the nvmuserrow register. It is 64 bit wide "
"and located at address 0x804000. Use the optional mask argument "
"to prevent changes at positions where the bitvalue is zero. "
"For security reasons the lock- and reserved-bits are masked out "
"in background and therefore cannot be changed.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration at91samd_command_handlers[] = {
{
.name = "at91samd",
.mode = COMMAND_ANY,
.help = "at91samd flash command group",
.usage = "",
.chain = at91samd_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver at91samd_flash = {
.name = "at91samd",
.commands = at91samd_command_handlers,
.flash_bank_command = samd_flash_bank_command,
.erase = samd_erase,
.protect = samd_protect,
.write = samd_write,
.read = default_flash_read,
.probe = samd_probe,
.auto_probe = samd_probe,
.erase_check = default_flash_blank_check,
.protect_check = samd_protect_check,
.free_driver_priv = default_flash_free_driver_priv,
};