openocd/src/jtag/drivers/ulink.c
Antonio Borneo 7e64e5a895 openocd: fix doxygen parameters of functions
Add to doxygen comment the missing parameters.
Remove from doxygen comment any non-existing parameter.
Fix the parameter names in doxygen comment to match the one in the
function prototype.
Where the parameter name in the doxygen description seems better
than the one in the code, change the code.
Escape the character '<' to prevent doxygen to interpret it as an
xml tag.

Change-Id: I22da723339ac7d7a7a64ac4c1cc4336e2416c2cc
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6002
Tested-by: jenkins
2021-01-13 11:33:53 +00:00

2288 lines
66 KiB
C

/***************************************************************************
* Copyright (C) 2011-2013 by Martin Schmoelzer *
* <martin.schmoelzer@student.tuwien.ac.at> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include <jtag/interface.h>
#include <jtag/commands.h>
#include <target/image.h>
#include <libusb.h>
#include "libusb_helper.h"
#include "OpenULINK/include/msgtypes.h"
/** USB Vendor ID of ULINK device in unconfigured state (no firmware loaded
* yet) or with OpenULINK firmware. */
#define ULINK_VID 0xC251
/** USB Product ID of ULINK device in unconfigured state (no firmware loaded
* yet) or with OpenULINK firmware. */
#define ULINK_PID 0x2710
/** Address of EZ-USB CPU Control & Status register. This register can be
* written by issuing a Control EP0 vendor request. */
#define CPUCS_REG 0x7F92
/** USB Control EP0 bRequest: "Firmware Load". */
#define REQUEST_FIRMWARE_LOAD 0xA0
/** Value to write into CPUCS to put EZ-USB into reset. */
#define CPU_RESET 0x01
/** Value to write into CPUCS to put EZ-USB out of reset. */
#define CPU_START 0x00
/** Base address of firmware in EZ-USB code space. */
#define FIRMWARE_ADDR 0x0000
/** USB interface number */
#define USB_INTERFACE 0
/** libusb timeout in ms */
#define USB_TIMEOUT 5000
/** Delay (in microseconds) to wait while EZ-USB performs ReNumeration. */
#define ULINK_RENUMERATION_DELAY 1500000
/** Default location of OpenULINK firmware image. */
#define ULINK_FIRMWARE_FILE PKGDATADIR "/OpenULINK/ulink_firmware.hex"
/** Maximum size of a single firmware section. Entire EZ-USB code space = 8kB */
#define SECTION_BUFFERSIZE 8192
/** Tuning of OpenOCD SCAN commands split into multiple OpenULINK commands. */
#define SPLIT_SCAN_THRESHOLD 10
/** ULINK hardware type */
enum ulink_type {
/** Original ULINK adapter, based on Cypress EZ-USB (AN2131):
* Full JTAG support, no SWD support. */
ULINK_1,
/** Newer ULINK adapter, based on NXP LPC2148. Currently unsupported. */
ULINK_2,
/** Newer ULINK adapter, based on EZ-USB FX2 + FPGA. Currently unsupported. */
ULINK_PRO,
/** Newer ULINK adapter, possibly based on ULINK 2. Currently unsupported. */
ULINK_ME
};
enum ulink_payload_direction {
PAYLOAD_DIRECTION_OUT,
PAYLOAD_DIRECTION_IN
};
enum ulink_delay_type {
DELAY_CLOCK_TCK,
DELAY_CLOCK_TMS,
DELAY_SCAN_IN,
DELAY_SCAN_OUT,
DELAY_SCAN_IO
};
/**
* OpenULINK command (OpenULINK command queue element).
*
* For the OUT direction payload, things are quite easy: Payload is stored
* in a rather small array (up to 63 bytes), the payload is always allocated
* by the function generating the command and freed by ulink_clear_queue().
*
* For the IN direction payload, things get a little bit more complicated:
* The maximum IN payload size for a single command is 64 bytes. Assume that
* a single OpenOCD command needs to scan 256 bytes. This results in the
* generation of four OpenULINK commands. The function generating these
* commands shall allocate an uint8_t[256] array. Each command's #payload_in
* pointer shall point to the corresponding offset where IN data shall be
* placed, while #payload_in_start shall point to the first element of the 256
* byte array.
* - first command: #payload_in_start + 0
* - second command: #payload_in_start + 64
* - third command: #payload_in_start + 128
* - fourth command: #payload_in_start + 192
*
* The last command sets #needs_postprocessing to true.
*/
struct ulink_cmd {
uint8_t id; /**< ULINK command ID */
uint8_t *payload_out; /**< OUT direction payload data */
uint8_t payload_out_size; /**< OUT direction payload size for this command */
uint8_t *payload_in_start; /**< Pointer to first element of IN payload array */
uint8_t *payload_in; /**< Pointer where IN payload shall be stored */
uint8_t payload_in_size; /**< IN direction payload size for this command */
/** Indicates if this command needs post-processing */
bool needs_postprocessing;
/** Indicates if ulink_clear_queue() should free payload_in_start */
bool free_payload_in_start;
/** Pointer to corresponding OpenOCD command for post-processing */
struct jtag_command *cmd_origin;
struct ulink_cmd *next; /**< Pointer to next command (linked list) */
};
/** Describes one driver instance */
struct ulink {
struct libusb_context *libusb_ctx;
struct libusb_device_handle *usb_device_handle;
enum ulink_type type;
unsigned int ep_in; /**< IN endpoint number */
unsigned int ep_out; /**< OUT endpoint number */
int delay_scan_in; /**< Delay value for SCAN_IN commands */
int delay_scan_out; /**< Delay value for SCAN_OUT commands */
int delay_scan_io; /**< Delay value for SCAN_IO commands */
int delay_clock_tck; /**< Delay value for CLOCK_TMS commands */
int delay_clock_tms; /**< Delay value for CLOCK_TCK commands */
int commands_in_queue; /**< Number of commands in queue */
struct ulink_cmd *queue_start; /**< Pointer to first command in queue */
struct ulink_cmd *queue_end; /**< Pointer to last command in queue */
};
/**************************** Function Prototypes *****************************/
/* USB helper functions */
static int ulink_usb_open(struct ulink **device);
static int ulink_usb_close(struct ulink **device);
/* ULINK MCU (Cypress EZ-USB) specific functions */
static int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit);
static int ulink_load_firmware_and_renumerate(struct ulink **device, const char *filename,
uint32_t delay);
static int ulink_load_firmware(struct ulink *device, const char *filename);
static int ulink_write_firmware_section(struct ulink *device,
struct image *firmware_image, int section_index);
/* Generic helper functions */
static void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals);
/* OpenULINK command generation helper functions */
static int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
enum ulink_payload_direction direction);
/* OpenULINK command queue helper functions */
static int ulink_get_queue_size(struct ulink *device,
enum ulink_payload_direction direction);
static void ulink_clear_queue(struct ulink *device);
static int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd);
static int ulink_execute_queued_commands(struct ulink *device, int timeout);
static void ulink_print_queue(struct ulink *device);
static int ulink_append_scan_cmd(struct ulink *device,
enum scan_type scan_type,
int scan_size_bits,
uint8_t *tdi,
uint8_t *tdo_start,
uint8_t *tdo,
uint8_t tms_count_start,
uint8_t tms_sequence_start,
uint8_t tms_count_end,
uint8_t tms_sequence_end,
struct jtag_command *origin,
bool postprocess);
static int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
uint8_t sequence);
static int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count);
static int ulink_append_get_signals_cmd(struct ulink *device);
static int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
uint8_t high);
static int ulink_append_sleep_cmd(struct ulink *device, uint32_t us);
static int ulink_append_configure_tck_cmd(struct ulink *device,
int delay_scan_in,
int delay_scan_out,
int delay_scan_io,
int delay_tck,
int delay_tms);
static int __attribute__((unused)) ulink_append_led_cmd(struct ulink *device, uint8_t led_state);
static int ulink_append_test_cmd(struct ulink *device);
/* OpenULINK TCK frequency helper functions */
static int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay);
/* Interface between OpenULINK and OpenOCD */
static void ulink_set_end_state(tap_state_t endstate);
