openocd/src/jtag/drivers/mpsse.c
Peter Henn ef83a9ee93 speed up ftdi by reorder to out-in
When the ftdi driver calls finally the mpsse_flush function, it first
initiate the USB in and finally the corresponding USB out transaction.
Because data in is requested too early the USB device will always answer
the first USB in by a NAK. That can prevented by a simple reordering of
the out and then the in transfer and can improve the Jtag performance for
high JTAG clock rates.

Change-Id: I17abf1487c914c92e2e447ee6d30562ef629f327
Signed-off-by: Peter Henn <Peter.Henn@web.de>
Reviewed-on: http://openocd.zylin.com/942
Tested-by: jenkins
Reviewed-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
Reviewed-by: Xiaofan <xiaofanc@gmail.com>
2013-03-06 19:03:37 +00:00

847 lines
24 KiB
C

/**************************************************************************
* Copyright (C) 2012 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mpsse.h"
#include "helper/log.h"
#include <libusb-1.0/libusb.h>
/* Compatibility define for older libusb-1.0 */
#ifndef LIBUSB_CALL
#define LIBUSB_CALL
#endif
#ifdef _DEBUG_JTAG_IO_
#define DEBUG_IO(expr...) LOG_DEBUG(expr)
#define DEBUG_PRINT_BUF(buf, len) \
do { \
char buf_string[32 * 3 + 1]; \
int buf_string_pos = 0; \
for (int i = 0; i < len; i++) { \
buf_string_pos += sprintf(buf_string + buf_string_pos, " %02x", buf[i]); \
if (i % 32 == 32 - 1) { \
LOG_DEBUG("%s", buf_string); \
buf_string_pos = 0; \
} \
} \
if (buf_string_pos > 0) \
LOG_DEBUG("%s", buf_string);\
} while (0)
#else
#define DEBUG_IO(expr...) do {} while (0)
#define DEBUG_PRINT_BUF(buf, len) do {} while (0)
#endif
#define FTDI_DEVICE_OUT_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
#define FTDI_DEVICE_IN_REQTYPE (0x80 | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
#define BITMODE_MPSSE 0x02
#define SIO_RESET_REQUEST 0x00
#define SIO_SET_LATENCY_TIMER_REQUEST 0x09
#define SIO_GET_LATENCY_TIMER_REQUEST 0x0A
#define SIO_SET_BITMODE_REQUEST 0x0B
#define SIO_RESET_SIO 0
#define SIO_RESET_PURGE_RX 1
#define SIO_RESET_PURGE_TX 2
struct mpsse_ctx {
libusb_context *usb_ctx;
libusb_device_handle *usb_dev;
unsigned int usb_write_timeout;
unsigned int usb_read_timeout;
uint8_t in_ep;
uint8_t out_ep;
uint16_t max_packet_size;
uint16_t index;
uint8_t interface;
enum ftdi_chip_type type;
uint8_t *write_buffer;
unsigned write_size;
unsigned write_count;
uint8_t *read_buffer;
unsigned read_size;
unsigned read_count;
uint8_t *read_chunk;
unsigned read_chunk_size;
struct bit_copy_queue read_queue;
};
/* Returns true if the string descriptor indexed by str_index in device matches string */
static bool string_descriptor_equal(libusb_device_handle *device, uint8_t str_index,
const char *string)
{
int retval;
char desc_string[256]; /* Max size of string descriptor */
retval = libusb_get_string_descriptor_ascii(device, str_index, (unsigned char *)desc_string,
sizeof(desc_string));
if (retval < 0) {
LOG_ERROR("libusb_get_string_descriptor_ascii() failed with %d", retval);
return false;
}
return strncmp(string, desc_string, sizeof(desc_string)) == 0;
}
/* Helper to open a libusb device that matches vid, pid, product string and/or serial string.
