openocd/src/flash/nor/nrf51.c

791 lines
21 KiB
C

/***************************************************************************
* Copyright (C) 2013 Synapse Product Development *
* Andrey Smirnov <andrew.smironv@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
enum {
NRF51_FLASH_BASE = 0x00000000,
};
enum nrf51_ficr_registers {
NRF51_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
#define NRF51_FICR_REG(offset) (NRF51_FICR_BASE + offset)
NRF51_FICR_CODEPAGESIZE = NRF51_FICR_REG(0x010),
NRF51_FICR_CODESIZE = NRF51_FICR_REG(0x014),
NRF51_FICR_CLENR0 = NRF51_FICR_REG(0x028),
NRF51_FICR_PPFC = NRF51_FICR_REG(0x02C),
NRF51_FICR_NUMRAMBLOCK = NRF51_FICR_REG(0x034),
NRF51_FICR_SIZERAMBLOCK0 = NRF51_FICR_REG(0x038),
NRF51_FICR_SIZERAMBLOCK1 = NRF51_FICR_REG(0x03C),
NRF51_FICR_SIZERAMBLOCK2 = NRF51_FICR_REG(0x040),
NRF51_FICR_SIZERAMBLOCK3 = NRF51_FICR_REG(0x044),
NRF51_FICR_CONFIGID = NRF51_FICR_REG(0x05C),
NRF51_FICR_DEVICEID0 = NRF51_FICR_REG(0x060),
NRF51_FICR_DEVICEID1 = NRF51_FICR_REG(0x064),
NRF51_FICR_ER0 = NRF51_FICR_REG(0x080),
NRF51_FICR_ER1 = NRF51_FICR_REG(0x084),
NRF51_FICR_ER2 = NRF51_FICR_REG(0x088),
NRF51_FICR_ER3 = NRF51_FICR_REG(0x08C),
NRF51_FICR_IR0 = NRF51_FICR_REG(0x090),
NRF51_FICR_IR1 = NRF51_FICR_REG(0x094),
NRF51_FICR_IR2 = NRF51_FICR_REG(0x098),
NRF51_FICR_IR3 = NRF51_FICR_REG(0x09C),
NRF51_FICR_DEVICEADDRTYPE = NRF51_FICR_REG(0x0A0),
NRF51_FICR_DEVICEADDR0 = NRF51_FICR_REG(0x0A4),
NRF51_FICR_DEVICEADDR1 = NRF51_FICR_REG(0x0A8),
NRF51_FICR_OVERRIDEN = NRF51_FICR_REG(0x0AC),
NRF51_FICR_NRF_1MBIT0 = NRF51_FICR_REG(0x0B0),
NRF51_FICR_NRF_1MBIT1 = NRF51_FICR_REG(0x0B4),
NRF51_FICR_NRF_1MBIT2 = NRF51_FICR_REG(0x0B8),
NRF51_FICR_NRF_1MBIT3 = NRF51_FICR_REG(0x0BC),
NRF51_FICR_NRF_1MBIT4 = NRF51_FICR_REG(0x0C0),
NRF51_FICR_BLE_1MBIT0 = NRF51_FICR_REG(0x0EC),
NRF51_FICR_BLE_1MBIT1 = NRF51_FICR_REG(0x0F0),
NRF51_FICR_BLE_1MBIT2 = NRF51_FICR_REG(0x0F4),
NRF51_FICR_BLE_1MBIT3 = NRF51_FICR_REG(0x0F8),
NRF51_FICR_BLE_1MBIT4 = NRF51_FICR_REG(0x0FC),
};
enum nrf51_uicr_registers {
NRF51_UICR_BASE = 0x10001000, /* User Information
* Configuration Regsters */
#define NRF51_UICR_REG(offset) (NRF51_UICR_BASE + offset)
NRF51_UICR_CLENR0 = NRF51_UICR_REG(0x000),
NRF51_UICR_RBPCONF = NRF51_UICR_REG(0x004),
NRF51_UICR_XTALFREQ = NRF51_UICR_REG(0x008),
NRF51_UICR_FWID = NRF51_UICR_REG(0x010),
};
enum nrf51_nvmc_registers {
NRF51_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
* Controller Regsters */
#define NRF51_NVMC_REG(offset) (NRF51_NVMC_BASE + offset)
NRF51_NVMC_READY = NRF51_NVMC_REG(0x400),
NRF51_NVMC_CONFIG = NRF51_NVMC_REG(0x504),
NRF51_NVMC_ERASEPAGE = NRF51_NVMC_REG(0x508),
NRF51_NVMC_ERASEALL = NRF51_NVMC_REG(0x50C),
NRF51_NVMC_ERASEUICR = NRF51_NVMC_REG(0x514),
};
enum nrf51_nvmc_config_bits {
NRF51_NVMC_CONFIG_REN = 0x00,
NRF51_NVMC_CONFIG_WEN = 0x01,
NRF51_NVMC_CONFIG_EEN = 0x02,
};
struct nrf51_info {
uint32_t code_page_size;
uint32_t code_memory_size;
bool probed;
struct target *target;
};
static int nrf51_probe(struct flash_bank *bank);
static int nrf51_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf51_info **chip)
{
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
*chip = (struct nrf51_info *)bank->driver_priv;
if (!(*chip)->probed)
return nrf51_probe(bank);
return ERROR_OK;
}
static int nrf51_wait_for_nvmc(struct nrf51_info *chip)
{
uint32_t ready;
int res;
int timeout = 100;
do {