static int ulink_queue_statemove(struct ulink *device);
static int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd);
static int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd);
static int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd);
static int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd);
static int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd);
static int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd);
static int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd);
static int ulink_post_process_scan(struct ulink_cmd *ulink_cmd);
static int ulink_post_process_queue(struct ulink *device);
/* adapter driver functions */
static int ulink_execute_queue(void);
static int ulink_khz(int khz, int *jtag_speed);
static int ulink_speed(int speed);
static int ulink_speed_div(int speed, int *khz);
static int ulink_init(void);
static int ulink_quit(void);
/****************************** Global Variables ******************************/
static struct ulink *ulink_handle;
/**************************** USB helper functions ****************************/
/**
* Opens the ULINK device
*
* Currently, only the original ULINK is supported
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_usb_open(struct ulink **device)
{
ssize_t num_devices, i;
bool found;
libusb_device **usb_devices;
struct libusb_device_descriptor usb_desc;
struct libusb_device_handle *usb_device_handle;
num_devices = libusb_get_device_list((*device)->libusb_ctx, &usb_devices);
if (num_devices <= 0)
return ERROR_FAIL;
found = false;
for (i = 0; i < num_devices; i++) {
if (libusb_get_device_descriptor(usb_devices[i], &usb_desc) != 0)
continue;
else if (usb_desc.idVendor == ULINK_VID && usb_desc.idProduct == ULINK_PID) {
found = true;
break;
}
}
if (!found)
return ERROR_FAIL;
if (libusb_open(usb_devices[i], &usb_device_handle) != 0)
return ERROR_FAIL;
libusb_free_device_list(usb_devices, 1);
(*device)->usb_device_handle = usb_device_handle;
(*device)->type = ULINK_1;
return ERROR_OK;
}
/**
* Releases the ULINK interface and closes the USB device handle.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_usb_close(struct ulink **device)
{
if (libusb_release_interface((*device)->usb_device_handle, 0) != 0)
return ERROR_FAIL;
libusb_close((*device)->usb_device_handle);
(*device)->usb_device_handle = NULL;
return ERROR_OK;
}
/******************* ULINK CPU (EZ-USB) specific functions ********************/
/**
* Writes '0' or '1' to the CPUCS register, putting the EZ-USB CPU into reset
* or out of reset.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param reset_bit 0 to put CPU into reset, 1 to put CPU out of reset.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_cpu_reset(struct ulink *device, unsigned char reset_bit)
{
int ret;
ret = libusb_control_transfer(device->usb_device_handle,
(LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
REQUEST_FIRMWARE_LOAD, CPUCS_REG, 0, &reset_bit, 1, USB_TIMEOUT);
/* usb_control_msg() returns the number of bytes transferred during the
* DATA stage of the control transfer - must be exactly 1 in this case! */
if (ret != 1)
return ERROR_FAIL;
return ERROR_OK;
}
/**
* Puts the ULINK's EZ-USB microcontroller into reset state, downloads
* the firmware image, resumes the microcontroller and re-enumerates
* USB devices.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* The usb_handle member will be modified during re-enumeration.
* @param filename path to the Intel HEX file containing the firmware image.
* @param delay the delay to wait for the device to re-enumerate.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_load_firmware_and_renumerate(struct ulink **device,
const char *filename, uint32_t delay)
{
int ret;
/* Basic process: After downloading the firmware, the ULINK will disconnect
* itself and re-connect after a short amount of time so we have to close
* the handle and re-enumerate USB devices */
ret = ulink_load_firmware(*device, filename);
if (ret != ERROR_OK)
return ret;
ret = ulink_usb_close(device);
if (ret != ERROR_OK)
return ret;
usleep(delay);
ret = ulink_usb_open(device);
if (ret != ERROR_OK)
return ret;
return ERROR_OK;
}
/**
* Downloads a firmware image to the ULINK's EZ-USB microcontroller
* over the USB bus.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param filename an absolute or relative path to the Intel HEX file
* containing the firmware image.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_load_firmware(struct ulink *device, const char *filename)
{
struct image ulink_firmware_image;
int ret;
ret = ulink_cpu_reset(device, CPU_RESET);
if (ret != ERROR_OK) {
LOG_ERROR("Could not halt ULINK CPU");
return ret;
}
ulink_firmware_image.base_address = 0;
ulink_firmware_image.base_address_set = false;
ret = image_open(&ulink_firmware_image, filename, "ihex");
if (ret != ERROR_OK) {
LOG_ERROR("Could not load firmware image");
return ret;
}
/* Download all sections in the image to ULINK */
for (unsigned int i = 0; i < ulink_firmware_image.num_sections; i++) {
ret = ulink_write_firmware_section(device, &ulink_firmware_image, i);
if (ret != ERROR_OK)
return ret;
}
image_close(&ulink_firmware_image);
ret = ulink_cpu_reset(device, CPU_START);
if (ret != ERROR_OK) {
LOG_ERROR("Could not restart ULINK CPU");
return ret;
}
return ERROR_OK;
}
/**
* Send one contiguous firmware section to the ULINK's EZ-USB microcontroller
* over the USB bus.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param firmware_image pointer to the firmware image that contains the section
* which should be sent to the ULINK's EZ-USB microcontroller.
* @param section_index index of the section within the firmware image.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_write_firmware_section(struct ulink *device,
struct image *firmware_image, int section_index)
{
uint16_t addr, size, bytes_remaining, chunk_size;
uint8_t data[SECTION_BUFFERSIZE];
uint8_t *data_ptr = data;
size_t size_read;
int ret;
size = (uint16_t)firmware_image->sections[section_index].size;
addr = (uint16_t)firmware_image->sections[section_index].base_address;
LOG_DEBUG("section %02i at addr 0x%04x (size 0x%04x)", section_index, addr,
size);
/* Copy section contents to local buffer */
ret = image_read_section(firmware_image, section_index, 0, size, data,
&size_read);
if ((ret != ERROR_OK) || (size_read != size)) {
/* Propagating the return code would return '0' (misleadingly indicating
* successful execution of the function) if only the size check fails. */
return ERROR_FAIL;
}
bytes_remaining = size;
/* Send section data in chunks of up to 64 bytes to ULINK */
while (bytes_remaining > 0) {
if (bytes_remaining > 64)
chunk_size = 64;
else
chunk_size = bytes_remaining;
ret = libusb_control_transfer(device->usb_device_handle,
(LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE),
REQUEST_FIRMWARE_LOAD, addr, FIRMWARE_ADDR, (unsigned char *)data_ptr,
chunk_size, USB_TIMEOUT);
if (ret != (int)chunk_size) {
/* Abort if libusb sent less data than requested */
return ERROR_FAIL;
}
bytes_remaining -= chunk_size;
addr += chunk_size;
data_ptr += chunk_size;
}
return ERROR_OK;
}
/************************** Generic helper functions **************************/
/**
* Print state of interesting signals via LOG_INFO().
*
* @param input_signals input signal states as returned by CMD_GET_SIGNALS
* @param output_signals output signal states as returned by CMD_GET_SIGNALS
*/
static void ulink_print_signal_states(uint8_t input_signals, uint8_t output_signals)
{
LOG_INFO("ULINK signal states: TDI: %i, TDO: %i, TMS: %i, TCK: %i, TRST: %i,"
" SRST: %i",
(output_signals & SIGNAL_TDI ? 1 : 0),
(input_signals & SIGNAL_TDO ? 1 : 0),
(output_signals & SIGNAL_TMS ? 1 : 0),
(output_signals & SIGNAL_TCK ? 1 : 0),
(output_signals & SIGNAL_TRST ? 0 : 1), /* Inverted by hardware */
(output_signals & SIGNAL_RESET ? 0 : 1)); /* Inverted by hardware */
}
/**************** OpenULINK command generation helper functions ***************/
/**
* Allocate and initialize space in memory for OpenULINK command payload.