* Set any field to 0 as a wildcard. If the device is found true is returned, with ctx containing
* the already opened handle. ctx->interface must be set to the desired interface (channel) number
* prior to calling this function. */
static bool open_matching_device(struct mpsse_ctx *ctx, const uint16_t *vid, const uint16_t *pid,
const char *product, const char *serial)
{
libusb_device **list;
struct libusb_device_descriptor desc;
struct libusb_config_descriptor *config0;
int err;
bool found = false;
ssize_t cnt = libusb_get_device_list(ctx->usb_ctx, &list);
if (cnt < 0)
LOG_ERROR("libusb_get_device_list() failed with %zi", cnt);
for (ssize_t i = 0; i < cnt; i++) {
libusb_device *device = list[i];
err = libusb_get_device_descriptor(device, &desc);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_get_device_descriptor() failed with %d", err);
continue;
}
if (vid && *vid != desc.idVendor)
continue;
if (pid && *pid != desc.idProduct)
continue;
err = libusb_open(device, &ctx->usb_dev);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_open() failed with %d", err);
continue;
}
if (product && !string_descriptor_equal(ctx->usb_dev, desc.iProduct, product)) {
libusb_close(ctx->usb_dev);
continue;
}
if (serial && !string_descriptor_equal(ctx->usb_dev, desc.iSerialNumber, serial)) {
libusb_close(ctx->usb_dev);
continue;
}
found = true;
break;
}
libusb_free_device_list(list, 1);
if (!found) {
LOG_ERROR("no device found");
return false;
}
err = libusb_get_config_descriptor(libusb_get_device(ctx->usb_dev), 0, &config0);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_get_config_descriptor() failed with %d", err);
libusb_close(ctx->usb_dev);
return false;
}
/* Make sure the first configuration is selected */
int cfg;
err = libusb_get_configuration(ctx->usb_dev, &cfg);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_get_configuration() failed with %d", err);
goto error;
}
if (desc.bNumConfigurations > 0 && cfg != config0->bConfigurationValue) {
err = libusb_set_configuration(ctx->usb_dev, config0->bConfigurationValue);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_set_configuration() failed with %d", err);
goto error;
}
}
/* Try to detach ftdi_sio kernel module */
err = libusb_detach_kernel_driver(ctx->usb_dev, ctx->interface);
if (err != LIBUSB_SUCCESS && err != LIBUSB_ERROR_NOT_FOUND
&& err != LIBUSB_ERROR_NOT_SUPPORTED) {
LOG_ERROR("libusb_detach_kernel_driver() failed with %d", err);
goto error;
}
err = libusb_claim_interface(ctx->usb_dev, ctx->interface);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_claim_interface() failed with %d", err);
goto error;
}
/* Reset FTDI device */
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
SIO_RESET_REQUEST, SIO_RESET_SIO,
ctx->index, NULL, 0, ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("failed to reset FTDI device: %d", err);
goto error;
}
switch (desc.bcdDevice) {
case 0x500:
ctx->type = TYPE_FT2232C;
break;
case 0x700:
ctx->type = TYPE_FT2232H;
break;
case 0x800:
ctx->type = TYPE_FT4232H;
break;
case 0x900:
ctx->type = TYPE_FT232H;
break;
default:
LOG_ERROR("unsupported FTDI chip type: 0x%04x", desc.bcdDevice);
goto error;
}
/* Determine maximum packet size and endpoint addresses */
if (!(desc.bNumConfigurations > 0 && ctx->interface < config0->bNumInterfaces
&& config0->interface[ctx->interface].num_altsetting > 0))
goto desc_error;
const struct libusb_interface_descriptor *descriptor;
descriptor = &config0->interface[ctx->interface].altsetting[0];
if (descriptor->bNumEndpoints != 2)
goto desc_error;
ctx->in_ep = 0;
ctx->out_ep = 0;
for (int i = 0; i < descriptor->bNumEndpoints; i++) {
if (descriptor->endpoint[i].bEndpointAddress & 0x80) {
ctx->in_ep = descriptor->endpoint[i].bEndpointAddress;
ctx->max_packet_size =
descriptor->endpoint[i].wMaxPacketSize;
} else {
ctx->out_ep = descriptor->endpoint[i].bEndpointAddress;
}