res = target_read_u32(chip->target, NRF51_NVMC_READY, &ready);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read NVMC_READY register");
return res;
}
if (ready == 0x00000001)
return ERROR_OK;
alive_sleep(1);
} while (timeout--);
return ERROR_FLASH_BUSY;
}
static int nrf51_nvmc_erase_enable(struct nrf51_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF51_NVMC_CONFIG,
NRF51_NVMC_CONFIG_EEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable erase operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf51_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Erase enable did not complete");
return res;
}
static int nrf51_nvmc_write_enable(struct nrf51_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF51_NVMC_CONFIG,
NRF51_NVMC_CONFIG_WEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable write operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf51_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Write enable did not complete");
return res;
}
static int nrf51_nvmc_read_only(struct nrf51_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF51_NVMC_CONFIG,
NRF51_NVMC_CONFIG_REN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable read-only operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf51_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Read only enable did not complete");
return res;
}
static int nrf51_nvmc_generic_erase(struct nrf51_info *chip,
uint32_t erase_register, uint32_t erase_value)
{
int res;
res = nrf51_nvmc_erase_enable(chip);
if (res != ERROR_OK)
goto error;
res = target_write_u32(chip->target,
erase_register,
erase_value);
if (res != ERROR_OK)
goto set_read_only;
res = nrf51_wait_for_nvmc(chip);
if (res != ERROR_OK)
goto set_read_only;
return nrf51_nvmc_read_only(chip);
set_read_only:
nrf51_nvmc_read_only(chip);
error:
LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
erase_register, erase_value);
return ERROR_FAIL;
}
static int nrf51_protect_check(struct flash_bank *bank)
{
int res;
uint32_t clenr0;
struct nrf51_info *chip = (struct nrf51_info *)bank->driver_priv;
assert(chip != NULL);
res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[FICR]");
return res;
}
if (clenr0 == 0xFFFFFFFF) {
res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[UICR]");
return res;
}
}
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected =
clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
return ERROR_OK;
}
static int nrf51_protect(struct flash_bank *bank, int set, int first, int last)
{
int res;
uint32_t clenr0, ppfc;
struct nrf51_info *chip;
res = nrf51_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
if (first != 0) {
LOG_ERROR("Code region 0 must start at the begining of the bank");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
return ERROR_FAIL;
};
res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[UICR]");
return res;
}
if (clenr0 == 0xFFFFFFFF) {
res = target_write_u32(chip->target, NRF51_UICR_CLENR0,
clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't write code region 0 size[UICR]");
return res;
}
} else {
LOG_ERROR("You need to perform chip erase before changing the protection settings");
}
nrf51_protect_check(bank);
return ERROR_OK;
}
static int nrf51_probe(struct flash_bank *bank)
{
uint32_t id;
int res;
struct nrf51_info *chip = (struct nrf51_info *)bank->driver_priv;
res = target_read_u32(chip->target, NRF51_FICR_DEVICEID0, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID 0 register");
return res;
}
