openocd/src/flash/lpc3180_nand_controller.c

916 lines
26 KiB
C

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "lpc3180_nand_controller.h"
#include "replacements.h"
#include "log.h"
#include <stdlib.h>
#include <string.h>
#include "nand.h"
#include "target.h"
int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device);
int lpc3180_register_commands(struct command_context_s *cmd_ctx);
int lpc3180_init(struct nand_device_s *device);
int lpc3180_reset(struct nand_device_s *device);
int lpc3180_command(struct nand_device_s *device, u8 command);
int lpc3180_address(struct nand_device_s *device, u8 address);
int lpc3180_write_data(struct nand_device_s *device, u16 data);
int lpc3180_read_data(struct nand_device_s *device, void *data);
int lpc3180_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
int lpc3180_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
int lpc3180_controller_ready(struct nand_device_s *device, int timeout);
int lpc3180_nand_ready(struct nand_device_s *device, int timeout);
int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
nand_flash_controller_t lpc3180_nand_controller =
{
.name = "lpc3180",
.nand_device_command = lpc3180_nand_device_command,
.register_commands = lpc3180_register_commands,
.init = lpc3180_init,
.reset = lpc3180_reset,
.command = lpc3180_command,
.address = lpc3180_address,
.write_data = lpc3180_write_data,
.read_data = lpc3180_read_data,
.write_page = lpc3180_write_page,
.read_page = lpc3180_read_page,
.controller_ready = lpc3180_controller_ready,
.nand_ready = lpc3180_nand_ready,
};
/* nand device lpc3180 <target#> <oscillator_frequency>
*/
int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info;
if (argc < 3)
{
WARNING("incomplete 'lpc3180' nand flash configuration");
return ERROR_FLASH_BANK_INVALID;
}
lpc3180_info = malloc(sizeof(lpc3180_nand_controller_t));
device->controller_priv = lpc3180_info;
lpc3180_info->target = get_target_by_num(strtoul(args[1], NULL, 0));
if (!lpc3180_info->target)
{
ERROR("no target '%s' configured", args[1]);
return ERROR_NAND_DEVICE_INVALID;
}
lpc3180_info->osc_freq = strtoul(args[2], NULL, 0);
if ((lpc3180_info->osc_freq < 1000) || (lpc3180_info->osc_freq > 20000))
{
WARNING("LPC3180 oscillator frequency should be between 1000 and 20000 kHz, was %i", lpc3180_info->osc_freq);
}
lpc3180_info->selected_controller = LPC3180_NO_CONTROLLER;
lpc3180_info->sw_write_protection = 0;
lpc3180_info->sw_wp_lower_bound = 0x0;
lpc3180_info->sw_wp_upper_bound = 0x0;
return ERROR_OK;
}
int lpc3180_register_commands(struct command_context_s *cmd_ctx)
{
command_t *lpc3180_cmd = register_command(cmd_ctx, NULL, "lpc3180", NULL, COMMAND_ANY, "commands specific to the LPC3180 NAND flash controllers");
register_command(cmd_ctx, lpc3180_cmd, "select", handle_lpc3180_select_command, COMMAND_EXEC, "select <'mlc'|'slc'> controller (default is mlc)");
return ERROR_OK;
}
int lpc3180_pll(int fclkin, u32 pll_ctrl)
{
int bypass = (pll_ctrl & 0x8000) >> 15;
int direct = (pll_ctrl & 0x4000) >> 14;
int feedback = (pll_ctrl & 0x2000) >> 13;
int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2);
int n = ((pll_ctrl & 0x0600) >> 9) + 1;
int m = ((pll_ctrl & 0x01fe) >> 1) + 1;
int lock = (pll_ctrl & 0x1);
if (!lock)
WARNING("PLL is not locked");
if (!bypass && direct) /* direct mode */
return (m * fclkin) / n;
if (bypass && !direct) /* bypass mode */
return fclkin / (2 * p);
if (bypass & direct) /* direct bypass mode */
return fclkin;
if (feedback) /* integer mode */
return m * (fclkin / n);
else /* non-integer mode */
return (m / (2 * p)) * (fclkin / n);
}
float lpc3180_cycle_time(lpc3180_nand_controller_t *lpc3180_info)
{
target_t *target = lpc3180_info->target;
u32 sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl;
int sysclk;
int hclk;
int hclk_pll;
float cycle;
/* calculate timings */
/* determine current SYSCLK (13'MHz or main oscillator) */
target_read_u32(target, 0x40004050, &sysclk_ctrl);
if ((sysclk_ctrl & 1) == 0)
sysclk = lpc3180_info->osc_freq;
else
sysclk = 13000;
/* determine selected HCLK source */
target_read_u32(target, 0x40004044, &pwr_ctrl);
if ((pwr_ctrl & (1 << 2)) == 0) /* DIRECT RUN mode */
{
hclk = sysclk;
}
else
{
target_read_u32(target, 0x40004058, &hclkpll_ctrl);
hclk_pll = lpc3180_pll(sysclk, hclkpll_ctrl);
target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
{
hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
}
else /* HCLK uses HCLK_PLL */
{
hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
}
}
DEBUG("LPC3180 HCLK currently clocked at %i kHz", hclk);
cycle = (1.0 / hclk) * 1000000.0;
return cycle;
}
int lpc3180_init(struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
int bus_width = (device->bus_width) ? (device->bus_width) : 8;
int address_cycles = (device->address_cycles) ? (device->address_cycles) : 3;
int page_size = (device->page_size) ? (device->page_size) : 512;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