}
if (ctx->in_ep == 0 || ctx->out_ep == 0)
goto desc_error;
libusb_free_config_descriptor(config0);
return true;
desc_error:
LOG_ERROR("unrecognized USB device descriptor");
error:
libusb_free_config_descriptor(config0);
libusb_close(ctx->usb_dev);
return false;
}
struct mpsse_ctx *mpsse_open(const uint16_t *vid, const uint16_t *pid, const char *description,
const char *serial, int channel)
{
struct mpsse_ctx *ctx = calloc(1, sizeof(*ctx));
int err;
if (!ctx)
return 0;
bit_copy_queue_init(&ctx->read_queue);
ctx->read_chunk_size = 16384;
ctx->read_size = 16384;
ctx->write_size = 16384;
ctx->read_chunk = malloc(ctx->read_chunk_size);
ctx->read_buffer = malloc(ctx->read_size);
ctx->write_buffer = malloc(ctx->write_size);
if (!ctx->read_chunk || !ctx->read_buffer || !ctx->write_buffer)
goto error;
ctx->interface = channel;
ctx->index = channel + 1;
ctx->usb_read_timeout = 5000;
ctx->usb_write_timeout = 5000;
err = libusb_init(&ctx->usb_ctx);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_init() failed with %d", err);
goto error;
}
if (!open_matching_device(ctx, vid, pid, description, serial)) {
/* Four hex digits plus terminating zero each */
char vidstr[5];
char pidstr[5];
LOG_ERROR("unable to open ftdi device with vid %s, pid %s, description '%s' and "
"serial '%s'",
vid ? sprintf(vidstr, "%04x", *vid), vidstr : "*",
pid ? sprintf(pidstr, "%04x", *pid), pidstr : "*",
description ? description : "*",
serial ? serial : "*");
ctx->usb_dev = 0;
goto error;
}
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
SIO_SET_LATENCY_TIMER_REQUEST, 255, ctx->index, NULL, 0,
ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to set latency timer: %d", err);
goto error;
}
err = libusb_control_transfer(ctx->usb_dev,
FTDI_DEVICE_OUT_REQTYPE,
SIO_SET_BITMODE_REQUEST,
0x0b | (BITMODE_MPSSE << 8),
ctx->index,
NULL,
0,
ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to set MPSSE bitmode: %d", err);
goto error;
}
mpsse_purge(ctx);
return ctx;
error:
mpsse_close(ctx);
return 0;
}
void mpsse_close(struct mpsse_ctx *ctx)
{
if (ctx->usb_dev)
libusb_close(ctx->usb_dev);
if (ctx->usb_ctx)
libusb_exit(ctx->usb_ctx);
bit_copy_discard(&ctx->read_queue);
if (ctx->write_buffer)
free(ctx->write_buffer);
if (ctx->read_buffer)
free(ctx->read_buffer);
if (ctx->read_chunk)
free(ctx->read_chunk);
free(ctx);
}
bool mpsse_is_high_speed(struct mpsse_ctx *ctx)
{
return ctx->type != TYPE_FT2232C;
}
void mpsse_purge(struct mpsse_ctx *ctx)
{
int err;
LOG_DEBUG("-");
ctx->write_count = 0;
ctx->read_count = 0;
bit_copy_discard(&ctx->read_queue);
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_RESET_REQUEST,
SIO_RESET_PURGE_RX, ctx->index, NULL, 0, ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to purge ftdi rx buffers: %d", err);
return;
}
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_RESET_REQUEST,
SIO_RESET_PURGE_TX, ctx->index, NULL, 0, ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to purge ftdi tx buffers: %d", err);
return;
}
}
static unsigned buffer_write_space(struct mpsse_ctx *ctx)
{
/* Reserve one byte for SEND_IMMEDIATE */
return ctx->write_size - ctx->write_count - 1;
}
static unsigned buffer_read_space(struct mpsse_ctx *ctx)
{
return ctx->read_size - ctx->read_count;
}
static void buffer_write_byte(struct mpsse_ctx *ctx, uint8_t data)
{
DEBUG_IO("%02x", data);
assert(ctx->write_count < ctx->write_size);
ctx->write_buffer[ctx->write_count++] = data;
}
static unsigned buffer_write(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset,
unsigned bit_count)
{
DEBUG_IO("%d bits", bit_count);
assert(ctx->write_count + DIV_ROUND_UP(bit_count, 8) <= ctx->write_size);
bit_copy(ctx->write_buffer + ctx->write_count, 0, out, out_offset, bit_count);
ctx->write_count += DIV_ROUND_UP(bit_count, 8);
return bit_count;
}
static unsigned buffer_add_read(struct mpsse_ctx *ctx, uint8_t *in, unsigned in_offset,
