openocd/src/flash/nor/stm32h7x.c

1133 lines
33 KiB
C

/***************************************************************************
* Copyright (C) 2017 by STMicroelectronics *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* Erase time can be as high as 1000ms, 10x this and it's toast... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5
/* RM 433 */
/* Same Flash registers for both banks, */
/* access depends on Flash Base address */
#define FLASH_ACR 0x00
#define FLASH_KEYR 0x04
#define FLASH_OPTKEYR 0x08
#define FLASH_CR 0x0C
#define FLASH_SR 0x10
#define FLASH_CCR 0x14
#define FLASH_OPTCR 0x18
#define FLASH_OPTCUR 0x1C
#define FLASH_OPTPRG 0x20
#define FLASH_OPTCCR 0x24
#define FLASH_WPSNCUR 0x38
#define FLASH_WPSNPRG 0x3C
/* FLASH_CR register bits */
#define FLASH_LOCK (1 << 0)
#define FLASH_PG (1 << 1)
#define FLASH_SER (1 << 2)
#define FLASH_BER_CMD (1 << 3)
#define FLASH_PSIZE_8 (0 << 4)
#define FLASH_PSIZE_16 (1 << 4)
#define FLASH_PSIZE_32 (2 << 4)
#define FLASH_PSIZE_64 (3 << 4)
#define FLASH_FW (1 << 6)
#define FLASH_START (1 << 7)
#define FLASH_SNB(a) ((a) << 8)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0) /* Operation in progress */
#define FLASH_QW (1 << 2) /* Operation queue in progress */
#define FLASH_WRPERR (1 << 17) /* Write protection error */
#define FLASH_PGSERR (1 << 18) /* Programming sequence error */
#define FLASH_STRBERR (1 << 19) /* Strobe error */
#define FLASH_INCERR (1 << 21) /* Inconsistency error */
#define FLASH_OPERR (1 << 22) /* Operation error */
#define FLASH_RDPERR (1 << 23) /* Read Protection error */
#define FLASH_RDSERR (1 << 24) /* Secure Protection error */
#define FLASH_SNECCERR (1 << 25) /* Single ECC error */
#define FLASH_DBECCERR (1 << 26) /* Double ECC error */
#define FLASH_ERROR (FLASH_WRPERR | FLASH_PGSERR | FLASH_STRBERR | FLASH_INCERR | FLASH_OPERR | \
FLASH_RDPERR | FLASH_RDSERR | FLASH_SNECCERR | FLASH_DBECCERR)
/* FLASH_OPTCR register bits */
#define OPT_LOCK (1 << 0)
#define OPT_START (1 << 1)
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* option register unlock key */
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define DBGMCU_IDCODE_REGISTER 0x5C001000
#define FLASH_BANK0_ADDRESS 0x08000000
#define FLASH_BANK1_ADDRESS 0x08100000
#define FLASH_REG_BASE_B0 0x52002000
#define FLASH_REG_BASE_B1 0x52002100
#define FLASH_SIZE_ADDRESS 0x1FF1E880
#define FLASH_BLOCK_SIZE 32
struct stm32h7x_rev {
uint16_t rev;
const char *str;
};
struct stm32x_options {
uint8_t RDP;
uint32_t protection; /* bank1 WRP */
uint32_t protection2; /* bank2 WRP */
uint8_t user_options;
uint8_t user2_options;
uint8_t user3_options;
};
struct stm32h7x_part_info {
uint16_t id;
const char *device_str;
const struct stm32h7x_rev *revs;
size_t num_revs;
unsigned int page_size;
unsigned int pages_per_sector;
uint16_t max_flash_size_kb;
uint8_t has_dual_bank;
uint16_t first_bank_size_kb; /* Used when has_dual_bank is true */
uint32_t flash_base; /* Flash controller registers location */
uint32_t fsize_base; /* Location of FSIZE register */
};
struct stm32h7x_flash_bank {
int probed;
uint32_t idcode;
uint32_t user_bank_size;
uint32_t flash_base; /* Address of flash reg controller */
struct stm32x_options option_bytes;
const struct stm32h7x_part_info *part_info;
};
static const struct stm32h7x_rev stm32_450_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2001, "X" },
};
static const struct stm32h7x_part_info stm32h7x_parts[] = {
{
.id = 0x450,
.revs = stm32_450_revs,
.num_revs = ARRAY_SIZE(stm32_450_revs),
.device_str = "STM32H7xx 2M",
.page_size = 128, /* 128 KB */
.max_flash_size_kb = 2048,
.first_bank_size_kb = 1024,
.has_dual_bank = 1,
.flash_base = FLASH_REG_BASE_B0,
.fsize_base = FLASH_SIZE_ADDRESS,
},
};
static int stm32x_unlock_reg(struct flash_bank *bank);
static int stm32x_lock_reg(struct flash_bank *bank);
static int stm32x_probe(struct flash_bank *bank);
/* flash bank stm32x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32h7x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32h7x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = 0;
stm32x_info->user_bank_size = bank->size;
return ERROR_OK;
}
static inline uint32_t stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
return reg + stm32x_info->flash_base;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_SR), status);
}
static int stm32x_wait_flash_op_queue(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t status;
int retval;
/* wait for flash operations completion */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK) {
