openocd/src/flash/nor/atsame5.c

964 lines
27 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2017 by Tomas Vanek *
* vanekt@fbl.cz *
* *
* Based on at91samd.c *
* Copyright (C) 2013 by Andrey Yurovsky *
* Andrey Yurovsky <yurovsky@gmail.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "helper/binarybuffer.h"
#include <helper/time_support.h>
#include <jtag/jtag.h>
#include <target/cortex_m.h>
/* A note to prefixing.
* Definitions and functions inherited from at91samd.c without
* any change retained the original prefix samd_ so they eventually
* may go to samd_common.h and .c
* As currently there are only 3 short functions identical with
* the original source, no common file was created. */
#define SAME5_PAGES_PER_BLOCK 16
#define SAME5_NUM_PROT_BLOCKS 32
#define SAMD_PAGE_SIZE_MAX 1024
#define SAMD_FLASH 0x00000000 /* physical Flash memory */
#define SAMD_USER_ROW 0x00804000 /* User Row of Flash */
#define SAME5_PAC 0x40000000 /* Peripheral Access Control */
#define SAMD_DSU 0x41002000 /* Device Service Unit */
#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
#define SAMD_DSU_STATUSA 1 /* DSU status register */
#define SAMD_DSU_DID 0x18 /* Device ID register */
#define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
#define SAME5_NVMCTRL_CTRLA 0x00 /* NVM control A register */
#define SAME5_NVMCTRL_CTRLB 0x04 /* NVM control B register */
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
#define SAME5_NVMCTRL_INTFLAG 0x10 /* NVM interrupt flag register */
#define SAME5_NVMCTRL_STATUS 0x12 /* NVM status register */
#define SAME5_NVMCTRL_ADDR 0x14 /* NVM address register */
#define SAME5_NVMCTRL_LOCK 0x18 /* NVM Lock section register */
#define SAMD_CMDEX_KEY 0xA5UL
#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
/* NVMCTRL commands. */
#define SAME5_NVM_CMD_EP 0x00 /* Erase Page (User Page only) */
#define SAME5_NVM_CMD_EB 0x01 /* Erase Block */
#define SAME5_NVM_CMD_WP 0x03 /* Write Page */
#define SAME5_NVM_CMD_WQW 0x04 /* Write Quad Word */
#define SAME5_NVM_CMD_LR 0x11 /* Lock Region */
#define SAME5_NVM_CMD_UR 0x12 /* Unlock Region */
#define SAME5_NVM_CMD_PBC 0x15 /* Page Buffer Clear */
#define SAME5_NVM_CMD_SSB 0x16 /* Set Security Bit */
/* NVMCTRL bits */
#define SAME5_NVMCTRL_CTRLA_WMODE_MASK 0x30
#define SAME5_NVMCTRL_INTFLAG_DONE (1 << 0)
#define SAME5_NVMCTRL_INTFLAG_ADDRE (1 << 1)
#define SAME5_NVMCTRL_INTFLAG_PROGE (1 << 2)
#define SAME5_NVMCTRL_INTFLAG_LOCKE (1 << 3)
#define SAME5_NVMCTRL_INTFLAG_ECCSE (1 << 4)
#define SAME5_NVMCTRL_INTFLAG_ECCDE (1 << 5)
#define SAME5_NVMCTRL_INTFLAG_NVME (1 << 6)
/* Known identifiers */
#define SAMD_PROCESSOR_M0 0x01
#define SAMD_PROCESSOR_M4 0x06
#define SAMD_FAMILY_D 0x00
#define SAMD_FAMILY_E 0x03
#define SAMD_SERIES_51 0x06
#define SAME_SERIES_51 0x01
#define SAME_SERIES_53 0x03
#define SAME_SERIES_54 0x04
/* Device ID macros */
#define SAMD_GET_PROCESSOR(id) (id >> 28)
#define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
