openocd/src/flash/nor/xmc1xxx.c

536 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* XMC1000 flash driver
*
* Copyright (c) 2016 Andreas Färber
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/align.h>
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#define FLASH_BASE 0x10000000
#define PAU_BASE 0x40000000
#define SCU_BASE 0x40010000
#define NVM_BASE 0x40050000
#define FLASH_CS0 (FLASH_BASE + 0xf00)
#define PAU_FLSIZE (PAU_BASE + 0x404)
#define SCU_IDCHIP (SCU_BASE + 0x004)
#define NVMSTATUS (NVM_BASE + 0x00)
#define NVMPROG (NVM_BASE + 0x04)
#define NVMCONF (NVM_BASE + 0x08)
#define NVMSTATUS_BUSY (1 << 0)
#define NVMSTATUS_VERR_MASK (0x3 << 2)
#define NVMPROG_ACTION_OPTYPE_IDLE_VERIFY (0 << 0)
#define NVMPROG_ACTION_OPTYPE_WRITE (1 << 0)
#define NVMPROG_ACTION_OPTYPE_PAGE_ERASE (2 << 0)
#define NVMPROG_ACTION_ONE_SHOT_ONCE (1 << 4)
#define NVMPROG_ACTION_ONE_SHOT_CONTINUOUS (2 << 4)
#define NVMPROG_ACTION_VERIFY_EACH (1 << 6)
#define NVMPROG_ACTION_VERIFY_NO (2 << 6)
#define NVMPROG_ACTION_VERIFY_ARRAY (3 << 6)
#define NVMPROG_ACTION_IDLE 0x00
#define NVMPROG_ACTION_MASK 0xff
#define NVM_WORD_SIZE 4
#define NVM_BLOCK_SIZE (4 * NVM_WORD_SIZE)
#define NVM_PAGE_SIZE (16 * NVM_BLOCK_SIZE)
struct xmc1xxx_flash_bank {
bool probed;
};
static int xmc1xxx_nvm_set_idle(struct target *target)
{
return target_write_u16(target, NVMPROG, NVMPROG_ACTION_IDLE);
}
static int xmc1xxx_nvm_check_idle(struct target *target)
{
uint16_t val;
int retval;
retval = target_read_u16(target, NVMPROG, &val);
if (retval != ERROR_OK)
return retval;
if ((val & NVMPROG_ACTION_MASK) != NVMPROG_ACTION_IDLE) {
LOG_WARNING("NVMPROG.ACTION");
retval = xmc1xxx_nvm_set_idle(target);
}
return retval;
}
static int xmc1xxx_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct working_area *workarea;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_algo;
unsigned i;
int retval;
const uint8_t erase_code[] = {
#include "../../../contrib/loaders/flash/xmc1xxx/erase.inc"
};
LOG_DEBUG("Infineon XMC1000 erase sectors %u to %u", first, last);
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
retval = xmc1xxx_nvm_check_idle(target);
if (retval != ERROR_OK)
return retval;
retval = target_alloc_working_area(target, sizeof(erase_code),
&workarea);
if (retval != ERROR_OK) {
LOG_ERROR("No working area available.");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto err_alloc_code;
}
retval = target_write_buffer(target, workarea->address,
sizeof(erase_code), erase_code);
if (retval != ERROR_OK)
goto err_write_code;
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, NVM_BASE);
buf_set_u32(reg_params[1].value, 0, 32, bank->base +
bank->sectors[first].offset);
buf_set_u32(reg_params[2].value, 0, 32, bank->base +
bank->sectors[last].offset + bank->sectors[last].size);
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
workarea->address, 0,
1000, &armv7m_algo);
if (retval != ERROR_OK) {
LOG_ERROR("Error executing flash sector erase "
"programming algorithm");
retval = xmc1xxx_nvm_set_idle(target);
if (retval != ERROR_OK)
LOG_WARNING("Couldn't restore NVMPROG.ACTION");
retval = ERROR_FLASH_OPERATION_FAILED;
goto err_run;
}
err_run:
for (i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(&reg_params[i]);
err_write_code:
target_free_working_area(target, workarea);
err_alloc_code:
return retval;
}
static int xmc1xxx_erase_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct working_area *workarea;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_algo;
uint16_t val;
unsigned i;
int retval;
const uint8_t erase_check_code[] = {
#include "../../../contrib/loaders/flash/xmc1xxx/erase_check.inc"
};
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_alloc_working_area(target, sizeof(erase_check_code),
&workarea);
if (retval != ERROR_OK) {
LOG_ERROR("No working area available.");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto err_alloc_code;
}
retval = target_write_buffer(target, workarea->address,
sizeof(erase_check_code), erase_check_code);
if (retval != ERROR_OK)
goto err_write_code;
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, NVM_BASE);
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