res = target_read_u32(chip->target, NRF51_FICR_DEVICEID1, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID 1 register");
return res;
}
res = target_read_u32(chip->target, NRF51_FICR_CODEPAGESIZE,
&chip->code_page_size);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code page size");
return res;
}
res = target_read_u32(chip->target, NRF51_FICR_CODESIZE,
&chip->code_memory_size);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code memory size");
return res;
}
bank->size = chip->code_memory_size * 1024;
bank->num_sectors = bank->size / chip->code_page_size;
bank->sectors = calloc(bank->num_sectors,
sizeof((bank->sectors)[0]));
if (!bank->sectors)
return ERROR_FLASH_BANK_NOT_PROBED;
/* Fill out the sector information: all NRF51 sectors are the same size and
* there is always a fixed number of them. */
for (int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].size = chip->code_page_size;
bank->sectors[i].offset = i * chip->code_page_size;
/* mark as unknown */
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
nrf51_protect_check(bank);
chip->probed = true;
return ERROR_OK;
}
static int nrf51_auto_probe(struct flash_bank *bank)
{
struct nrf51_info *chip = (struct nrf51_info *)bank->driver_priv;
if (chip->probed)
return ERROR_OK;
return nrf51_probe(bank);
}
static struct flash_sector *nrf51_find_sector_by_address(struct flash_bank *bank, uint32_t address)
{
struct nrf51_info *chip = (struct nrf51_info *)bank->driver_priv;
for (int i = 0; i < bank->num_sectors; i++)
if (bank->sectors[i].offset <= address &&
address < (bank->sectors[i].offset + chip->code_page_size))
return &bank->sectors[i];
return NULL;
}
static int nrf51_erase_all(struct nrf51_info *chip)
{
return nrf51_nvmc_generic_erase(chip,
NRF51_NVMC_ERASEALL,
0x00000001);
}
static int nrf51_erase_page(struct nrf51_info *chip, struct flash_sector *sector)
{
int res;
if (sector->is_protected)
return ERROR_FAIL;
res = nrf51_nvmc_generic_erase(chip,
NRF51_NVMC_ERASEPAGE,
sector->offset);
if (res == ERROR_OK)
sector->is_erased = 1;
return res;
}
static int nrf51_write_page(struct flash_bank *bank, uint32_t offset, uint8_t *buffer)
{
assert(offset % 4 == 0);
int res = ERROR_FAIL;
struct nrf51_info *chip = (struct nrf51_info *)bank->driver_priv;
struct flash_sector *sector = nrf51_find_sector_by_address(bank, offset);
if (!sector)
goto error;
if (sector->is_protected)
goto error;
if (!sector->is_erased) {
res = nrf51_erase_page(chip, sector);
if (res != ERROR_OK)
goto error;
}
res = nrf51_nvmc_write_enable(chip);
if (res != ERROR_OK)
goto error;
sector->is_erased = 0;
res = target_write_memory(bank->target, offset, 4,
chip->code_page_size / 4, buffer);
if (res != ERROR_OK)
goto set_read_only;
return nrf51_nvmc_read_only(chip);
set_read_only:
nrf51_nvmc_read_only(chip);
error:
LOG_ERROR("Failed to write sector @ 0x%08"PRIx32, sector->offset);
return res;
}
static int nrf51_erase(struct flash_bank *bank, int first, int last)
{
int res;
struct nrf51_info *chip;
res = nrf51_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
/* For each sector to be erased */
for (int s = first; s <= last && res == ERROR_OK; s++)
res = nrf51_erase_page(chip, &bank->sectors[s]);
return res;
}
static int nrf51_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
struct {
uint32_t start, end;
} region;
struct nrf51_info *chip;
res = nrf51_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
region.start = offset;
region.end = offset + count;
struct {
size_t length;