LOG_INFO("wait_flash_op_queue, target_read_u32 : error : remote address 0x%x", stm32x_info->flash_base);
return retval;
}
if ((status & FLASH_QW) == 0)
break;
if (timeout-- <= 0) {
LOG_INFO("wait_flash_op_queue, time out expired, status: 0x%" PRIx32 "", status);
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_INFO("wait_flash_op_queue, WRPERR : error : remote address 0x%x", stm32x_info->flash_base);
retval = ERROR_FAIL;
}
/* Clear error + EOP flags but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original retval */
target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CCR), status);
}
return retval;
}
static int stm32x_unlock_reg(struct flash_bank *bank)
{
uint32_t ctrl;
struct target *target = bank->target;
/* first check if not already unlocked
* otherwise writing on FLASH_KEYR will fail
*/
int retval = target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers for bank */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CRx: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_unlock_option_reg(struct flash_bank *bank)
{
uint32_t ctrl;
struct target *target = bank->target;
int retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & OPT_LOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & OPT_LOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_lock_reg(struct flash_bank *bank)
{
struct target *target = bank->target;
/* Lock bank reg */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32h7x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current option bytes */
int retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCUR, &optiondata);
if (retval != ERROR_OK)
return retval;
/* decode option data */
stm32x_info->option_bytes.user_options = optiondata & 0xfc;
stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
stm32x_info->option_bytes.user2_options = (optiondata >> 16) & 0xff;
stm32x_info->option_bytes.user3_options = (optiondata >> 24) & 0xa3;
if (stm32x_info->option_bytes.RDP != 0xAA)
LOG_INFO("Device Security Bit Set");
/* read current WPSN option bytes */
retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_WPSNCUR, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.protection = optiondata & 0xff;
/* read current WPSN2 option bytes */
retval = target_read_u32(target, FLASH_REG_BASE_B1 + FLASH_WPSNCUR, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.protection2 = optiondata & 0xff;
return ERROR_OK;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32h7x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint32_t optiondata;
stm32x_info = bank->driver_priv;
int retval = stm32x_unlock_option_reg(bank);
if (retval != ERROR_OK)
return retval;
/* rebuild option data */
optiondata = stm32x_info->option_bytes.user_options;
optiondata |= (stm32x_info->option_bytes.RDP << 8);
optiondata |= (stm32x_info->option_bytes.user2_options & 0xff) << 16;
optiondata |= (stm32x_info->option_bytes.user3_options & 0xa3) << 24;
/* program options */
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTPRG, optiondata);
if (retval != ERROR_OK)
return retval;
optiondata = stm32x_info->option_bytes.protection & 0xff;
/* Program protection WPSNPRG */
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_WPSNPRG, optiondata);
if (retval != ERROR_OK)
return retval;
optiondata = stm32x_info->option_bytes.protection2 & 0xff;
/* Program protection WPSNPRG2 */
retval = target_write_u32(target, FLASH_REG_BASE_B1 + FLASH_WPSNPRG, optiondata);
if (retval != ERROR_OK)
return retval;
optiondata = 0x40000000;
/* Remove OPT error flag before programming */
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCCR, optiondata);
if (retval != ERROR_OK)
return retval;
/* start programming cycle */
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, OPT_START);
if (retval != ERROR_OK)
return retval;
/* wait for completion */
int timeout = FLASH_ERASE_TIMEOUT;
for (;;) {
uint32_t status;
retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_SR, &status);
if (retval != ERROR_OK) {
LOG_INFO("stm32x_write_options: wait_flash_op_queue : error");
return retval;
}
if ((status & FLASH_QW) == 0)
break;
if (timeout-- <= 0) {
LOG_INFO("wait_flash_op_queue, time out expired, status: 0x%" PRIx32 "", status);
return ERROR_FAIL;
}
alive_sleep(1);
}
/* relock option registers */
retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, OPT_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
/* read 'write protection' settings */
int retval = stm32x_read_options(bank);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
for (int i = 0; i < bank->num_sectors; i++) {
if (stm32x_info->flash_base == FLASH_REG_BASE_B0) {