uint32_t start = bank->base + bank->sectors[sector].offset;
buf_set_u32(reg_params[1].value, 0, 32, start);
buf_set_u32(reg_params[2].value, 0, 32, start + bank->sectors[sector].size);
retval = xmc1xxx_nvm_check_idle(target);
if (retval != ERROR_OK)
goto err_nvmprog;
LOG_DEBUG("Erase-checking 0x%08" PRIx32, start);
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
workarea->address, 0,
1000, &armv7m_algo);
if (retval != ERROR_OK) {
LOG_ERROR("Error executing flash sector erase check "
"programming algorithm");
retval = xmc1xxx_nvm_set_idle(target);
if (retval != ERROR_OK)
LOG_WARNING("Couldn't restore NVMPROG.ACTION");
retval = ERROR_FLASH_OPERATION_FAILED;
goto err_run;
}
retval = target_read_u16(target, NVMSTATUS, &val);
if (retval != ERROR_OK) {
LOG_ERROR("Couldn't read NVMSTATUS");
goto err_nvmstatus;
}
bank->sectors[sector].is_erased = (val & NVMSTATUS_VERR_MASK) ? 0 : 1;
}
err_nvmstatus:
err_run:
err_nvmprog:
for (i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(&reg_params[i]);
err_write_code:
target_free_working_area(target, workarea);
err_alloc_code:
return retval;
}
static int xmc1xxx_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t byte_count)
{
struct target *target = bank->target;
struct working_area *code_workarea, *data_workarea;
struct reg_param reg_params[4];
struct armv7m_algorithm armv7m_algo;
uint32_t block_count = DIV_ROUND_UP(byte_count, NVM_BLOCK_SIZE);
unsigned i;
int retval;
const uint8_t write_code[] = {
#include "../../../contrib/loaders/flash/xmc1xxx/write.inc"
};
LOG_DEBUG("Infineon XMC1000 write at 0x%08" PRIx32 " (%" PRIu32 " bytes)",
offset, byte_count);
if (!IS_ALIGNED(offset, NVM_BLOCK_SIZE)) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required block alignment",
offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (!IS_ALIGNED(byte_count, NVM_BLOCK_SIZE)) {
LOG_WARNING("length %" PRIu32 " is not block aligned, rounding up",
byte_count);
}
if (target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_alloc_working_area(target, sizeof(write_code),
&code_workarea);
if (retval != ERROR_OK) {
LOG_ERROR("No working area available for write code.");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto err_alloc_code;
}
retval = target_write_buffer(target, code_workarea->address,
sizeof(write_code), write_code);
if (retval != ERROR_OK)
goto err_write_code;
retval = target_alloc_working_area(target, MAX(NVM_BLOCK_SIZE,
MIN(block_count * NVM_BLOCK_SIZE, target_get_working_area_avail(target))),
&data_workarea);
if (retval != ERROR_OK) {
LOG_ERROR("No working area available for write data.");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto err_alloc_data;
}
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, NVM_BASE);
while (byte_count > 0) {
uint32_t blocks = MIN(block_count, data_workarea->size / NVM_BLOCK_SIZE);
uint32_t addr = bank->base + offset;
LOG_DEBUG("copying %" PRIu32 " bytes to SRAM " TARGET_ADDR_FMT,
MIN(blocks * NVM_BLOCK_SIZE, byte_count),
data_workarea->address);
retval = target_write_buffer(target, data_workarea->address,
MIN(blocks * NVM_BLOCK_SIZE, byte_count), buffer);
if (retval != ERROR_OK) {
LOG_ERROR("Error writing data buffer");
retval = ERROR_FLASH_OPERATION_FAILED;
goto err_write_data;
}
if (byte_count < blocks * NVM_BLOCK_SIZE) {
retval = target_write_memory(target,
data_workarea->address + byte_count, 1,
blocks * NVM_BLOCK_SIZE - byte_count,
&bank->default_padded_value);
if (retval != ERROR_OK) {
LOG_ERROR("Error writing data padding");
retval = ERROR_FLASH_OPERATION_FAILED;
goto err_write_pad;
}
}
LOG_DEBUG("writing 0x%08" PRIx32 "-0x%08" PRIx32 " (%" PRIu32 "x)",
addr, addr + blocks * NVM_BLOCK_SIZE - 1, blocks);
retval = xmc1xxx_nvm_check_idle(target);
if (retval != ERROR_OK)
goto err_nvmprog;
buf_set_u32(reg_params[1].value, 0, 32, addr);
buf_set_u32(reg_params[2].value, 0, 32, data_workarea->address);
buf_set_u32(reg_params[3].value, 0, 32, blocks);
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
code_workarea->address, 0,
5 * 60 * 1000, &armv7m_algo);
if (retval != ERROR_OK) {
LOG_ERROR("Error executing flash write "
"programming algorithm");
retval = xmc1xxx_nvm_set_idle(target);