*
* @param ulink_cmd pointer to command whose payload should be allocated.
* @param size the amount of memory to allocate (bytes).
* @param direction which payload to allocate.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_allocate_payload(struct ulink_cmd *ulink_cmd, int size,
enum ulink_payload_direction direction)
{
uint8_t *payload;
payload = calloc(size, sizeof(uint8_t));
if (payload == NULL) {
LOG_ERROR("Could not allocate OpenULINK command payload: out of memory");
return ERROR_FAIL;
}
switch (direction) {
case PAYLOAD_DIRECTION_OUT:
if (ulink_cmd->payload_out != NULL) {
LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
free(payload);
return ERROR_FAIL;
} else {
ulink_cmd->payload_out = payload;
ulink_cmd->payload_out_size = size;
}
break;
case PAYLOAD_DIRECTION_IN:
if (ulink_cmd->payload_in_start != NULL) {
LOG_ERROR("BUG: Duplicate payload allocation for OpenULINK command");
free(payload);
return ERROR_FAIL;
} else {
ulink_cmd->payload_in_start = payload;
ulink_cmd->payload_in = payload;
ulink_cmd->payload_in_size = size;
/* By default, free payload_in_start in ulink_clear_queue(). Commands
* that do not want this behavior (e. g. split scans) must turn it off
* separately! */
ulink_cmd->free_payload_in_start = true;
}
break;
}
return ERROR_OK;
}
/****************** OpenULINK command queue helper functions ******************/
/**
* Get the current number of bytes in the queue, including command IDs.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param direction the transfer direction for which to get byte count.
* @return the number of bytes currently stored in the queue for the specified
* direction.
*/
static int ulink_get_queue_size(struct ulink *device,
enum ulink_payload_direction direction)
{
struct ulink_cmd *current = device->queue_start;
int sum = 0;
while (current != NULL) {
switch (direction) {
case PAYLOAD_DIRECTION_OUT:
sum += current->payload_out_size + 1; /* + 1 byte for Command ID */
break;
case PAYLOAD_DIRECTION_IN:
sum += current->payload_in_size;
break;
}
current = current->next;
}
return sum;
}
/**
* Clear the OpenULINK command queue.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static void ulink_clear_queue(struct ulink *device)
{
struct ulink_cmd *current = device->queue_start;
struct ulink_cmd *next = NULL;
while (current != NULL) {
/* Save pointer to next element */
next = current->next;
/* Free payloads: OUT payload can be freed immediately */
free(current->payload_out);
current->payload_out = NULL;
/* IN payload MUST be freed ONLY if no other commands use the
* payload_in_start buffer */
if (current->free_payload_in_start == true) {
free(current->payload_in_start);
current->payload_in_start = NULL;
current->payload_in = NULL;
}
/* Free queue element */
free(current);
/* Proceed with next element */
current = next;
}
device->commands_in_queue = 0;
device->queue_start = NULL;
device->queue_end = NULL;
}
/**
* Add a command to the OpenULINK command queue.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param ulink_cmd pointer to command that shall be appended to the OpenULINK
* command queue.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_queue(struct ulink *device, struct ulink_cmd *ulink_cmd)
{
int newsize_out, newsize_in;
int ret = ERROR_OK;
newsize_out = ulink_get_queue_size(device, PAYLOAD_DIRECTION_OUT) + 1
+ ulink_cmd->payload_out_size;
newsize_in = ulink_get_queue_size(device, PAYLOAD_DIRECTION_IN)
+ ulink_cmd->payload_in_size;
/* Check if the current command can be appended to the queue */
if ((newsize_out > 64) || (newsize_in > 64)) {
/* New command does not fit. Execute all commands in queue before starting
* new queue with the current command as first entry. */
ret = ulink_execute_queued_commands(device, USB_TIMEOUT);
if (ret == ERROR_OK)
ret = ulink_post_process_queue(device);
if (ret == ERROR_OK)
ulink_clear_queue(device);
}
if (device->queue_start == NULL) {
/* Queue was empty */
device->commands_in_queue = 1;
device->queue_start = ulink_cmd;
device->queue_end = ulink_cmd;
} else {
/* There are already commands in the queue */
device->commands_in_queue++;
device->queue_end->next = ulink_cmd;
device->queue_end = ulink_cmd;
}
if (ret != ERROR_OK)
ulink_clear_queue(device);
return ret;
}
/**
* Sends all queued OpenULINK commands to the ULINK for execution.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param timeout
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_execute_queued_commands(struct ulink *device, int timeout)
{
struct ulink_cmd *current;
int ret, i, index_out, index_in, count_out, count_in, transferred;
uint8_t buffer[64];
if (LOG_LEVEL_IS(LOG_LVL_DEBUG_IO))
ulink_print_queue(device);
index_out = 0;
count_out = 0;
count_in = 0;
for (current = device->queue_start; current; current = current->next) {
/* Add command to packet */
buffer[index_out] = current->id;
index_out++;
count_out++;
for (i = 0; i < current->payload_out_size; i++)
buffer[index_out + i] = current->payload_out[i];
index_out += current->payload_out_size;
count_in += current->payload_in_size;
count_out += current->payload_out_size;
}
/* Send packet to ULINK */
ret = libusb_bulk_transfer(device->usb_device_handle, device->ep_out,
(unsigned char *)buffer, count_out, &transferred, timeout);
if (ret != 0)
return ERROR_FAIL;
if (transferred != count_out)
return ERROR_FAIL;
/* Wait for response if commands contain IN payload data */
if (count_in > 0) {
ret = libusb_bulk_transfer(device->usb_device_handle, device->ep_in,
(unsigned char *)buffer, 64, &transferred, timeout);
if (ret != 0)
return ERROR_FAIL;
if (transferred != count_in)
return ERROR_FAIL;
/* Write back IN payload data */
index_in = 0;
for (current = device->queue_start; current; current = current->next) {
for (i = 0; i < current->payload_in_size; i++) {
current->payload_in[i] = buffer[index_in];
index_in++;
}
}
}
return ERROR_OK;
}
/**
* Convert an OpenULINK command ID (\a id) to a human-readable string.
*
* @param id the OpenULINK command ID.
* @return the corresponding human-readable string.
*/
static const char *ulink_cmd_id_string(uint8_t id)
{
switch (id) {
case CMD_SCAN_IN:
return "CMD_SCAN_IN";
case CMD_SLOW_SCAN_IN:
return "CMD_SLOW_SCAN_IN";
case CMD_SCAN_OUT:
return "CMD_SCAN_OUT";
case CMD_SLOW_SCAN_OUT:
return "CMD_SLOW_SCAN_OUT";
case CMD_SCAN_IO:
return "CMD_SCAN_IO";
case CMD_SLOW_SCAN_IO:
return "CMD_SLOW_SCAN_IO";
case CMD_CLOCK_TMS:
return "CMD_CLOCK_TMS";
case CMD_SLOW_CLOCK_TMS:
return "CMD_SLOW_CLOCK_TMS";
case CMD_CLOCK_TCK:
return "CMD_CLOCK_TCK";
case CMD_SLOW_CLOCK_TCK:
return "CMD_SLOW_CLOCK_TCK";
case CMD_SLEEP_US:
return "CMD_SLEEP_US";
case CMD_SLEEP_MS:
return "CMD_SLEEP_MS";
case CMD_GET_SIGNALS:
return "CMD_GET_SIGNALS";
case CMD_SET_SIGNALS:
return "CMD_SET_SIGNALS";
case CMD_CONFIGURE_TCK_FREQ:
return "CMD_CONFIGURE_TCK_FREQ";
case CMD_SET_LEDS:
return "CMD_SET_LEDS";
case CMD_TEST:
return "CMD_TEST";
default:
return "CMD_UNKNOWN";
}
}
/**
* Print one OpenULINK command to stdout.
*
* @param ulink_cmd pointer to OpenULINK command.