uint8_t *buffer;
} start_extra, end_extra;
start_extra.length = region.start % chip->code_page_size;
start_extra.buffer = buffer;
end_extra.length = region.end % chip->code_page_size;
end_extra.buffer = buffer + count - end_extra.length;
if (start_extra.length) {
uint8_t page[chip->code_page_size];
res = target_read_memory(bank->target,
region.start - start_extra.length,
1, start_extra.length, page);
if (res != ERROR_OK)
return res;
memcpy(page + start_extra.length,
start_extra.buffer,
chip->code_page_size - start_extra.length);
res = nrf51_write_page(bank,
region.start - start_extra.length,
page);
if (res != ERROR_OK)
return res;
}
if (end_extra.length) {
uint8_t page[chip->code_page_size];
/* Retrieve the full row contents from Flash */
res = target_read_memory(bank->target,
region.end,
1,
(chip->code_page_size - end_extra.length),
page + end_extra.length);
if (res != ERROR_OK)
return res;
memcpy(page, end_extra.buffer, end_extra.length);
res = nrf51_write_page(bank,
region.end - end_extra.length,
page);
if (res != ERROR_OK)
return res;
}
region.start += start_extra.length;
region.end -= end_extra.length;
for (uint32_t address = region.start; address < region.end;
address += chip->code_page_size) {
res = nrf51_write_page(bank, address, &buffer[address - region.start]);
if (res != ERROR_OK)
return res;
}
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(nrf51_flash_bank_command)
{
struct nrf51_info *chip;
/* Create a new chip */
chip = calloc(1, sizeof(*chip));
if (!chip)
return ERROR_FAIL;
chip->target = bank->target;
chip->probed = false;
bank->driver_priv = chip;
if (bank->base != NRF51_FLASH_BASE) {
LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
"[nrf51 series] )",
bank->base, NRF51_FLASH_BASE);
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(nrf51_handle_mass_erase_command)
{
int res;
struct flash_bank *bank;
res = get_flash_bank_by_num(0, &bank);
if (res != ERROR_OK)
return res;
struct nrf51_info *chip;
res = nrf51_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
uint32_t ppfc;
res = target_read_u32(chip->target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
"mass erase command won't work.");
return ERROR_FAIL;
};
res = nrf51_erase_all(chip);
if (res != ERROR_OK) {
LOG_ERROR("Failed to erase the chip");
nrf51_protect_check(bank);
return res;
}
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
return nrf51_protect_check(bank);
}
static int nrf51_info(struct flash_bank *bank, char *buf, int buf_size)
{
int res;
struct nrf51_info *chip;
res = nrf51_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
struct {
uint32_t address, value;
} ficr[] = {
{ .address = NRF51_FICR_CODEPAGESIZE },
{ .address = NRF51_FICR_CODESIZE },
{ .address = NRF51_FICR_CLENR0 },
{ .address = NRF51_FICR_PPFC },
{ .address = NRF51_FICR_NUMRAMBLOCK },
{ .address = NRF51_FICR_SIZERAMBLOCK0 },
{ .address = NRF51_FICR_SIZERAMBLOCK1 },
{ .address = NRF51_FICR_SIZERAMBLOCK2 },
{ .address = NRF51_FICR_SIZERAMBLOCK3 },
{ .address = NRF51_FICR_CONFIGID },
{ .address = NRF51_FICR_DEVICEID0 },
{ .address = NRF51_FICR_DEVICEID1 },
{ .address = NRF51_FICR_ER0 },
{ .address = NRF51_FICR_ER1 },
{ .address = NRF51_FICR_ER2 },
{ .address = NRF51_FICR_ER3 },
{ .address = NRF51_FICR_IR0 },
{ .address = NRF51_FICR_IR1 },
{ .address = NRF51_FICR_IR2 },
{ .address = NRF51_FICR_IR3 },
{ .address = NRF51_FICR_DEVICEADDRTYPE },
{ .address = NRF51_FICR_DEVICEADDR0 },
{ .address = NRF51_FICR_DEVICEADDR1 },