unsigned bit_count, unsigned offset)
{
DEBUG_IO("%d bits, offset %d", bit_count, offset);
assert(ctx->read_count + DIV_ROUND_UP(bit_count, 8) <= ctx->read_size);
bit_copy_queued(&ctx->read_queue, in, in_offset, ctx->read_buffer + ctx->read_count, offset,
bit_count);
ctx->read_count += DIV_ROUND_UP(bit_count, 8);
return bit_count;
}
int mpsse_clock_data_out(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset,
unsigned length, uint8_t mode)
{
return mpsse_clock_data(ctx, out, out_offset, 0, 0, length, mode);
}
int mpsse_clock_data_in(struct mpsse_ctx *ctx, uint8_t *in, unsigned in_offset, unsigned length,
uint8_t mode)
{
return mpsse_clock_data(ctx, 0, 0, in, in_offset, length, mode);
}
int mpsse_clock_data(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset, uint8_t *in,
unsigned in_offset, unsigned length, uint8_t mode)
{
/* TODO: Fix MSB first modes */
DEBUG_IO("%s%s %d bits", in ? "in" : "", out ? "out" : "", length);
int retval = ERROR_OK;
/* TODO: On H chips, use command 0x8E/0x8F if in and out are both 0 */
if (out || (!out && !in))
mode |= 0x10;
if (in)
mode |= 0x20;
while (length > 0) {
/* Guarantee buffer space enough for a minimum size transfer */
if (buffer_write_space(ctx) + (length < 8) < (out || (!out && !in) ? 4 : 3)
|| (in && buffer_read_space(ctx) < 1))
retval = mpsse_flush(ctx);
if (length < 8) {
/* Transfer remaining bits in bit mode */
buffer_write_byte(ctx, 0x02 | mode);
buffer_write_byte(ctx, length - 1);
if (out)
out_offset += buffer_write(ctx, out, out_offset, length);
if (in)
in_offset += buffer_add_read(ctx, in, in_offset, length, 8 - length);
if (!out && !in)
buffer_write_byte(ctx, 0x00);
length = 0;
} else {
/* Byte transfer */
unsigned this_bytes = length / 8;
/* MPSSE command limit */
if (this_bytes > 65536)
this_bytes = 65536;
/* Buffer space limit. We already made sure there's space for the minimum
* transfer. */
if ((out || (!out && !in)) && this_bytes + 3 > buffer_write_space(ctx))
this_bytes = buffer_write_space(ctx) - 3;
if (in && this_bytes > buffer_read_space(ctx))
this_bytes = buffer_read_space(ctx);
if (this_bytes > 0) {
buffer_write_byte(ctx, mode);
buffer_write_byte(ctx, (this_bytes - 1) & 0xff);
buffer_write_byte(ctx, (this_bytes - 1) >> 8);
if (out)
out_offset += buffer_write(ctx,
out,
out_offset,
this_bytes * 8);
if (in)
in_offset += buffer_add_read(ctx,
in,
in_offset,
this_bytes * 8,
0);
if (!out && !in)
for (unsigned n = 0; n < this_bytes; n++)
buffer_write_byte(ctx, 0x00);
length -= this_bytes * 8;
}
}
}
return retval;
}
int mpsse_clock_tms_cs_out(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset,
unsigned length, bool tdi, uint8_t mode)
{
return mpsse_clock_tms_cs(ctx, out, out_offset, 0, 0, length, tdi, mode);
}
int mpsse_clock_tms_cs(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset, uint8_t *in,
unsigned in_offset, unsigned length, bool tdi, uint8_t mode)
{
DEBUG_IO("%sout %d bits, tdi=%d", in ? "in" : "", length, tdi);
assert(out);
int retval = ERROR_OK;
mode |= 0x42;
if (in)
mode |= 0x20;
while (length > 0) {
/* Guarantee buffer space enough for a minimum size transfer */
if (buffer_write_space(ctx) < 3 || (in && buffer_read_space(ctx) < 1))
retval = mpsse_flush(ctx);
/* Byte transfer */
unsigned this_bits = length;
/* MPSSE command limit */
/* NOTE: there's a report of an FT2232 bug in this area, where shifting
* exactly 7 bits can make problems with TMS signaling for the last
* clock cycle:
*
* http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
*/
if (this_bits > 7)
this_bits = 7;
if (this_bits > 0) {
buffer_write_byte(ctx, mode);
buffer_write_byte(ctx, this_bits - 1);
uint8_t data = 0;
/* TODO: Fix MSB first, if allowed in MPSSE */
bit_copy(&data, 0, out, out_offset, this_bits);
out_offset += this_bits;
buffer_write_byte(ctx, data | (tdi ? 0x80 : 0x00));
if (in)
in_offset += buffer_add_read(ctx,
in,
in_offset,