*/
static void ulink_print_command(struct ulink_cmd *ulink_cmd)
{
int i;
printf(" %-22s | OUT size = %i, bytes = 0x",
ulink_cmd_id_string(ulink_cmd->id), ulink_cmd->payload_out_size);
for (i = 0; i < ulink_cmd->payload_out_size; i++)
printf("%02X ", ulink_cmd->payload_out[i]);
printf("\n | IN size = %i\n",
ulink_cmd->payload_in_size);
}
/**
* Print the OpenULINK command queue to stdout.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
*/
static void ulink_print_queue(struct ulink *device)
{
struct ulink_cmd *current;
printf("OpenULINK command queue:\n");
for (current = device->queue_start; current; current = current->next)
ulink_print_command(current);
}
/**
* Perform JTAG scan
*
* Creates and appends a JTAG scan command to the OpenULINK command queue.
* A JTAG scan consists of three steps:
* - Move to the desired SHIFT state, depending on scan type (IR/DR scan).
* - Shift TDI data into the JTAG chain, optionally reading the TDO pin.
* - Move to the desired end state.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param scan_type the type of the scan (IN, OUT, IO (bidirectional)).
* @param scan_size_bits number of bits to shift into the JTAG chain.
* @param tdi pointer to array containing TDI data.
* @param tdo_start pointer to first element of array where TDO data shall be
* stored. See #ulink_cmd for details.
* @param tdo pointer to array where TDO data shall be stored
* @param tms_count_start number of TMS state transitions to perform BEFORE
* shifting data into the JTAG chain.
* @param tms_sequence_start sequence of TMS state transitions that will be
* performed BEFORE shifting data into the JTAG chain.
* @param tms_count_end number of TMS state transitions to perform AFTER
* shifting data into the JTAG chain.
* @param tms_sequence_end sequence of TMS state transitions that will be
* performed AFTER shifting data into the JTAG chain.
* @param origin pointer to OpenOCD command that generated this scan command.
* @param postprocess whether this command needs to be post-processed after
* execution.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_scan_cmd(struct ulink *device, enum scan_type scan_type,
int scan_size_bits, uint8_t *tdi, uint8_t *tdo_start, uint8_t *tdo,
uint8_t tms_count_start, uint8_t tms_sequence_start, uint8_t tms_count_end,
uint8_t tms_sequence_end, struct jtag_command *origin, bool postprocess)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret, i, scan_size_bytes;
uint8_t bits_last_byte;
if (cmd == NULL)
return ERROR_FAIL;
/* Check size of command. USB buffer can hold 64 bytes, 1 byte is command ID,
* 5 bytes are setup data -> 58 remaining payload bytes for TDI data */
if (scan_size_bits > (58 * 8)) {
LOG_ERROR("BUG: Tried to create CMD_SCAN_IO OpenULINK command with too"
" large payload");
free(cmd);
return ERROR_FAIL;
}
scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
bits_last_byte = scan_size_bits % 8;
if (bits_last_byte == 0)
bits_last_byte = 8;
/* Allocate out_payload depending on scan type */
switch (scan_type) {
case SCAN_IN:
if (device->delay_scan_in < 0)
cmd->id = CMD_SCAN_IN;
else
cmd->id = CMD_SLOW_SCAN_IN;
ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
break;
case SCAN_OUT:
if (device->delay_scan_out < 0)
cmd->id = CMD_SCAN_OUT;
else
cmd->id = CMD_SLOW_SCAN_OUT;
ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
break;
case SCAN_IO:
if (device->delay_scan_io < 0)
cmd->id = CMD_SCAN_IO;
else
cmd->id = CMD_SLOW_SCAN_IO;
ret = ulink_allocate_payload(cmd, scan_size_bytes + 5, PAYLOAD_DIRECTION_OUT);
break;
default:
LOG_ERROR("BUG: ulink_append_scan_cmd() encountered an unknown scan type");
ret = ERROR_FAIL;
break;
}
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
/* Build payload_out that is common to all scan types */
cmd->payload_out[0] = scan_size_bytes & 0xFF;
cmd->payload_out[1] = bits_last_byte & 0xFF;
cmd->payload_out[2] = ((tms_count_start & 0x0F) << 4) | (tms_count_end & 0x0F);
cmd->payload_out[3] = tms_sequence_start;
cmd->payload_out[4] = tms_sequence_end;
/* Setup payload_out for types with OUT transfer */
if ((scan_type == SCAN_OUT) || (scan_type == SCAN_IO)) {
for (i = 0; i < scan_size_bytes; i++)
cmd->payload_out[i + 5] = tdi[i];
}
/* Setup payload_in pointers for types with IN transfer */
if ((scan_type == SCAN_IN) || (scan_type == SCAN_IO)) {
cmd->payload_in_start = tdo_start;
cmd->payload_in = tdo;
cmd->payload_in_size = scan_size_bytes;
}
cmd->needs_postprocessing = postprocess;
cmd->cmd_origin = origin;
/* For scan commands, we free payload_in_start only when the command is
* the last in a series of split commands or a stand-alone command */
cmd->free_payload_in_start = postprocess;
return ulink_append_queue(device, cmd);
}
/**
* Perform TAP state transitions
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param count defines the number of TCK clock cycles generated (up to 8).
* @param sequence defines the TMS pin levels for each state transition. The
* Least-Significant Bit is read first.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_clock_tms_cmd(struct ulink *device, uint8_t count,
uint8_t sequence)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
if (device->delay_clock_tms < 0)
cmd->id = CMD_CLOCK_TMS;
else
cmd->id = CMD_SLOW_CLOCK_TMS;
/* CMD_CLOCK_TMS has two OUT payload bytes and zero IN payload bytes */
ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
cmd->payload_out[0] = count;
cmd->payload_out[1] = sequence;
return ulink_append_queue(device, cmd);
}
/**
* Generate a defined amount of TCK clock cycles
*
* All other JTAG signals are left unchanged.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param count the number of TCK clock cycles to generate.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_clock_tck_cmd(struct ulink *device, uint16_t count)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
if (device->delay_clock_tck < 0)
cmd->id = CMD_CLOCK_TCK;
else
cmd->id = CMD_SLOW_CLOCK_TCK;
/* CMD_CLOCK_TCK has two OUT payload bytes and zero IN payload bytes */
ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
cmd->payload_out[0] = count & 0xff;
cmd->payload_out[1] = (count >> 8) & 0xff;
return ulink_append_queue(device, cmd);
}
/**
* Read JTAG signals.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_get_signals_cmd(struct ulink *device)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
cmd->id = CMD_GET_SIGNALS;
cmd->needs_postprocessing = true;
/* CMD_GET_SIGNALS has two IN payload bytes */
ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_IN);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
return ulink_append_queue(device, cmd);
}
/**
* Arbitrarily set JTAG output signals.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param low defines which signals will be de-asserted. Each bit corresponds
* to a JTAG signal:
* - SIGNAL_TDI
* - SIGNAL_TMS
* - SIGNAL_TCK
* - SIGNAL_TRST
* - SIGNAL_BRKIN
* - SIGNAL_RESET
* - SIGNAL_OCDSE
* @param high defines which signals will be asserted.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_set_signals_cmd(struct ulink *device, uint8_t low,
uint8_t high)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
cmd->id = CMD_SET_SIGNALS;
/* CMD_SET_SIGNALS has two OUT payload bytes and zero IN payload bytes */
ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
cmd->payload_out[0] = low;
cmd->payload_out[1] = high;
return ulink_append_queue(device, cmd);
}
/**
* Sleep for a pre-defined number of microseconds
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param us the number microseconds to sleep.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_sleep_cmd(struct ulink *device, uint32_t us)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
cmd->id = CMD_SLEEP_US;
/* CMD_SLEEP_US has two OUT payload bytes and zero IN payload bytes */
ret = ulink_allocate_payload(cmd, 2, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
cmd->payload_out[0] = us & 0x00ff;
cmd->payload_out[1] = (us >> 8) & 0x00ff;
return ulink_append_queue(device, cmd);
}
/**
* Set TCK delay counters
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param delay_scan_in delay count top value in jtag_slow_scan_in() function.
* @param delay_scan_out delay count top value in jtag_slow_scan_out() function.