if (retval != ERROR_OK)
LOG_WARNING("Couldn't restore NVMPROG.ACTION");
retval = ERROR_FLASH_OPERATION_FAILED;
goto err_run;
}
block_count -= blocks;
offset += blocks * NVM_BLOCK_SIZE;
buffer += blocks * NVM_BLOCK_SIZE;
byte_count -= MIN(blocks * NVM_BLOCK_SIZE, byte_count);
}
err_run:
err_nvmprog:
err_write_pad:
err_write_data:
for (i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(&reg_params[i]);
target_free_working_area(target, data_workarea);
err_alloc_data:
err_write_code:
target_free_working_area(target, code_workarea);
err_alloc_code:
return retval;
}
static int xmc1xxx_protect_check(struct flash_bank *bank)
{
uint32_t nvmconf;
unsigned int num_protected;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_read_u32(bank->target, NVMCONF, &nvmconf);
if (retval != ERROR_OK) {
LOG_ERROR("Cannot read NVMCONF register.");
return retval;
}
LOG_DEBUG("NVMCONF = %08" PRIx32, nvmconf);
num_protected = (nvmconf >> 4) & 0xff;
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = (i < num_protected) ? 1 : 0;
return ERROR_OK;
}
static int xmc1xxx_get_info_command(struct flash_bank *bank, struct command_invocation *cmd)
{
uint32_t chipid[8];
int i, retval;
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
/* Obtain the 8-word Chip Identification Number */
for (i = 0; i < 7; i++) {
retval = target_read_u32(bank->target, FLASH_CS0 + i * 4, &chipid[i]);
if (retval != ERROR_OK) {
LOG_ERROR("Cannot read CS0 register %i.", i);
return retval;
}
LOG_DEBUG("ID[%d] = %08" PRIX32, i, chipid[i]);
}
retval = target_read_u32(bank->target, SCU_BASE + 0x000, &chipid[7]);
if (retval != ERROR_OK) {
LOG_ERROR("Cannot read DBGROMID register.");
return retval;
}
LOG_DEBUG("ID[7] = %08" PRIX32, chipid[7]);
command_print_sameline(cmd,
"XMC%" PRIx32 "00 %" PRIX32 " flash %" PRIu32 "KB ROM %" PRIu32 "KB SRAM %" PRIu32 "KB",
(chipid[0] >> 12) & 0xff,
0xAA + (chipid[7] >> 28) - 1,
(((chipid[6] >> 12) & 0x3f) - 1) * 4,
(((chipid[4] >> 8) & 0x3f) * 256) / 1024,
(((chipid[5] >> 8) & 0x1f) * 256 * 4) / 1024);
return ERROR_OK;
}
static int xmc1xxx_probe(struct flash_bank *bank)
{
struct xmc1xxx_flash_bank *xmc_bank = bank->driver_priv;
uint32_t flash_addr = bank->base;
uint32_t idchip, flsize;
int retval;
if (xmc_bank->probed)
return ERROR_OK;
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_read_u32(bank->target, SCU_IDCHIP, &idchip);
if (retval != ERROR_OK) {
LOG_ERROR("Cannot read IDCHIP register.");
return retval;
}
if ((idchip & 0xffff0000) != 0x10000) {
LOG_ERROR("IDCHIP register does not match XMC1xxx.");
return ERROR_FAIL;
}
LOG_DEBUG("IDCHIP = %08" PRIx32, idchip);
retval = target_read_u32(bank->target, PAU_FLSIZE, &flsize);
if (retval != ERROR_OK) {
LOG_ERROR("Cannot read FLSIZE register.");
return retval;
}
bank->num_sectors = 1 + ((flsize >> 12) & 0x3f) - 1;
bank->size = bank->num_sectors * 4 * 1024;
bank->sectors = calloc(bank->num_sectors,
sizeof(struct flash_sector));
for (unsigned int i = 0; i < bank->num_sectors; i++) {
if (i == 0) {
bank->sectors[i].size = 0x200;
bank->sectors[i].offset = 0xE00;
flash_addr += 0x1000;
} else {
bank->sectors[i].size = 4 * 1024;
bank->sectors[i].offset = flash_addr - bank->base;
flash_addr += bank->sectors[i].size;
}
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
xmc_bank->probed = true;
return ERROR_OK;
}
static int xmc1xxx_auto_probe(struct flash_bank *bank)
{
struct xmc1xxx_flash_bank *xmc_bank = bank->driver_priv;
if (xmc_bank->probed)
return ERROR_OK;
return xmc1xxx_probe(bank);
}
FLASH_BANK_COMMAND_HANDLER(xmc1xxx_flash_bank_command)
{
struct xmc1xxx_flash_bank *xmc_bank;
xmc_bank = malloc(sizeof(struct xmc1xxx_flash_bank));
if (!xmc_bank)
return ERROR_FLASH_OPERATION_FAILED;
xmc_bank->probed = false;
bank->driver_priv = xmc_bank;
return ERROR_OK;
}
const struct flash_driver xmc1xxx_flash = {
.name = "xmc1xxx",
.flash_bank_command = xmc1xxx_flash_bank_command,
.info = xmc1xxx_get_info_command,
.probe = xmc1xxx_probe,
.auto_probe = xmc1xxx_auto_probe,
.protect_check = xmc1xxx_protect_check,
.read = default_flash_read,
.erase = xmc1xxx_erase,
.erase_check = xmc1xxx_erase_check,
.write = xmc1xxx_write,
.free_driver_priv = default_flash_free_driver_priv,
};