#define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
#define SAMD_GET_DEVSEL(id) (id & 0xFF)
/* Bits to mask user row */
#define NVMUSERROW_SAM_E5_D5_MASK ((uint64_t)0x7FFF00FF3C007FFF)
struct samd_part {
uint8_t id;
const char *name;
uint32_t flash_kb;
uint32_t ram_kb;
};
/* See SAM D5x/E5x Family Silicon Errata and Data Sheet Clarification
* DS80000748K */
/* Known SAMD51 parts. */
static const struct samd_part samd51_parts[] = {
{ 0x00, "SAMD51P20A", 1024, 256 },
{ 0x01, "SAMD51P19A", 512, 192 },
{ 0x02, "SAMD51N20A", 1024, 256 },
{ 0x03, "SAMD51N19A", 512, 192 },
{ 0x04, "SAMD51J20A", 1024, 256 },
{ 0x05, "SAMD51J19A", 512, 192 },
{ 0x06, "SAMD51J18A", 256, 128 },
{ 0x07, "SAMD51G19A", 512, 192 },
{ 0x08, "SAMD51G18A", 256, 128 },
};
/* Known SAME51 parts. */
static const struct samd_part same51_parts[] = {
{ 0x00, "SAME51N20A", 1024, 256 },
{ 0x01, "SAME51N19A", 512, 192 },
{ 0x02, "SAME51J19A", 512, 192 },
{ 0x03, "SAME51J18A", 256, 128 },
{ 0x04, "SAME51J20A", 1024, 256 },
{ 0x05, "SAME51G19A", 512, 192 }, /* New in rev D */
{ 0x06, "SAME51G18A", 256, 128 }, /* New in rev D */
};
/* Known SAME53 parts. */
static const struct samd_part same53_parts[] = {
{ 0x02, "SAME53N20A", 1024, 256 },
{ 0x03, "SAME53N19A", 512, 192 },
{ 0x04, "SAME53J20A", 1024, 256 },
{ 0x05, "SAME53J19A", 512, 192 },
{ 0x06, "SAME53J18A", 256, 128 },
{ 0x55, "LAN9255/ZMX020", 1024, 256 },
{ 0x56, "LAN9255/ZMX019", 512, 192 },
{ 0x57, "LAN9255/ZMX018", 256, 128 },
};
/* Known SAME54 parts. */
static const struct samd_part same54_parts[] = {
{ 0x00, "SAME54P20A", 1024, 256 },
{ 0x01, "SAME54P19A", 512, 192 },
{ 0x02, "SAME54N20A", 1024, 256 },
{ 0x03, "SAME54N19A", 512, 192 },
};
/* Each family of parts contains a parts table in the DEVSEL field of DID. The
* processor ID, family ID, and series ID are used to determine which exact
* family this is and then we can use the corresponding table. */
struct samd_family {
uint8_t processor;
uint8_t family;
uint8_t series;
const struct samd_part *parts;
size_t num_parts;
};
/* Known SAMD families */
static const struct samd_family samd_families[] = {
{ SAMD_PROCESSOR_M4, SAMD_FAMILY_D, SAMD_SERIES_51,
samd51_parts, ARRAY_SIZE(samd51_parts) },
{ SAMD_PROCESSOR_M4, SAMD_FAMILY_E, SAME_SERIES_51,
same51_parts, ARRAY_SIZE(same51_parts) },
{ SAMD_PROCESSOR_M4, SAMD_FAMILY_E, SAME_SERIES_53,
same53_parts, ARRAY_SIZE(same53_parts) },
{ SAMD_PROCESSOR_M4, SAMD_FAMILY_E, SAME_SERIES_54,
same54_parts, ARRAY_SIZE(same54_parts) },
};
struct samd_info {
const struct samd_params *par;
uint32_t page_size;
int num_pages;
int sector_size;
int prot_block_size;
bool probed;
struct target *target;
};
/**
* Gives the family structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_family *samd_find_family(uint32_t id)
{
uint8_t processor = SAMD_GET_PROCESSOR(id);
uint8_t family = SAMD_GET_FAMILY(id);
uint8_t series = SAMD_GET_SERIES(id);
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
if (samd_families[i].processor == processor &&
samd_families[i].series == series &&