* @param delay_scan_io delay count top value in jtag_slow_scan_io() function.
* @param delay_tck delay count top value in jtag_clock_tck() function.
* @param delay_tms delay count top value in jtag_slow_clock_tms() function.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_configure_tck_cmd(struct ulink *device, int delay_scan_in,
int delay_scan_out, int delay_scan_io, int delay_tck, int delay_tms)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
cmd->id = CMD_CONFIGURE_TCK_FREQ;
/* CMD_CONFIGURE_TCK_FREQ has five OUT payload bytes and zero
* IN payload bytes */
ret = ulink_allocate_payload(cmd, 5, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
if (delay_scan_in < 0)
cmd->payload_out[0] = 0;
else
cmd->payload_out[0] = (uint8_t)delay_scan_in;
if (delay_scan_out < 0)
cmd->payload_out[1] = 0;
else
cmd->payload_out[1] = (uint8_t)delay_scan_out;
if (delay_scan_io < 0)
cmd->payload_out[2] = 0;
else
cmd->payload_out[2] = (uint8_t)delay_scan_io;
if (delay_tck < 0)
cmd->payload_out[3] = 0;
else
cmd->payload_out[3] = (uint8_t)delay_tck;
if (delay_tms < 0)
cmd->payload_out[4] = 0;
else
cmd->payload_out[4] = (uint8_t)delay_tms;
return ulink_append_queue(device, cmd);
}
/**
* Turn on/off ULINK LEDs.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param led_state which LED(s) to turn on or off. The following bits
* influence the LEDS:
* - Bit 0: Turn COM LED on
* - Bit 1: Turn RUN LED on
* - Bit 2: Turn COM LED off
* - Bit 3: Turn RUN LED off
* If both the on-bit and the off-bit for the same LED is set, the LED is
* turned off.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_led_cmd(struct ulink *device, uint8_t led_state)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
cmd->id = CMD_SET_LEDS;
/* CMD_SET_LEDS has one OUT payload byte and zero IN payload bytes */
ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
cmd->payload_out[0] = led_state;
return ulink_append_queue(device, cmd);
}
/**
* Test command. Used to check if the ULINK device is ready to accept new
* commands.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_append_test_cmd(struct ulink *device)
{
struct ulink_cmd *cmd = calloc(1, sizeof(struct ulink_cmd));
int ret;
if (cmd == NULL)
return ERROR_FAIL;
cmd->id = CMD_TEST;
/* CMD_TEST has one OUT payload byte and zero IN payload bytes */
ret = ulink_allocate_payload(cmd, 1, PAYLOAD_DIRECTION_OUT);
if (ret != ERROR_OK) {
free(cmd);
return ret;
}
cmd->payload_out[0] = 0xAA;
return ulink_append_queue(device, cmd);
}
/****************** OpenULINK TCK frequency helper functions ******************/
/**
* Calculate delay values for a given TCK frequency.
*
* The OpenULINK firmware uses five different speed values for different
* commands. These speed values are calculated in these functions.
*
* The five different commands which support variable TCK frequency are
* implemented twice in the firmware:
* 1. Maximum possible frequency without any artificial delay
* 2. Variable frequency with artificial linear delay loop
*
* To set the ULINK to maximum frequency, it is only necessary to use the
* corresponding command IDs. To set the ULINK to a lower frequency, the
* delay loop top values have to be calculated first. Then, a
* CMD_CONFIGURE_TCK_FREQ command needs to be sent to the ULINK device.
*
* The delay values are described by linear equations:
* t = k * x + d
* (t = period, k = constant, x = delay value, d = constant)
*
* Thus, the delay can be calculated as in the following equation:
* x = (t - d) / k
*
* The constants in these equations have been determined and validated by
* measuring the frequency resulting from different delay values.
*
* @param type for which command to calculate the delay value.
* @param f TCK frequency for which to calculate the delay value in Hz.
* @param delay where to store resulting delay value.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_calculate_delay(enum ulink_delay_type type, long f, int *delay)
{
float t, x, x_ceil;
/* Calculate period of requested TCK frequency */
t = 1.0 / (float)(f);
switch (type) {
case DELAY_CLOCK_TCK:
x = (t - (float)(6E-6)) / (float)(4E-6);
break;
case DELAY_CLOCK_TMS:
x = (t - (float)(8.5E-6)) / (float)(4E-6);
break;
case DELAY_SCAN_IN:
x = (t - (float)(8.8308E-6)) / (float)(4E-6);
break;
case DELAY_SCAN_OUT:
x = (t - (float)(1.0527E-5)) / (float)(4E-6);
break;
case DELAY_SCAN_IO:
x = (t - (float)(1.3132E-5)) / (float)(4E-6);
break;
default:
return ERROR_FAIL;
break;
}
/* Check if the delay value is negative. This happens when a frequency is
* requested that is too high for the delay loop implementation. In this
* case, set delay value to zero. */
if (x < 0)
x = 0;
/* We need to convert the exact delay value to an integer. Therefore, we
* round the exact value UP to ensure that the resulting frequency is NOT
* higher than the requested frequency. */
x_ceil = ceilf(x);
/* Check if the value is within limits */
if (x_ceil > 255)
return ERROR_FAIL;
*delay = (int)x_ceil;
return ERROR_OK;
}
/**
* Calculate frequency for a given delay value.
*
* Similar to the #ulink_calculate_delay function, this function calculates the
* TCK frequency for a given delay value by using linear equations of the form:
* t = k * x + d
* (t = period, k = constant, x = delay value, d = constant)
*
* @param type for which command to calculate the delay value.
* @param delay delay value for which to calculate the resulting TCK frequency.
* @return the resulting TCK frequency
*/
static long ulink_calculate_frequency(enum ulink_delay_type type, int delay)
{
float t, f_float;
if (delay > 255)
return 0;
switch (type) {
case DELAY_CLOCK_TCK:
if (delay < 0)
t = (float)(2.666E-6);
else
t = (float)(4E-6) * (float)(delay) + (float)(6E-6);
break;
case DELAY_CLOCK_TMS:
if (delay < 0)
t = (float)(5.666E-6);
else
t = (float)(4E-6) * (float)(delay) + (float)(8.5E-6);
break;
case DELAY_SCAN_IN:
if (delay < 0)
t = (float)(5.5E-6);
else
t = (float)(4E-6) * (float)(delay) + (float)(8.8308E-6);
break;
case DELAY_SCAN_OUT:
if (delay < 0)
t = (float)(7.0E-6);
else
t = (float)(4E-6) * (float)(delay) + (float)(1.0527E-5);
break;
case DELAY_SCAN_IO:
if (delay < 0)
t = (float)(9.926E-6);
else
t = (float)(4E-6) * (float)(delay) + (float)(1.3132E-5);
break;
default:
return 0;
}
f_float = 1.0 / t;
return roundf(f_float);
}
/******************* Interface between OpenULINK and OpenOCD ******************/
/**
* Sets the end state follower (see interface.h) if \a endstate is a stable
* state.
*
* @param endstate the state the end state follower should be set to.