if (stm32x_info->option_bytes.protection & (1 << i))
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
} else {
if (stm32x_info->option_bytes.protection2 & (1 << i))
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
}
}
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int retval;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
if (bank->target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by checking the QW bit in the
FLASH_SR register
2. Set the SER bit and select the sector
you wish to erase (SNB) in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for flash operations completion
*/
for (int i = first; i <= last; i++) {
LOG_DEBUG("erase sector %d", i);
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR),
FLASH_SER | FLASH_SNB(i) | FLASH_PSIZE_64);
if (retval != ERROR_OK) {
LOG_ERROR("Error erase sector %d", i);
return retval;
}
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR),
FLASH_SER | FLASH_SNB(i) | FLASH_PSIZE_64 | FLASH_START);
if (retval != ERROR_OK) {
LOG_ERROR("Error erase sector %d", i);
return retval;
}
retval = stm32x_wait_flash_op_queue(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK) {
LOG_ERROR("erase time-out or operation error sector %d", i);
return retval;
}
bank->sectors[i].is_erased = 1;
}
retval = stm32x_lock_reg(bank);
if (retval != ERROR_OK) {
LOG_ERROR("error during the lock of flash");
return retval;
}
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* read protection settings */
int retval = stm32x_read_options(bank);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
for (int i = first; i <= last; i++) {
if (stm32x_info->flash_base == FLASH_REG_BASE_B0) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
stm32x_info->option_bytes.protection |= (1 << i);
} else {
if (set)
stm32x_info->option_bytes.protection2 &= ~(1 << i);
else
stm32x_info->option_bytes.protection2 |= (1 << i);
}
}
LOG_INFO("stm32x_protect, option_bytes written WRP1 0x%x , WRP2 0x%x",
(stm32x_info->option_bytes.protection & 0xff), (stm32x_info->option_bytes.protection2 & 0xff));
retval = stm32x_write_options(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
/*
* If the size of the data part of the buffer is not a multiple of FLASH_BLOCK_SIZE, we get
* "corrupted fifo read" pointer in target_run_flash_async_algorithm()
*/
uint32_t data_size = 512 * FLASH_BLOCK_SIZE; /* 16384 */
uint32_t buffer_size = 8 + data_size;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
int retval = ERROR_OK;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32h7x.inc"
};
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code),
stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
data_size /= 2;
buffer_size = 8 + data_size;
if (data_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
LOG_DEBUG("target_alloc_working_area_try : buffer_size -> 0x%x", buffer_size);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (word-256 bits) */
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash reg base */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, stm32x_info->flash_base);
retval = target_run_flash_async_algorithm(target,
buffer,
count,
FLASH_BLOCK_SIZE,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_INFO("error executing stm32h7x flash write algorithm");
uint32_t flash_sr = buf_get_u32(reg_params[0].value, 0, 32);
if (flash_sr & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if ((flash_sr & FLASH_ERROR) != 0) {
LOG_ERROR("flash write failed, FLASH_SR = %08" PRIx32, flash_sr);
/* Clear error + EOP flags but report errors */
target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CCR), flash_sr);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t address = bank->base + offset;
int retval, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset % FLASH_BLOCK_SIZE) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 32-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
uint32_t blocks_remaining = count / FLASH_BLOCK_SIZE;
uint32_t bytes_remaining = count % FLASH_BLOCK_SIZE;
/* multiple words (32-bytes) to be programmed in block */
if (blocks_remaining) {
retval = stm32x_write_block(bank, buffer, offset, blocks_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
} else {
buffer += blocks_remaining * FLASH_BLOCK_SIZE;
address += blocks_remaining * FLASH_BLOCK_SIZE;
blocks_remaining = 0;
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
goto flash_lock;
}
/*
Standard programming
The Flash memory programming sequence is as follows:
1. Check that no main Flash memory operation is ongoing by checking the QW bit in the
FLASH_SR register.