samd_families[i].family == family)
return &samd_families[i];
}
return NULL;
}
/**
* Gives the part structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_part *samd_find_part(uint32_t id)
{
uint8_t devsel = SAMD_GET_DEVSEL(id);
const struct samd_family *family = samd_find_family(id);
if (!family)
return NULL;
for (unsigned i = 0; i < family->num_parts; i++) {
if (family->parts[i].id == devsel)
return &family->parts[i];
}
return NULL;
}
static int same5_protect_check(struct flash_bank *bank)
{
int res;
uint32_t lock;
res = target_read_u32(bank->target,
SAMD_NVMCTRL + SAME5_NVMCTRL_LOCK, &lock);
if (res != ERROR_OK)
return res;
/* Lock bits are active-low */
for (unsigned int prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
return ERROR_OK;
}
static int samd_get_flash_page_info(struct target *target,
uint32_t *sizep, int *nump)
{
int res;
uint32_t param;
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
if (res == ERROR_OK) {
/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
* so 0 is 8KB and 7 is 1024KB. */
if (sizep)
*sizep = (8 << ((param >> 16) & 0x7));
/* The NVMP field (bits 15:0) indicates the total number of pages */
if (nump)
*nump = param & 0xFFFF;
} else {
LOG_ERROR("Couldn't read NVM Parameters register");
}
return res;
}
static int same5_probe(struct flash_bank *bank)
{
uint32_t id;
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
const struct samd_part *part;
if (chip->probed)
return ERROR_OK;
res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
part = samd_find_part(id);
if (!part) {
LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
return ERROR_FAIL;
}
bank->size = part->flash_kb * 1024;
res = samd_get_flash_page_info(bank->target, &chip->page_size,
&chip->num_pages);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
/* Sanity check: the total flash size in the DSU should match the page size
* multiplied by the number of pages. */
if (bank->size != chip->num_pages * chip->page_size) {
LOG_WARNING("SAM: bank size doesn't match NVM parameters. "
"Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
part->flash_kb, chip->num_pages, chip->page_size);
}
/* Erase granularity = 1 block = 16 pages */
chip->sector_size = chip->page_size * SAME5_PAGES_PER_BLOCK;
/* Allocate the sector table */
bank->num_sectors = chip->num_pages / SAME5_PAGES_PER_BLOCK;
bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
/* 16 protection blocks per device */
chip->prot_block_size = bank->size / SAME5_NUM_PROT_BLOCKS;
/* Allocate the table of protection blocks */
bank->num_prot_blocks = SAME5_NUM_PROT_BLOCKS;
bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
same5_protect_check(bank);
/* Done */
chip->probed = true;
LOG_INFO("SAM MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
part->flash_kb, part->ram_kb);
return ERROR_OK;
}
static int same5_wait_and_check_error(struct target *target)
{
int ret, ret2;
/* Table 54-40 lists the maximum erase block time as 200 ms.
* Include some margin.