*/
static void ulink_set_end_state(tap_state_t endstate)
{
if (tap_is_state_stable(endstate))
tap_set_end_state(endstate);
else {
LOG_ERROR("BUG: %s is not a valid end state", tap_state_name(endstate));
exit(EXIT_FAILURE);
}
}
/**
* Move from the current TAP state to the current TAP end state.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_statemove(struct ulink *device)
{
uint8_t tms_sequence, tms_count;
int ret;
if (tap_get_state() == tap_get_end_state()) {
/* Do nothing if we are already there */
return ERROR_OK;
}
tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
ret = ulink_append_clock_tms_cmd(device, tms_count, tms_sequence);
if (ret == ERROR_OK)
tap_set_state(tap_get_end_state());
return ret;
}
/**
* Perform a scan operation on a JTAG register.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param cmd pointer to the command that shall be executed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_scan(struct ulink *device, struct jtag_command *cmd)
{
uint32_t scan_size_bits, scan_size_bytes, bits_last_scan;
uint32_t scans_max_payload, bytecount;
uint8_t *tdi_buffer_start = NULL, *tdi_buffer = NULL;
uint8_t *tdo_buffer_start = NULL, *tdo_buffer = NULL;
uint8_t first_tms_count, first_tms_sequence;
uint8_t last_tms_count, last_tms_sequence;
uint8_t tms_count_pause, tms_sequence_pause;
uint8_t tms_count_resume, tms_sequence_resume;
uint8_t tms_count_start, tms_sequence_start;
uint8_t tms_count_end, tms_sequence_end;
enum scan_type type;
int ret;
/* Determine scan size */
scan_size_bits = jtag_scan_size(cmd->cmd.scan);
scan_size_bytes = DIV_ROUND_UP(scan_size_bits, 8);
/* Determine scan type (IN/OUT/IO) */
type = jtag_scan_type(cmd->cmd.scan);
/* Determine number of scan commands with maximum payload */
scans_max_payload = scan_size_bytes / 58;
/* Determine size of last shift command */
bits_last_scan = scan_size_bits - (scans_max_payload * 58 * 8);
/* Allocate TDO buffer if required */
if ((type == SCAN_IN) || (type == SCAN_IO)) {
tdo_buffer_start = calloc(sizeof(uint8_t), scan_size_bytes);
if (tdo_buffer_start == NULL)
return ERROR_FAIL;
tdo_buffer = tdo_buffer_start;
}
/* Fill TDI buffer if required */
if ((type == SCAN_OUT) || (type == SCAN_IO)) {
jtag_build_buffer(cmd->cmd.scan, &tdi_buffer_start);
tdi_buffer = tdi_buffer_start;
}
/* Get TAP state transitions */
if (cmd->cmd.scan->ir_scan) {
ulink_set_end_state(TAP_IRSHIFT);
first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
tap_set_state(TAP_IRSHIFT);
tap_set_end_state(cmd->cmd.scan->end_state);
last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
/* TAP state transitions for split scans */
tms_count_pause = tap_get_tms_path_len(TAP_IRSHIFT, TAP_IRPAUSE);
tms_sequence_pause = tap_get_tms_path(TAP_IRSHIFT, TAP_IRPAUSE);
tms_count_resume = tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRSHIFT);
tms_sequence_resume = tap_get_tms_path(TAP_IRPAUSE, TAP_IRSHIFT);
} else {
ulink_set_end_state(TAP_DRSHIFT);
first_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
first_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
tap_set_state(TAP_DRSHIFT);
tap_set_end_state(cmd->cmd.scan->end_state);
last_tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
last_tms_sequence = tap_get_tms_path(tap_get_state(), tap_get_end_state());
/* TAP state transitions for split scans */
tms_count_pause = tap_get_tms_path_len(TAP_DRSHIFT, TAP_DRPAUSE);
tms_sequence_pause = tap_get_tms_path(TAP_DRSHIFT, TAP_DRPAUSE);
tms_count_resume = tap_get_tms_path_len(TAP_DRPAUSE, TAP_DRSHIFT);
tms_sequence_resume = tap_get_tms_path(TAP_DRPAUSE, TAP_DRSHIFT);
}
/* Generate scan commands */
bytecount = scan_size_bytes;
while (bytecount > 0) {
if (bytecount == scan_size_bytes) {
/* This is the first scan */
tms_count_start = first_tms_count;
tms_sequence_start = first_tms_sequence;
} else {
/* Resume from previous scan */
tms_count_start = tms_count_resume;
tms_sequence_start = tms_sequence_resume;
}
if (bytecount > 58) { /* Full scan, at least one scan will follow */
tms_count_end = tms_count_pause;
tms_sequence_end = tms_sequence_pause;
ret = ulink_append_scan_cmd(device,
type,
58 * 8,
tdi_buffer,
tdo_buffer_start,
tdo_buffer,
tms_count_start,
tms_sequence_start,
tms_count_end,
tms_sequence_end,
cmd,
false);
bytecount -= 58;
/* Update TDI and TDO buffer pointers */
if (tdi_buffer_start != NULL)
tdi_buffer += 58;
if (tdo_buffer_start != NULL)
tdo_buffer += 58;
} else if (bytecount == 58) { /* Full scan, no further scans */
tms_count_end = last_tms_count;
tms_sequence_end = last_tms_sequence;
ret = ulink_append_scan_cmd(device,
type,
58 * 8,
tdi_buffer,
tdo_buffer_start,
tdo_buffer,
tms_count_start,
tms_sequence_start,
tms_count_end,
tms_sequence_end,
cmd,
true);
bytecount = 0;
} else {/* Scan with less than maximum payload, no further scans */
tms_count_end = last_tms_count;
tms_sequence_end = last_tms_sequence;
ret = ulink_append_scan_cmd(device,
type,
bits_last_scan,
tdi_buffer,
tdo_buffer_start,
tdo_buffer,
tms_count_start,
tms_sequence_start,
tms_count_end,
tms_sequence_end,
cmd,
true);
bytecount = 0;
}
if (ret != ERROR_OK) {
free(tdi_buffer_start);
free(tdo_buffer_start);
return ret;
}
}
free(tdi_buffer_start);
/* Set current state to the end state requested by the command */
tap_set_state(cmd->cmd.scan->end_state);
return ERROR_OK;
}
/**
* Move the TAP into the Test Logic Reset state.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param cmd pointer to the command that shall be executed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_tlr_reset(struct ulink *device, struct jtag_command *cmd)
{
int ret;
ret = ulink_append_clock_tms_cmd(device, 5, 0xff);
if (ret == ERROR_OK)
tap_set_state(TAP_RESET);
return ret;
}
/**
* Run Test.
*
* Generate TCK clock cycles while remaining
* in the Run-Test/Idle state.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param cmd pointer to the command that shall be executed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_runtest(struct ulink *device, struct jtag_command *cmd)
{
int ret;
/* Only perform statemove if the TAP currently isn't in the TAP_IDLE state */
if (tap_get_state() != TAP_IDLE) {
ulink_set_end_state(TAP_IDLE);
ulink_queue_statemove(device);
}
/* Generate the clock cycles */
ret = ulink_append_clock_tck_cmd(device, cmd->cmd.runtest->num_cycles);
if (ret != ERROR_OK)
return ret;
/* Move to end state specified in command */
if (cmd->cmd.runtest->end_state != tap_get_state()) {
tap_set_end_state(cmd->cmd.runtest->end_state);
ulink_queue_statemove(device);
}
return ERROR_OK;
}
/**
* Execute a JTAG_RESET command
*
* @param device
* @param cmd pointer to the command that shall be executed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_reset(struct ulink *device, struct jtag_command *cmd)
{
uint8_t low = 0, high = 0;
if (cmd->cmd.reset->trst) {
tap_set_state(TAP_RESET);
high |= SIGNAL_TRST;
} else
low |= SIGNAL_TRST;
if (cmd->cmd.reset->srst)
high |= SIGNAL_RESET;
else
low |= SIGNAL_RESET;
return ulink_append_set_signals_cmd(device, low, high);
}
/**
* Move to one TAP state or several states in succession.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param cmd pointer to the command that shall be executed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_pathmove(struct ulink *device, struct jtag_command *cmd)
{
int ret, i, num_states, batch_size, state_count;
tap_state_t *path;
uint8_t tms_sequence;
num_states = cmd->cmd.pathmove->num_states;
path = cmd->cmd.pathmove->path;
state_count = 0;
while (num_states > 0) {
tms_sequence = 0;
/* Determine batch size */
if (num_states >= 8)
batch_size = 8;
else
batch_size = num_states;
for (i = 0; i < batch_size; i++) {
if (tap_state_transition(tap_get_state(), false) == path[state_count]) {
/* Append '0' transition: clear bit 'i' in tms_sequence */
buf_set_u32(&tms_sequence, i, 1, 0x0);
} else if (tap_state_transition(tap_get_state(), true)
== path[state_count]) {
/* Append '1' transition: set bit 'i' in tms_sequence */
buf_set_u32(&tms_sequence, i, 1, 0x1);
} else {
/* Invalid state transition */
LOG_ERROR("BUG: %s -> %s isn't a valid TAP state transition",
tap_state_name(tap_get_state()),
tap_state_name(path[state_count]));
return ERROR_FAIL;
}
tap_set_state(path[state_count]);
state_count++;
num_states--;
}
/* Append CLOCK_TMS command to OpenULINK command queue */
LOG_INFO(
"pathmove batch: count = %i, sequence = 0x%x", batch_size, tms_sequence);
ret = ulink_append_clock_tms_cmd(ulink_handle, batch_size, tms_sequence);
if (ret != ERROR_OK)
return ret;
}
return ERROR_OK;
}
/**
* Sleep for a specific amount of time.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param cmd pointer to the command that shall be executed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_queue_sleep(struct ulink *device, struct jtag_command *cmd)
{
/* IMPORTANT! Due to the time offset in command execution introduced by
* command queueing, this needs to be implemented in the ULINK device */
return ulink_append_sleep_cmd(device, cmd->cmd.sleep->us);
}
/**
* Generate TCK cycles while remaining in a stable state.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @param cmd pointer to the command that shall be executed.