{ .address = NRF51_FICR_OVERRIDEN },
{ .address = NRF51_FICR_NRF_1MBIT0 },
{ .address = NRF51_FICR_NRF_1MBIT1 },
{ .address = NRF51_FICR_NRF_1MBIT2 },
{ .address = NRF51_FICR_NRF_1MBIT3 },
{ .address = NRF51_FICR_NRF_1MBIT4 },
{ .address = NRF51_FICR_BLE_1MBIT0 },
{ .address = NRF51_FICR_BLE_1MBIT1 },
{ .address = NRF51_FICR_BLE_1MBIT2 },
{ .address = NRF51_FICR_BLE_1MBIT3 },
{ .address = NRF51_FICR_BLE_1MBIT4 },
}, uicr[] = {
{ .address = NRF51_UICR_CLENR0, },
{ .address = NRF51_UICR_RBPCONF },
{ .address = NRF51_UICR_XTALFREQ },
{ .address = NRF51_UICR_FWID },
};
for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
res = target_read_u32(chip->target, ficr[i].address,
&ficr[i].value);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
return res;
}
}
for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
res = target_read_u32(chip->target, uicr[i].address,
&uicr[i].value);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
return res;
}
}
snprintf(buf, buf_size,
"\n[factory information control block]\n\n"
"code page size: %"PRIu32"B\n"
"code memory size: %"PRIu32"kB\n"
"code region 0 size: %"PRIu32"kB\n"
"pre-programmed code: %s\n"
"number of ram blocks: %"PRIu32"\n"
"ram block 0 size: %"PRIu32"B\n"
"ram block 1 size: %"PRIu32"B\n"
"ram block 2 size: %"PRIu32"B\n"
"ram block 3 size: %"PRIu32 "B\n"
"encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
"identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
"device address type: 0x%"PRIx32"\n"
"device address: 0x%"PRIx32"%08"PRIx32"\n"
"override enable: %"PRIu32"\n"
"NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
"BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
"\n[user information control block]\n\n"
"code region 0 size: %"PRIu32"kB\n"
"read back protection configuration: %"PRIx32"\n"
"reset value for XTALFREQ: %"PRIx32"\n"
"firmware id: 0x%04"PRIx32,
ficr[0].value,
ficr[1].value,
(ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
ficr[4].value,
ficr[5].value,
(ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
(ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
(ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
ficr[9].value, ficr[9].value, ficr[9].value, ficr[9].value,
ficr[10].value, ficr[11].value, ficr[12].value, ficr[13].value,
ficr[14].value,
ficr[15].value, ficr[16].value,
ficr[17].value,
ficr[18].value, ficr[19].value, ficr[20].value, ficr[21].value, ficr[22].value,
ficr[23].value, ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value,
(uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
uicr[1].value & 0xFFFF,
uicr[2].value & 0xFF,
uicr[3].value & 0xFFFF);
return ERROR_OK;
}
static const struct command_registration nrf51_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = nrf51_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase all flash contents of the chip.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration nrf51_command_handlers[] = {
{
.name = "nrf51",
.mode = COMMAND_ANY,
.help = "nrf51 flash command group",
.usage = "",
.chain = nrf51_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver nrf51_flash = {
.name = "nrf51",
.commands = nrf51_command_handlers,
.flash_bank_command = nrf51_flash_bank_command,
.info = nrf51_info,
.erase = nrf51_erase,
.protect = nrf51_protect,
.write = nrf51_write,
.read = default_flash_read,
.probe = nrf51_probe,
.auto_probe = nrf51_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf51_protect_check,
};