*/
int timeout_ms = 200 * 5;
int64_t ts_start = timeval_ms();
uint16_t intflag;
do {
ret = target_read_u16(target,
SAMD_NVMCTRL + SAME5_NVMCTRL_INTFLAG, &intflag);
if (ret != ERROR_OK) {
LOG_ERROR("SAM: error reading the NVMCTRL_INTFLAG register");
return ret;
}
if (intflag & SAME5_NVMCTRL_INTFLAG_DONE)
break;
keep_alive();
} while (timeval_ms() - ts_start < timeout_ms);
if (!(intflag & SAME5_NVMCTRL_INTFLAG_DONE)) {
LOG_ERROR("SAM: NVM programming timed out");
ret = ERROR_FLASH_OPERATION_FAILED;
}
#if 0
if (intflag & SAME5_NVMCTRL_INTFLAG_ECCSE)
LOG_ERROR("SAM: ECC Single Error");
if (intflag & SAME5_NVMCTRL_INTFLAG_ECCDE) {
LOG_ERROR("SAM: ECC Double Error");
ret = ERROR_FLASH_OPERATION_FAILED;
}
#endif
if (intflag & SAME5_NVMCTRL_INTFLAG_ADDRE) {
LOG_ERROR("SAM: Addr Error");
ret = ERROR_FLASH_OPERATION_FAILED;
}
if (intflag & SAME5_NVMCTRL_INTFLAG_NVME) {
LOG_ERROR("SAM: NVM Error");
ret = ERROR_FLASH_OPERATION_FAILED;
}
if (intflag & SAME5_NVMCTRL_INTFLAG_LOCKE) {
LOG_ERROR("SAM: NVM lock error");
ret = ERROR_FLASH_PROTECTED;
}
if (intflag & SAME5_NVMCTRL_INTFLAG_PROGE) {
LOG_ERROR("SAM: NVM programming error");
ret = ERROR_FLASH_OPER_UNSUPPORTED;
}
/* Clear the error conditions by writing a one to them */
ret2 = target_write_u16(target,
SAMD_NVMCTRL + SAME5_NVMCTRL_INTFLAG, intflag);
if (ret2 != ERROR_OK)
LOG_ERROR("Can't clear NVM error conditions");
return ret;
}
static int same5_issue_nvmctrl_command(struct target *target, uint16_t cmd)
{
int res;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Issue the NVM command */
/* 32-bit write is used to ensure atomic operation on ST-Link */
res = target_write_u32(target,
SAMD_NVMCTRL + SAME5_NVMCTRL_CTRLB, SAMD_NVM_CMD(cmd));
if (res != ERROR_OK)
return res;
/* Check to see if the NVM command resulted in an error condition. */
return same5_wait_and_check_error(target);
}
/**
* Erases a flash block or page at the given address.
* @param target Pointer to the target structure.
* @param address The address of the row.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int same5_erase_block(struct target *target, uint32_t address)
{
int res;
/* Set an address contained in the block to be erased */
res = target_write_u32(target,
SAMD_NVMCTRL + SAME5_NVMCTRL_ADDR, address);
/* Issue the Erase Block command. */
if (res == ERROR_OK)
res = same5_issue_nvmctrl_command(target,
address == SAMD_USER_ROW ? SAME5_NVM_CMD_EP : SAME5_NVM_CMD_EB);
if (res != ERROR_OK) {
LOG_ERROR("Failed to erase block containing %08" PRIx32, address);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int same5_pre_write_check(struct target *target)
{
int res;
uint32_t nvm_ctrla;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Check if manual write mode is set */
res = target_read_u32(target, SAMD_NVMCTRL + SAME5_NVMCTRL_CTRLA, &nvm_ctrla);
if (res != ERROR_OK)
return res;
if (nvm_ctrla & SAME5_NVMCTRL_CTRLA_WMODE_MASK) {
LOG_ERROR("The flash controller must be in manual write mode. Issue 'reset init' and retry.");
return ERROR_FAIL;
}
return res;
}
/**
* Modify the contents of the User Row in Flash. The User Row itself
* has a size of one page and contains a combination of "fuses" and
* calibration data. Bits which have a value of zero in the mask will
* not be changed.
* @param target Pointer to the target structure.
* @param data Pointer to the value to write.
* @param mask Pointer to bitmask, 0 -> value stays untouched.
* @param offset Offset in user row where new data will be applied.
