openocd/src/flash/nand/arm_io.c

304 lines
9.1 KiB
C

/*
* Copyright (C) 2009 by Marvell Semiconductors, Inc.
* Written by Nicolas Pitre <nico at marvell.com>
*
* Copyright (C) 2009 by David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "core.h"
#include "arm_io.h"
#include <helper/binarybuffer.h>
#include <target/arm.h>
#include <target/armv7m.h>
#include <target/algorithm.h>
/**
* Copies code to a working area. This will allocate room for the code plus the
* additional amount requested if the working area pointer is null.
*
* @param target Pointer to the target to copy code to
* @param code Pointer to the code area to be copied
* @param code_size Size of the code being copied
* @param additional Size of the additional area to be allocated in addition to
* code
* @param area Pointer to a pointer to a working area to copy code to
* @return Success or failure of the operation
*/
static int arm_code_to_working_area(struct target *target,
const uint32_t *code, unsigned code_size,
unsigned additional, struct working_area **area)
{
uint8_t code_buf[code_size];
unsigned i;
int retval;
unsigned size = code_size + additional;
/* REVISIT this assumes size doesn't ever change.
* That's usually correct; but there are boards with
* both large and small page chips, where it won't be...
*/
/* make sure we have a working area */
if (NULL == *area) {
retval = target_alloc_working_area(target, size, area);
if (retval != ERROR_OK) {
LOG_DEBUG("%s: no %d byte buffer", __func__, (int) size);
return ERROR_NAND_NO_BUFFER;
}
}
/* buffer code in target endianness */
for (i = 0; i < code_size / 4; i++)
target_buffer_set_u32(target, code_buf + i * 4, code[i]);
/* copy code to work area */
retval = target_write_memory(target, (*area)->address,
4, code_size / 4, code_buf);
return retval;
}
/**
* ARM-specific bulk write from buffer to address of 8-bit wide NAND.
* For now this supports ARMv4,ARMv5 and ARMv7-M cores.
*
* Enhancements to target_run_algorithm() could enable:
* - ARMv6 and ARMv7 cores in ARM mode
*
* Different code fragments could handle:
* - 16-bit wide data (needs different setup)
*
* @param nand Pointer to the arm_nand_data struct that defines the I/O
* @param data Pointer to the data to be copied to flash
* @param size Size of the data being copied
* @return Success or failure of the operation
*/
int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
{
struct target *target = nand->target;
struct arm_algorithm armv4_5_algo;
struct armv7m_algorithm armv7m_algo;
void *arm_algo;
struct arm *arm = target->arch_info;
struct reg_param reg_params[3];
uint32_t target_buf;
uint32_t exit_var = 0;
int retval;
/* Inputs:
* r0 NAND data address (byte wide)
* r1 buffer address
* r2 buffer length
*/
static const uint32_t code_armv4_5[] = {
0xe4d13001, /* s: ldrb r3, [r1], #1 */
0xe5c03000, /* strb r3, [r0] */
0xe2522001, /* subs r2, r2, #1 */
0x1afffffb, /* bne s */
/* exit: ARMv4 needs hardware breakpoint */
0xe1200070, /* e: bkpt #0 */
};
/* Inputs:
* r0 NAND data address (byte wide)
* r1 buffer address
* r2 buffer length
*
* see contrib/loaders/flash/armv7m_io.s for src
*/
static const uint32_t code_armv7m[] = {
0x3b01f811,
0x3a017003,
0xaffaf47f,
0xbf00be00,
};
int target_code_size = 0;
const uint32_t *target_code_src = NULL;
/* set up algorithm */
if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
arm_algo = &armv7m_algo;
target_code_size = sizeof(code_armv7m);
target_code_src = code_armv7m;
} else {
armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
armv4_5_algo.core_mode = ARM_MODE_SVC;
armv4_5_algo.core_state = ARM_STATE_ARM;
arm_algo = &armv4_5_algo;
target_code_size = sizeof(code_armv4_5);
target_code_src = code_armv4_5;
}
if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
retval = arm_code_to_working_area(target, target_code_src, target_code_size,
nand->chunk_size, &nand->copy_area);
if (retval != ERROR_OK)
return retval;
}
nand->op = ARM_NAND_WRITE;
/* copy data to work area */
target_buf = nand->copy_area->address + target_code_size;
retval = target_write_buffer(target, target_buf, size, data);
if (retval != ERROR_OK)
return retval;
/* set up parameters */
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
buf_set_u32(reg_params[0].value, 0, 32, nand->data);
buf_set_u32(reg_params[1].value, 0, 32, target_buf);
buf_set_u32(reg_params[2].value, 0, 32, size);
/* armv4 must exit using a hardware breakpoint */
if (arm->is_armv4)
exit_var = nand->copy_area->address + target_code_size - 4;
/* use alg to write data from work area to NAND chip */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
nand->copy_area->address, exit_var, 1000, arm_algo);
if (retval != ERROR_OK)
LOG_ERROR("error executing hosted NAND write");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
return retval;
}
/**
* Uses an on-chip algorithm for an ARM device to read from a NAND device and
* store the data into the host machine's memory.