*/
static int ulink_queue_stableclocks(struct ulink *device, struct jtag_command *cmd)
{
int ret;
unsigned num_cycles;
if (!tap_is_state_stable(tap_get_state())) {
LOG_ERROR("JTAG_STABLECLOCKS: state not stable");
return ERROR_FAIL;
}
num_cycles = cmd->cmd.stableclocks->num_cycles;
/* TMS stays either high (Test Logic Reset state) or low (all other states) */
if (tap_get_state() == TAP_RESET)
ret = ulink_append_set_signals_cmd(device, 0, SIGNAL_TMS);
else
ret = ulink_append_set_signals_cmd(device, SIGNAL_TMS, 0);
if (ret != ERROR_OK)
return ret;
while (num_cycles > 0) {
if (num_cycles > 0xFFFF) {
/* OpenULINK CMD_CLOCK_TCK can generate up to 0xFFFF (uint16_t) cycles */
ret = ulink_append_clock_tck_cmd(device, 0xFFFF);
num_cycles -= 0xFFFF;
} else {
ret = ulink_append_clock_tck_cmd(device, num_cycles);
num_cycles = 0;
}
if (ret != ERROR_OK)
return ret;
}
return ERROR_OK;
}
/**
* Post-process JTAG_SCAN command
*
* @param ulink_cmd pointer to OpenULINK command that shall be processed.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_post_process_scan(struct ulink_cmd *ulink_cmd)
{
struct jtag_command *cmd = ulink_cmd->cmd_origin;
int ret;
switch (jtag_scan_type(cmd->cmd.scan)) {
case SCAN_IN:
case SCAN_IO:
ret = jtag_read_buffer(ulink_cmd->payload_in_start, cmd->cmd.scan);
break;
case SCAN_OUT:
/* Nothing to do for OUT scans */
ret = ERROR_OK;
break;
default:
LOG_ERROR("BUG: ulink_post_process_scan() encountered an unknown"
" JTAG scan type");
ret = ERROR_FAIL;
break;
}
return ret;
}
/**
* Perform post-processing of commands after OpenULINK queue has been executed.
*
* @param device pointer to struct ulink identifying ULINK driver instance.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_post_process_queue(struct ulink *device)
{
struct ulink_cmd *current;
struct jtag_command *openocd_cmd;
int ret;
current = device->queue_start;
while (current != NULL) {
openocd_cmd = current->cmd_origin;
/* Check if a corresponding OpenOCD command is stored for this
* OpenULINK command */
if ((current->needs_postprocessing == true) && (openocd_cmd != NULL)) {
switch (openocd_cmd->type) {
case JTAG_SCAN:
ret = ulink_post_process_scan(current);
break;
case JTAG_TLR_RESET:
case JTAG_RUNTEST:
case JTAG_RESET:
case JTAG_PATHMOVE:
case JTAG_SLEEP:
case JTAG_STABLECLOCKS:
/* Nothing to do for these commands */
ret = ERROR_OK;
break;
default:
ret = ERROR_FAIL;
LOG_ERROR("BUG: ulink_post_process_queue() encountered unknown JTAG "
"command type");
break;
}
if (ret != ERROR_OK)
return ret;
}
current = current->next;
}
return ERROR_OK;
}
/**************************** JTAG driver functions ***************************/
/**
* Executes the JTAG Command Queue.
*
* This is done in three stages: First, all OpenOCD commands are processed into
* queued OpenULINK commands. Next, the OpenULINK command queue is sent to the
* ULINK device and data received from the ULINK device is cached. Finally,
* the post-processing function writes back data to the corresponding OpenOCD
* commands.
*
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_execute_queue(void)
{
struct jtag_command *cmd = jtag_command_queue;
int ret;
while (cmd) {
switch (cmd->type) {
case JTAG_SCAN:
ret = ulink_queue_scan(ulink_handle, cmd);
break;
case JTAG_TLR_RESET:
ret = ulink_queue_tlr_reset(ulink_handle, cmd);
break;
case JTAG_RUNTEST:
ret = ulink_queue_runtest(ulink_handle, cmd);
break;
case JTAG_RESET:
ret = ulink_queue_reset(ulink_handle, cmd);
break;
case JTAG_PATHMOVE:
ret = ulink_queue_pathmove(ulink_handle, cmd);
break;
case JTAG_SLEEP:
ret = ulink_queue_sleep(ulink_handle, cmd);
break;
case JTAG_STABLECLOCKS:
ret = ulink_queue_stableclocks(ulink_handle, cmd);
break;
default:
ret = ERROR_FAIL;
LOG_ERROR("BUG: encountered unknown JTAG command type");
break;
}
if (ret != ERROR_OK)
return ret;
cmd = cmd->next;
}
if (ulink_handle->commands_in_queue > 0) {
ret = ulink_execute_queued_commands(ulink_handle, USB_TIMEOUT);
if (ret != ERROR_OK)
return ret;
ret = ulink_post_process_queue(ulink_handle);
if (ret != ERROR_OK)
return ret;
ulink_clear_queue(ulink_handle);
}
return ERROR_OK;
}
/**
* Set the TCK frequency of the ULINK adapter.
*
* @param khz desired JTAG TCK frequency.