* @param count Size of buffer and mask in bytes.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int same5_modify_user_row_masked(struct target *target,
const uint8_t *data, const uint8_t *mask,
uint32_t offset, uint32_t count)
{
int res;
/* Retrieve the MCU's flash page size, in bytes. */
uint32_t page_size;
res = samd_get_flash_page_info(target, &page_size, NULL);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine Flash page size");
return res;
}
/* Make sure the size is sane. */
assert(page_size <= SAMD_PAGE_SIZE_MAX &&
page_size >= offset + count);
uint8_t buf[SAMD_PAGE_SIZE_MAX];
/* Read the user row (comprising one page) by words. */
res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
return res;
/* Modify buffer and check if really changed */
bool changed = false;
uint32_t i;
for (i = 0; i < count; i++) {
uint8_t old_b = buf[offset+i];
uint8_t new_b = (old_b & ~mask[i]) | (data[i] & mask[i]);
buf[offset+i] = new_b;
if (old_b != new_b)
changed = true;
}
if (!changed)
return ERROR_OK;
res = same5_pre_write_check(target);
if (res != ERROR_OK)
return res;
res = same5_erase_block(target, SAMD_USER_ROW);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't erase user row");
return res;
}
/* Write the page buffer back out to the target using Write Quad Word */
for (i = 0; i < page_size; i += 4 * 4) {
res = target_write_memory(target, SAMD_USER_ROW + i, 4, 4, buf + i);
if (res != ERROR_OK)
return res;
/* Trigger flash write */
res = same5_issue_nvmctrl_command(target, SAME5_NVM_CMD_WQW);
if (res != ERROR_OK)
return res;
}
return res;
}
/**
* Modifies the user row register to the given value.
* @param target Pointer to the target structure.
* @param value The value to write.
* @param startb The bit-offset by which the given value is shifted.
* @param endb The bit-offset of the last bit in value to write.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int same5_modify_user_row(struct target *target, uint32_t value,
uint8_t startb, uint8_t endb)
{
uint8_t buf_val[8] = { 0 };
uint8_t buf_mask[8] = { 0 };
assert(startb <= endb && endb < 64);
buf_set_u32(buf_val, startb, endb + 1 - startb, value);
buf_set_u32(buf_mask, startb, endb + 1 - startb, 0xffffffff);
return same5_modify_user_row_masked(target,
buf_val, buf_mask, 0, 8);
}
static int same5_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
int res = ERROR_OK;
/* We can issue lock/unlock region commands with the target running but
* the settings won't persist unless we're able to modify the LOCK regions
* and that requires the target to be halted. */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (unsigned int prot_block = first; prot_block <= last; prot_block++) {
if (set != bank->prot_blocks[prot_block].is_protected) {
/* Load an address that is within this protection block (we use offset 0) */
res = target_write_u32(bank->target,
SAMD_NVMCTRL + SAME5_NVMCTRL_ADDR,
bank->prot_blocks[prot_block].offset);
if (res != ERROR_OK)
goto exit;
/* Tell the controller to lock that block */
res = same5_issue_nvmctrl_command(bank->target,
set ? SAME5_NVM_CMD_LR : SAME5_NVM_CMD_UR);
if (res != ERROR_OK)
goto exit;
}
}
/* We've now applied our changes, however they will be undone by the next
* reset unless we also apply them to the LOCK bits in the User Page.