*
* @param nand Pointer to the arm_nand_data struct that defines the I/O
* @param data Pointer to the data buffer to store the read data
* @param size Amount of data to be stored to the buffer.
* @return Success or failure of the operation
*/
int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
{
struct target *target = nand->target;
struct arm_algorithm armv4_5_algo;
struct armv7m_algorithm armv7m_algo;
void *arm_algo;
struct arm *arm = target->arch_info;
struct reg_param reg_params[3];
uint32_t target_buf;
uint32_t exit_var = 0;
int retval;
/* Inputs:
* r0 buffer address
* r1 NAND data address (byte wide)
* r2 buffer length
*/
static const uint32_t code_armv4_5[] = {
0xe5d13000, /* s: ldrb r3, [r1] */
0xe4c03001, /* strb r3, [r0], #1 */
0xe2522001, /* subs r2, r2, #1 */
0x1afffffb, /* bne s */
/* exit: ARMv4 needs hardware breakpoint */
0xe1200070, /* e: bkpt #0 */
};
/* Inputs:
* r0 buffer address
* r1 NAND data address (byte wide)
* r2 buffer length
*
* see contrib/loaders/flash/armv7m_io.s for src
*/
static const uint32_t code_armv7m[] = {
0xf800780b,
0x3a013b01,
0xaffaf47f,
0xbf00be00,
};
int target_code_size = 0;
const uint32_t *target_code_src = NULL;
/* set up algorithm */
if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
arm_algo = &armv7m_algo;
target_code_size = sizeof(code_armv7m);
target_code_src = code_armv7m;
} else {
armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
armv4_5_algo.core_mode = ARM_MODE_SVC;
armv4_5_algo.core_state = ARM_STATE_ARM;
arm_algo = &armv4_5_algo;
target_code_size = sizeof(code_armv4_5);
target_code_src = code_armv4_5;
}
/* create the copy area if not yet available */
if (nand->op != ARM_NAND_READ || !nand->copy_area) {
retval = arm_code_to_working_area(target, target_code_src, target_code_size,
nand->chunk_size, &nand->copy_area);
if (retval != ERROR_OK)
return retval;
}
nand->op = ARM_NAND_READ;
target_buf = nand->copy_area->address + target_code_size;
/* set up parameters */
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
buf_set_u32(reg_params[0].value, 0, 32, target_buf);
buf_set_u32(reg_params[1].value, 0, 32, nand->data);
buf_set_u32(reg_params[2].value, 0, 32, size);
/* armv4 must exit using a hardware breakpoint */
if (arm->is_armv4)
exit_var = nand->copy_area->address + target_code_size - 4;
/* use alg to write data from NAND chip to work area */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
nand->copy_area->address, exit_var, 1000, arm_algo);
if (retval != ERROR_OK)
LOG_ERROR("error executing hosted NAND read");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
/* read from work area to the host's memory */
retval = target_read_buffer(target, target_buf, size, data);
return retval;
}