this_bits,
8 - this_bits);
length -= this_bits;
}
}
return retval;
}
int mpsse_set_data_bits_low_byte(struct mpsse_ctx *ctx, uint8_t data, uint8_t dir)
{
DEBUG_IO("-");
int retval = ERROR_OK;
if (buffer_write_space(ctx) < 3)
retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x80);
buffer_write_byte(ctx, data);
buffer_write_byte(ctx, dir);
return retval;
}
int mpsse_set_data_bits_high_byte(struct mpsse_ctx *ctx, uint8_t data, uint8_t dir)
{
DEBUG_IO("-");
int retval = ERROR_OK;
if (buffer_write_space(ctx) < 3)
retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x82);
buffer_write_byte(ctx, data);
buffer_write_byte(ctx, dir);
return retval;
}
int mpsse_read_data_bits_low_byte(struct mpsse_ctx *ctx, uint8_t *data)
{
DEBUG_IO("-");
int retval = ERROR_OK;
if (buffer_write_space(ctx) < 1)
retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x81);
buffer_add_read(ctx, data, 0, 8, 0);
return retval;
}
int mpsse_read_data_bits_high_byte(struct mpsse_ctx *ctx, uint8_t *data)
{
DEBUG_IO("-");
int retval = ERROR_OK;
if (buffer_write_space(ctx) < 1)
retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x83);
buffer_add_read(ctx, data, 0, 8, 0);
return retval;
}
static int single_byte_boolean_helper(struct mpsse_ctx *ctx, bool var, uint8_t val_if_true,
uint8_t val_if_false)
{
int retval = ERROR_OK;
if (buffer_write_space(ctx) < 1)
retval = mpsse_flush(ctx);
buffer_write_byte(ctx, var ? val_if_true : val_if_false);
return retval;
}
int mpsse_loopback_config(struct mpsse_ctx *ctx, bool enable)
{
LOG_DEBUG("%s", enable ? "on" : "off");
return single_byte_boolean_helper(ctx, enable, 0x84, 0x85);
}
int mpsse_set_divisor(struct mpsse_ctx *ctx, uint16_t divisor)
{
LOG_DEBUG("%d", divisor);
int retval = ERROR_OK;
if (buffer_write_space(ctx) < 3)
retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x86);
buffer_write_byte(ctx, divisor & 0xff);
buffer_write_byte(ctx, divisor >> 8);
return retval;
}
int mpsse_divide_by_5_config(struct mpsse_ctx *ctx, bool enable)
{
if (!mpsse_is_high_speed(ctx))
return ERROR_FAIL;
LOG_DEBUG("%s", enable ? "on" : "off");
return single_byte_boolean_helper(ctx, enable, 0x8b, 0x8a);
}
int mpsse_rtck_config(struct mpsse_ctx *ctx, bool enable)
{
if (!mpsse_is_high_speed(ctx))
return ERROR_FAIL;
LOG_DEBUG("%s", enable ? "on" : "off");
return single_byte_boolean_helper(ctx, enable, 0x96, 0x97);
}
int mpsse_set_frequency(struct mpsse_ctx *ctx, int frequency)
{
LOG_DEBUG("target %d Hz", frequency);
assert(frequency >= 0);
int base_clock;
if (frequency == 0)
return mpsse_rtck_config(ctx, true);
mpsse_rtck_config(ctx, false); /* just try */
if (frequency > 60000000 / 2 / 65536 && mpsse_is_high_speed(ctx)) {
int retval = mpsse_divide_by_5_config(ctx, false);
if (retval != ERROR_OK)
return retval;
base_clock = 60000000;
} else {
mpsse_divide_by_5_config(ctx, true); /* just try */
base_clock = 12000000;
}
int divisor = (base_clock / 2 + frequency - 1) / frequency - 1;
if (divisor > 65535)
divisor = 65535;
assert(divisor >= 0);
int retval = mpsse_set_divisor(ctx, divisor);
if (retval != ERROR_OK)
return retval;
frequency = base_clock / 2 / (1 + divisor);
LOG_DEBUG("actually %d Hz", frequency);
return frequency;
}
/* Context needed by the callbacks */
struct transfer_result {
struct mpsse_ctx *ctx;
bool done;
unsigned transferred;
};
static LIBUSB_CALL void read_cb(struct libusb_transfer *transfer)
{
struct transfer_result *res = (struct transfer_result *)transfer->user_data;
struct mpsse_ctx *ctx = res->ctx;
unsigned packet_size = ctx->max_packet_size;
DEBUG_PRINT_BUF(transfer->buffer, transfer->actual_length);
/* Strip the two status bytes sent at the beginning of each USB packet
* while copying the chunk buffer to the read buffer */
unsigned num_packets = DIV_ROUND_UP(transfer->actual_length, packet_size);
unsigned chunk_remains = transfer->actual_length;