* A '1' means unlocked and a '0' means locked. */
const uint8_t lock[4] = { 0, 0, 0, 0 };
const uint8_t unlock[4] = { 0xff, 0xff, 0xff, 0xff };
uint8_t mask[4] = { 0, 0, 0, 0 };
buf_set_u32(mask, first, last + 1 - first, 0xffffffff);
res = same5_modify_user_row_masked(bank->target,
set ? lock : unlock, mask, 8, 4);
if (res != ERROR_OK)
LOG_WARNING("SAM: protect settings were not made persistent!");
res = ERROR_OK;
exit:
same5_protect_check(bank);
return res;
}
static int same5_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed)
return ERROR_FLASH_BANK_NOT_PROBED;
/* For each sector to be erased */
for (unsigned int s = first; s <= last; s++) {
res = same5_erase_block(bank->target, bank->sectors[s].offset);
if (res != ERROR_OK) {
LOG_ERROR("SAM: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
return res;
}
}
return ERROR_OK;
}
static int same5_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
uint32_t address;
uint32_t pg_offset;
uint32_t nb;
uint32_t nw;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
uint8_t *pb = NULL;
res = same5_pre_write_check(bank->target);
if (res != ERROR_OK)
return res;
if (!chip->probed)
return ERROR_FLASH_BANK_NOT_PROBED;
res = same5_issue_nvmctrl_command(bank->target, SAME5_NVM_CMD_PBC);
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
return res;
}
while (count) {
nb = chip->page_size - offset % chip->page_size;
if (count < nb)
nb = count;
address = bank->base + offset;
pg_offset = offset % chip->page_size;
if (offset % 4 || (offset + nb) % 4) {
/* Either start or end of write is not word aligned */
if (!pb) {
pb = malloc(chip->page_size);
if (!pb)
return ERROR_FAIL;
}
/* Set temporary page buffer to 0xff and overwrite the relevant part */
memset(pb, 0xff, chip->page_size);
memcpy(pb + pg_offset, buffer, nb);
/* Align start address to a word boundary */
address -= offset % 4;
pg_offset -= offset % 4;
assert(pg_offset % 4 == 0);
/* Extend length to whole words */
nw = (nb + offset % 4 + 3) / 4;
assert(pg_offset + 4 * nw <= chip->page_size);
/* Now we have original data extended by 0xff bytes
* to the nearest word boundary on both start and end */
res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
} else {
assert(nb % 4 == 0);
nw = nb / 4;
assert(pg_offset + 4 * nw <= chip->page_size);
/* Word aligned data, use direct write from buffer */
res = target_write_memory(bank->target, address, 4, nw, buffer);
}
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
goto free_pb;
}
res = same5_issue_nvmctrl_command(bank->target, SAME5_NVM_CMD_WP);
if (res != ERROR_OK) {
LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
goto free_pb;
}
/* We're done with the page contents */
count -= nb;
offset += nb;
buffer += nb;
}
free_pb:
free(pb);
return res;
}
FLASH_BANK_COMMAND_HANDLER(same5_flash_bank_command)
{
if (bank->base != SAMD_FLASH) {
LOG_ERROR("Address " TARGET_ADDR_FMT " invalid bank address (try "
"0x%08x[same5] )", bank->base, SAMD_FLASH);
return ERROR_FAIL;
}
struct samd_info *chip;
chip = calloc(1, sizeof(*chip));
if (!chip) {
LOG_ERROR("No memory for flash bank chip info");
return ERROR_FAIL;
}
chip->target = bank->target;
chip->probed = false;
bank->driver_priv = chip;
return ERROR_OK;
}
COMMAND_HANDLER(same5_handle_chip_erase_command)
{
struct target *target = get_current_target(CMD_CTX);
if (!target)
return ERROR_FAIL;
/* Enable access to the DSU by disabling the write protect bit */
target_write_u32(target, SAME5_PAC, (1<<16) | (1<<5) | (1<<1));
/* intentionally without error checking - not accessible on secured chip */
/* Tell the DSU to perform a full chip erase. It takes about 240ms to
* perform the erase. */
int res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
if (res == ERROR_OK)
command_print(CMD, "chip erase started");
else
command_print(CMD, "write to DSU CTRL failed");
return res;
}
COMMAND_HANDLER(same5_handle_userpage_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (!target)
return ERROR_FAIL;
if (CMD_ARGC > 2) {
command_print(CMD, "Too much Arguments given.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC >= 1) {
uint64_t value, mask = NVMUSERROW_SAM_E5_D5_MASK;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[0], value);
if (CMD_ARGC == 2) {
uint64_t mask_temp;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], mask_temp);