* @param jtag_speed where to store corresponding adapter-specific speed value.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_khz(int khz, int *jtag_speed)
{
int ret;
if (khz == 0) {
LOG_ERROR("RCLK not supported");
return ERROR_FAIL;
}
/* CLOCK_TCK commands are decoupled from others. Therefore, the frequency
* setting can be done independently from all other commands. */
if (khz >= 375)
ulink_handle->delay_clock_tck = -1;
else {
ret = ulink_calculate_delay(DELAY_CLOCK_TCK, khz * 1000,
&ulink_handle->delay_clock_tck);
if (ret != ERROR_OK)
return ret;
}
/* SCAN_{IN,OUT,IO} commands invoke CLOCK_TMS commands. Therefore, if the
* requested frequency goes below the maximum frequency for SLOW_CLOCK_TMS
* commands, all SCAN commands MUST also use the variable frequency
* implementation! */
if (khz >= 176) {
ulink_handle->delay_clock_tms = -1;
ulink_handle->delay_scan_in = -1;
ulink_handle->delay_scan_out = -1;
ulink_handle->delay_scan_io = -1;
} else {
ret = ulink_calculate_delay(DELAY_CLOCK_TMS, khz * 1000,
&ulink_handle->delay_clock_tms);
if (ret != ERROR_OK)
return ret;
ret = ulink_calculate_delay(DELAY_SCAN_IN, khz * 1000,
&ulink_handle->delay_scan_in);
if (ret != ERROR_OK)
return ret;
ret = ulink_calculate_delay(DELAY_SCAN_OUT, khz * 1000,
&ulink_handle->delay_scan_out);
if (ret != ERROR_OK)
return ret;
ret = ulink_calculate_delay(DELAY_SCAN_IO, khz * 1000,
&ulink_handle->delay_scan_io);
if (ret != ERROR_OK)
return ret;
}
LOG_DEBUG_IO("ULINK TCK setup: delay_tck = %i (%li Hz),",
ulink_handle->delay_clock_tck,
ulink_calculate_frequency(DELAY_CLOCK_TCK, ulink_handle->delay_clock_tck));
LOG_DEBUG_IO(" delay_tms = %i (%li Hz),",
ulink_handle->delay_clock_tms,
ulink_calculate_frequency(DELAY_CLOCK_TMS, ulink_handle->delay_clock_tms));
LOG_DEBUG_IO(" delay_scan_in = %i (%li Hz),",
ulink_handle->delay_scan_in,
ulink_calculate_frequency(DELAY_SCAN_IN, ulink_handle->delay_scan_in));
LOG_DEBUG_IO(" delay_scan_out = %i (%li Hz),",
ulink_handle->delay_scan_out,
ulink_calculate_frequency(DELAY_SCAN_OUT, ulink_handle->delay_scan_out));
LOG_DEBUG_IO(" delay_scan_io = %i (%li Hz),",
ulink_handle->delay_scan_io,
ulink_calculate_frequency(DELAY_SCAN_IO, ulink_handle->delay_scan_io));
/* Configure the ULINK device with the new delay values */
ret = ulink_append_configure_tck_cmd(ulink_handle,
ulink_handle->delay_scan_in,
ulink_handle->delay_scan_out,
ulink_handle->delay_scan_io,
ulink_handle->delay_clock_tck,
ulink_handle->delay_clock_tms);
if (ret != ERROR_OK)
return ret;
*jtag_speed = khz;
return ERROR_OK;
}
/**
* Set the TCK frequency of the ULINK adapter.
*
* Because of the way the TCK frequency is set up in the OpenULINK firmware,
* there are five different speed settings. To simplify things, the
* adapter-specific speed setting value is identical to the TCK frequency in
* khz.
*
* @param speed desired adapter-specific speed value.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_speed(int speed)
{
int dummy;
return ulink_khz(speed, &dummy);
}
/**
* Convert adapter-specific speed value to corresponding TCK frequency in kHz.
*
* Because of the way the TCK frequency is set up in the OpenULINK firmware,
* there are five different speed settings. To simplify things, the
* adapter-specific speed setting value is identical to the TCK frequency in
* khz.
*
* @param speed adapter-specific speed value.
* @param khz where to store corresponding TCK frequency in kHz.
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_speed_div(int speed, int *khz)
{
*khz = speed;
return ERROR_OK;
}
/**
* Initiates the firmware download to the ULINK adapter and prepares
* the USB handle.
*
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_init(void)
{
int ret, transferred;
char str_manufacturer[20];
bool download_firmware = false;
unsigned char *dummy;
uint8_t input_signals, output_signals;
ulink_handle = calloc(1, sizeof(struct ulink));
if (ulink_handle == NULL)
return ERROR_FAIL;
libusb_init(&ulink_handle->libusb_ctx);
ret = ulink_usb_open(&ulink_handle);
if (ret != ERROR_OK) {
LOG_ERROR("Could not open ULINK device");
free(ulink_handle);
ulink_handle = NULL;
return ret;
}
/* Get String Descriptor to determine if firmware needs to be loaded */
ret = libusb_get_string_descriptor_ascii(ulink_handle->usb_device_handle, 1, (unsigned char *)str_manufacturer, 20);
if (ret < 0) {
/* Could not get descriptor -> Unconfigured or original Keil firmware */
download_firmware = true;
} else {
/* We got a String Descriptor, check if it is the correct one */
if (strncmp(str_manufacturer, "OpenULINK", 9) != 0)
download_firmware = true;
}
if (download_firmware == true) {
LOG_INFO("Loading OpenULINK firmware. This is reversible by power-cycling"
" ULINK device.");
ret = ulink_load_firmware_and_renumerate(&ulink_handle,
ULINK_FIRMWARE_FILE, ULINK_RENUMERATION_DELAY);
if (ret != ERROR_OK) {
LOG_ERROR("Could not download firmware and re-numerate ULINK");
free(ulink_handle);
ulink_handle = NULL;
return ret;
}
} else
LOG_INFO("ULINK device is already running OpenULINK firmware");
/* Get OpenULINK USB IN/OUT endpoints and claim the interface */
ret = jtag_libusb_choose_interface(ulink_handle->usb_device_handle,
&ulink_handle->ep_in, &ulink_handle->ep_out, -1, -1, -1, -1);
if (ret != ERROR_OK)
return ret;
/* Initialize OpenULINK command queue */
ulink_clear_queue(ulink_handle);
/* Issue one test command with short timeout */
ret = ulink_append_test_cmd(ulink_handle);
if (ret != ERROR_OK)
return ret;
ret = ulink_execute_queued_commands(ulink_handle, 200);
if (ret != ERROR_OK) {
/* Sending test command failed. The ULINK device may be forever waiting for
* the host to fetch an USB Bulk IN packet (e. g. OpenOCD crashed or was
* shut down by the user via Ctrl-C. Try to retrieve this Bulk IN packet. */
dummy = calloc(64, sizeof(uint8_t));
ret = libusb_bulk_transfer(ulink_handle->usb_device_handle, ulink_handle->ep_in,
dummy, 64, &transferred, 200);
free(dummy);
if (ret != 0 || transferred == 0) {
/* Bulk IN transfer failed -> unrecoverable error condition */
LOG_ERROR("Cannot communicate with ULINK device. Disconnect ULINK from "
"the USB port and re-connect, then re-run OpenOCD");
free(ulink_handle);
ulink_handle = NULL;
return ERROR_FAIL;
}
#ifdef _DEBUG_USB_COMMS_
else {
/* Successfully received Bulk IN packet -> continue */
LOG_INFO("Recovered from lost Bulk IN packet");
}
#endif
}
ulink_clear_queue(ulink_handle);
ret = ulink_append_get_signals_cmd(ulink_handle);
if (ret == ERROR_OK)
ret = ulink_execute_queued_commands(ulink_handle, 200);
if (ret == ERROR_OK) {
/* Post-process the single CMD_GET_SIGNALS command */
input_signals = ulink_handle->queue_start->payload_in[0];
output_signals = ulink_handle->queue_start->payload_in[1];
ulink_print_signal_states(input_signals, output_signals);
}
ulink_clear_queue(ulink_handle);
return ERROR_OK;
}
/**
* Closes the USB handle for the ULINK device.
*
* @return on success: ERROR_OK
* @return on failure: ERROR_FAIL
*/
static int ulink_quit(void)
{
int ret;
ret = ulink_usb_close(&ulink_handle);
free(ulink_handle);
return ret;
}
/**
* Set a custom path to ULINK firmware image and force downloading to ULINK.
*/
COMMAND_HANDLER(ulink_download_firmware_handler)
{
int ret;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("Downloading ULINK firmware image %s", CMD_ARGV[0]);
/* Download firmware image in CMD_ARGV[0] */
ret = ulink_load_firmware_and_renumerate(&ulink_handle, CMD_ARGV[0],
ULINK_RENUMERATION_DELAY);
return ret;
}
/*************************** Command Registration **************************/
static const struct command_registration ulink_command_handlers[] = {
{
.name = "ulink_download_firmware",
.handler = &ulink_download_firmware_handler,
.mode = COMMAND_EXEC,
.help = "download firmware image to ULINK device",
.usage = "path/to/ulink_firmware.hex",
},
COMMAND_REGISTRATION_DONE,
};
static struct jtag_interface ulink_interface = {
.execute_queue = ulink_execute_queue,
};
struct adapter_driver ulink_adapter_driver = {
.name = "ulink",
.transports = jtag_only,
.commands = ulink_command_handlers,
.init = ulink_init,
.quit = ulink_quit,
.speed = ulink_speed,
.khz = ulink_khz,
.speed_div = ulink_speed_div,
.jtag_ops = &ulink_interface,
};