for (unsigned i = 0; i < num_packets && chunk_remains > 2; i++) {
unsigned this_size = packet_size - 2;
if (this_size > chunk_remains - 2)
this_size = chunk_remains - 2;
if (this_size > ctx->read_count - res->transferred)
this_size = ctx->read_count - res->transferred;
memcpy(ctx->read_buffer + res->transferred,
ctx->read_chunk + packet_size * i + 2,
this_size);
res->transferred += this_size;
chunk_remains -= this_size + 2;
if (res->transferred == ctx->read_count) {
res->done = true;
break;
}
}
DEBUG_IO("raw chunk %d, transferred %d of %d", transfer->actual_length, res->transferred,
ctx->read_count);
if (!res->done)
if (libusb_submit_transfer(transfer) != LIBUSB_SUCCESS)
res->done = true;
}
static LIBUSB_CALL void write_cb(struct libusb_transfer *transfer)
{
struct transfer_result *res = (struct transfer_result *)transfer->user_data;
struct mpsse_ctx *ctx = res->ctx;
res->transferred += transfer->actual_length;
DEBUG_IO("transferred %d of %d", res->transferred, ctx->write_count);
DEBUG_PRINT_BUF(transfer->buffer, transfer->actual_length);
if (res->transferred == ctx->write_count)
res->done = true;
else {
transfer->length = ctx->write_count - res->transferred;
transfer->buffer = ctx->write_buffer + res->transferred;
if (libusb_submit_transfer(transfer) != LIBUSB_SUCCESS)
res->done = true;
}
}
int mpsse_flush(struct mpsse_ctx *ctx)
{
DEBUG_IO("write %d%s, read %d", ctx->write_count, ctx->read_count ? "+1" : "",
ctx->read_count);
assert(ctx->write_count > 0 || ctx->read_count == 0); /* No read data without write data */
int retval = ERROR_OK;
if (ctx->write_count == 0)
return retval;
struct libusb_transfer *read_transfer = 0;
struct transfer_result read_result = { .ctx = ctx, .done = true };
if (ctx->read_count) {
buffer_write_byte(ctx, 0x87); /* SEND_IMMEDIATE */
read_result.done = false;
/* delay read transaction to ensure the FTDI chip can support us with data
immediately after processing the MPSSE commands in the write transaction */
}
struct transfer_result write_result = { .ctx = ctx, .done = false };
struct libusb_transfer *write_transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(write_transfer, ctx->usb_dev, ctx->out_ep, ctx->write_buffer,
ctx->write_count, write_cb, &write_result, ctx->usb_write_timeout);
retval = libusb_submit_transfer(write_transfer);
if (ctx->read_count) {
read_transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(read_transfer, ctx->usb_dev, ctx->in_ep, ctx->read_chunk,
ctx->read_chunk_size, read_cb, &read_result,
ctx->usb_read_timeout);
retval = libusb_submit_transfer(read_transfer);
}
/* Polling loop, more or less taken from libftdi */
while (!write_result.done || !read_result.done) {
retval = libusb_handle_events(ctx->usb_ctx);
keep_alive();
if (retval != LIBUSB_SUCCESS && retval != LIBUSB_ERROR_INTERRUPTED) {
libusb_cancel_transfer(write_transfer);
if (read_transfer)
libusb_cancel_transfer(read_transfer);
while (!write_result.done || !read_result.done)
if (libusb_handle_events(ctx->usb_ctx) != LIBUSB_SUCCESS)
break;
}
}
if (retval != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_handle_events() failed with %d", retval);
retval = ERROR_FAIL;
} else if (write_result.transferred < ctx->write_count) {
LOG_ERROR("ftdi device did not accept all data: %d, tried %d",
write_result.transferred,
ctx->write_count);
retval = ERROR_FAIL;
} else if (read_result.transferred < ctx->read_count) {
LOG_ERROR("ftdi device did not return all data: %d, expected %d",
read_result.transferred,
ctx->read_count);
retval = ERROR_FAIL;
} else if (ctx->read_count) {
ctx->write_count = 0;
ctx->read_count = 0;
bit_copy_execute(&ctx->read_queue);
retval = ERROR_OK;
} else {
ctx->write_count = 0;
bit_copy_discard(&ctx->read_queue);
retval = ERROR_OK;
}
libusb_free_transfer(write_transfer);
if (read_transfer)
libusb_free_transfer(read_transfer);
if (retval != ERROR_OK)
mpsse_purge(ctx);
return retval;
}