mask &= mask_temp;
}
uint8_t val_buf[8], mask_buf[8];
target_buffer_set_u64(target, val_buf, value);
target_buffer_set_u64(target, mask_buf, mask);
res = same5_modify_user_row_masked(target,
val_buf, mask_buf, 0, sizeof(val_buf));
}
uint8_t buffer[8];
int res2 = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
if (res2 == ERROR_OK) {
uint64_t value = target_buffer_get_u64(target, buffer);
command_print(CMD, "USER PAGE: 0x%016"PRIX64, value);
} else {
LOG_ERROR("USER PAGE could not be read.");
}
if (CMD_ARGC >= 1)
return res;
else
return res2;
}
COMMAND_HANDLER(same5_handle_bootloader_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (!target)
return ERROR_FAIL;
if (CMD_ARGC >= 1) {
unsigned long size;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[0], size);
uint32_t code = (size + 8191) / 8192;
if (code > 15) {
command_print(CMD, "Invalid bootloader size. Please "
"see datasheet for a list valid sizes.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
res = same5_modify_user_row(target, 15 - code, 26, 29);
}
uint32_t val;
int res2 = target_read_u32(target, SAMD_USER_ROW, &val);
if (res2 == ERROR_OK) {
uint32_t code = (val >> 26) & 0xf; /* grab size code */
uint32_t size = (15 - code) * 8192;
command_print(CMD, "Bootloader protected in the first %"
PRIu32 " bytes", size);
}
if (CMD_ARGC >= 1)
return res;
else
return res2;
}
COMMAND_HANDLER(samd_handle_reset_deassert)
{
struct target *target = get_current_target(CMD_CTX);
int res = ERROR_OK;
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (!target)
return ERROR_FAIL;
/* If the target has been unresponsive before, try to re-establish
* communication now - CPU is held in reset by DSU, DAP is working */
if (!target_was_examined(target))
target_examine_one(target);
target_poll(target);
/* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
* so we just release reset held by DSU
*
* n_RESET (srst) clears the DP, so reenable debug and set vector catch here
*
* After vectreset DSU release is not needed however makes no harm
*/
if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
res = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
if (res == ERROR_OK)
res = target_write_u32(target, DCB_DEMCR,
TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
/* do not return on error here, releasing DSU reset is more important */
}
/* clear CPU Reset Phase Extension bit */
int res2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
if (res2 != ERROR_OK)
return res2;
return res;
}
static const struct command_registration same5_exec_command_handlers[] = {
{
.name = "dsu_reset_deassert",
.usage = "",
.handler = samd_handle_reset_deassert,
.mode = COMMAND_EXEC,
.help = "Deassert internal reset held by DSU."
},
{
.name = "chip-erase",
.usage = "",
.handler = same5_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase the entire Flash by using the Chip-"
"Erase feature in the Device Service Unit (DSU).",
},
{
.name = "bootloader",
.usage = "[size_in_bytes]",
.handler = same5_handle_bootloader_command,
.mode = COMMAND_EXEC,
.help = "Show or set the bootloader protection size, stored in the User Row. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
.name = "userpage",
.usage = "[value] [mask]",
.handler = same5_handle_userpage_command,
.mode = COMMAND_EXEC,
.help = "Show or set the first 64-bit part of user page "
"located at address 0x804000. Use the optional mask argument "
"to prevent changes at positions where the bitvalue is zero. "
"For security reasons the reserved-bits are masked out "
"in background and therefore cannot be changed.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration same5_command_handlers[] = {
{
.name = "atsame5",
.mode = COMMAND_ANY,
.help = "atsame5 flash command group",
.usage = "",
.chain = same5_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver atsame5_flash = {
.name = "atsame5",
.commands = same5_command_handlers,
.flash_bank_command = same5_flash_bank_command,
.erase = same5_erase,
.protect = same5_protect,
.write = same5_write,
.read = default_flash_read,
.probe = same5_probe,
.auto_probe = same5_probe,
.erase_check = default_flash_blank_check,
.protect_check = same5_protect_check,
.free_driver_priv = default_flash_free_driver_priv,
};