2. Set the PG bit in the FLASH_CR register
3. 8 x Word access (or Force Write FW)
4. Wait for flash operations completion
*/
while (blocks_remaining > 0) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_buffer(target, address, FLASH_BLOCK_SIZE, buffer);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_flash_op_queue(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
buffer += FLASH_BLOCK_SIZE;
address += FLASH_BLOCK_SIZE;
blocks_remaining--;
}
if (bytes_remaining) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_buffer(target, address, bytes_remaining, buffer);
if (retval != ERROR_OK)
goto flash_lock;
/* Force Write buffer of FLASH_BLOCK_SIZE = 32 bytes */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64 | FLASH_FW);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_flash_op_queue(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
}
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
if (retval == ERROR_OK)
retval = retval2;
return retval;
}
static void setup_sector(struct flash_bank *bank, int start, int num, int size)
{
for (int i = start; i < (start + num) ; i++) {
assert(i < bank->num_sectors);
bank->sectors[i].offset = bank->size;
bank->sectors[i].size = size;
bank->size += bank->sectors[i].size;
}
}
static int stm32x_read_id_code(struct flash_bank *bank, uint32_t *id)
{
/* read stm32 device id register */
int retval = target_read_u32(bank->target, DBGMCU_IDCODE_REGISTER, id);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = FLASH_BANK0_ADDRESS;
uint32_t second_bank_base;
stm32x_info->probed = 0;
stm32x_info->part_info = NULL;
int retval = stm32x_read_id_code(bank, &stm32x_info->idcode);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("device id = 0x%08" PRIx32 "", stm32x_info->idcode);
device_id = stm32x_info->idcode & 0xfff;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32h7x_parts); n++) {
if (device_id == stm32h7x_parts[n].id)
stm32x_info->part_info = &stm32h7x_parts[n];
}
if (!stm32x_info->part_info) {
LOG_WARNING("Cannot identify target as a STM32H7xx family.");
return ERROR_FAIL;
} else {
LOG_INFO("Device: %s", stm32x_info->part_info->device_str);
}
/* update the address of controller from data base */
stm32x_info->flash_base = stm32x_info->part_info->flash_base;
/* get flash size from target */
retval = target_read_u16(target, stm32x_info->part_info->fsize_base, &flash_size_in_kb);
if (retval != ERROR_OK) {
/* read error when device has invalid value, set max flash size */
flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
} else
LOG_INFO("flash size probed value %d", flash_size_in_kb);
/* Lower flash size devices are single bank */
if (stm32x_info->part_info->has_dual_bank && (flash_size_in_kb > stm32x_info->part_info->first_bank_size_kb)) {
/* Use the configured base address to determine if this is the first or second flash bank.
* Verify that the base address is reasonably correct and determine the flash bank size
*/
second_bank_base = base_address + stm32x_info->part_info->first_bank_size_kb * 1024;
if (bank->base == second_bank_base) {
/* This is the second bank */
base_address = second_bank_base;
flash_size_in_kb = flash_size_in_kb - stm32x_info->part_info->first_bank_size_kb;
/* bank1 also uses a register offset */
stm32x_info->flash_base = FLASH_REG_BASE_B1;
} else if (bank->base == base_address) {
/* This is the first bank */
flash_size_in_kb = stm32x_info->part_info->first_bank_size_kb;
} else {
LOG_WARNING("STM32H flash bank base address config is incorrect. "
TARGET_ADDR_FMT " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
bank->base, base_address, second_bank_base);
return ERROR_FAIL;
}
LOG_INFO("STM32H flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
bank->bank_number, flash_size_in_kb, base_address);
} else {
LOG_INFO("STM32H flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have an invalid flash size register value */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
} else if (flash_size_in_kb == 0xffff) {
/* die flash size */
flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
}
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
int num_pages = flash_size_in_kb / stm32x_info->part_info->page_size;
/* check that calculation result makes sense */
assert(num_pages > 0);
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
bank->size = 0;
/* fixed memory */
setup_sector(bank, 0, num_pages, stm32x_info->part_info->page_size * 1024);
for (i = 0; i < num_pages; i++) {
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 0;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
/* This method must return a string displaying information about the bank */
static int stm32x_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
const struct stm32h7x_part_info *info = stm32x_info->part_info;
if (!stm32x_info->probed) {
int retval = stm32x_probe(bank);
if (retval != ERROR_OK) {
snprintf(buf, buf_size, "Unable to find bank information.");
return retval;
}
}
if (info) {
const char *rev_str = NULL;
uint16_t rev_id = stm32x_info->idcode >> 16;
for (unsigned int i = 0; i < info->num_revs; i++)
if (rev_id == info->revs[i].rev)
rev_str = info->revs[i].str;
if (rev_str != NULL) {
snprintf(buf, buf_size, "%s - Rev: %s",
stm32x_info->part_info->device_str, rev_str);
} else {
snprintf(buf, buf_size,
"%s - Rev: unknown (0x%04x)",
stm32x_info->part_info->device_str, rev_id);
}
} else {
snprintf(buf, buf_size, "Cannot identify target as a STM32H7x");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32h7x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
/* if we have a dual flash bank device then
* we need to perform option byte lock on bank0 only */
if (stm32x_info->flash_base != FLASH_REG_BASE_B0) {
LOG_ERROR("Option Byte Lock Operation must use bank0");
return ERROR_FLASH_OPERATION_FAILED;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_read_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "%s failed to read options",
bank->driver->name);
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "%s failed to lock device",
bank->driver->name);
return ERROR_OK;
}
command_print(CMD_CTX, "%s locked", bank->driver->name);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
struct stm32h7x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
/* if we have a dual flash bank device then
* we need to perform option byte unlock on bank0 only */
if (stm32x_info->flash_base != FLASH_REG_BASE_B0) {
LOG_ERROR("Option Byte Unlock Operation must use bank0");
return ERROR_FLASH_OPERATION_FAILED;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_read_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
return ERROR_OK;
}
/* clear readout protection option byte
* this will also force a device unlock if set */
stm32x_info->option_bytes.RDP = 0xAA;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}
command_print(CMD_CTX, "%s unlocked.\n", bank->driver->name);
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory bank */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_BER_CMD | FLASH_PSIZE_64);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR),
FLASH_BER_CMD | FLASH_PSIZE_64 | FLASH_START);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_flash_op_queue(bank, 30000);
if (retval != ERROR_OK)
return retval;
retval = stm32x_lock_reg(bank);
if (retval != ERROR_OK) {
LOG_ERROR("error during the lock of flash");
return retval;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1) {
command_print(CMD_CTX, "stm32h7x mass_erase <bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "stm32h7x mass erase complete");
} else {
command_print(CMD_CTX, "stm32h7x mass erase failed");
}
return retval;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32h7x",
.mode = COMMAND_ANY,
.help = "stm32h7x flash command group",
.usage = "",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32h7x_flash = {
.name = "stm32h7x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = stm32x_get_info,
.free_driver_priv = default_flash_free_driver_priv,
};