/* sanitize arguments */
if ((bus_width != 8) && (bus_width != 16))
{
ERROR("LPC3180 only supports 8 or 16 bit bus width, not %i", bus_width);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* The LPC3180 only brings out 8 bit NAND data bus, but the controller
* would support 16 bit, too, so we just warn about this for now
*/
if (bus_width == 16)
{
WARNING("LPC3180 only supports 8 bit bus width");
}
/* inform calling code about selected bus width */
device->bus_width = bus_width;
if ((address_cycles != 3) && (address_cycles != 4))
{
ERROR("LPC3180 only supports 3 or 4 address cycles, not %i", address_cycles);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if ((page_size != 512) && (page_size != 2048))
{
ERROR("LPC3180 only supports 512 or 2048 byte pages, not %i", page_size);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* select MLC controller if none is currently selected */
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
DEBUG("no LPC3180 NAND flash controller selected, using default 'mlc'");
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
}
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u32 mlc_icr_value = 0x0;
float cycle;
int twp, twh, trp, treh, trhz, trbwb, tcea;
/* FLASHCLK_CTRL = 0x22 (enable clock for MLC flash controller) */
target_write_u32(target, 0x400040c8, 0x22);
/* MLC_CEH = 0x0 (Force nCE assert) */
target_write_u32(target, 0x200b804c, 0x0);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
/* MLC_ICR = configuration */
if (lpc3180_info->sw_write_protection)
mlc_icr_value |= 0x8;
if (page_size == 2048)
mlc_icr_value |= 0x4;
if (address_cycles == 4)
mlc_icr_value |= 0x2;
if (bus_width == 16)
mlc_icr_value |= 0x1;
target_write_u32(target, 0x200b8030, mlc_icr_value);
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(lpc3180_info);
twp = ((40 / cycle) + 1);
twh = ((20 / cycle) + 1);
trp = ((30 / cycle) + 1);
treh = ((15 / cycle) + 1);
trhz = ((30 / cycle) + 1);
trbwb = ((100 / cycle) + 1);
tcea = ((45 / cycle) + 1);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
/* MLC_TIME_REG */
target_write_u32(target, 0x200b8034, (twp & 0xf) | ((twh & 0xf) << 4) |
((trp & 0xf) << 8) | ((treh & 0xf) << 12) | ((trhz & 0x7) << 16) |
((trbwb & 0x1f) << 19) | ((tcea & 0x3) << 24));
lpc3180_reset(device);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
float cycle;
int r_setup, r_hold, r_width, r_rdy;
int w_setup, w_hold, w_width, w_rdy;
/* FLASHCLK_CTRL = 0x05 (enable clock for SLC flash controller) */
target_write_u32(target, 0x400040c8, 0x05);
/* SLC_CFG = 0x (Force nCE assert, ECC enabled, WIDTH = bus_width) */
target_write_u32(target, 0x20020014, 0x28 | (bus_width == 16) ? 1 : 0);
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(lpc3180_info);
r_setup = w_setup = 0;
r_hold = w_hold = 10 / cycle;
r_width = 30 / cycle;
w_width = 40 / cycle;
r_rdy = w_rdy = 100 / cycle;
/* SLC_TAC: SLC timing arcs register */
target_write_u32(target, 0x2002002c, (r_setup & 0xf) | ((r_hold & 0xf) << 4) |
((r_width & 0xf) << 8) | ((r_rdy & 0xf) << 12) | ((w_setup & 0xf) << 16) |
((w_hold & 0xf) << 20) | ((w_width & 0xf) << 24) | ((w_rdy & 0xf) << 28));
lpc3180_reset(device);
}
return ERROR_OK;
}
int lpc3180_reset(struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_CMD = 0xff (reset controller and NAND device) */
target_write_u32(target, 0x200b8000, 0xff);
if (!lpc3180_controller_ready(device, 100))
{
ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
target_write_u32(target, 0x20020010, 0x6);
if (!lpc3180_controller_ready(device, 100))
{
ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
return ERROR_OK;
}
int lpc3180_command(struct nand_device_s *device, u8 command)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_CMD = command */
target_write_u32(target, 0x200b8000, command);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_CMD = command */
target_write_u32(target, 0x20020008, command);
}
return ERROR_OK;
}
int lpc3180_address(struct nand_device_s *device, u8 address)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_ADDR = address */
target_write_u32(target, 0x200b8004, address);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_ADDR = address */
target_write_u32(target, 0x20020004, address);
}
return ERROR_OK;
}
int lpc3180_write_data(struct nand_device_s *device, u16 data)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_DATA = data */
target_write_u32(target, 0x200b0000, data);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_DATA = data */
target_write_u32(target, 0x20020000, data);
}
return ERROR_OK;
}
int lpc3180_read_data(struct nand_device_s *device, void *data)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* data = MLC_DATA, use sized access */
if (device->bus_width == 8)
{
u8 *data8 = data;
target_read_u8(target, 0x200b0000, data8);
}
else if (device->bus_width == 16)
{
u16 *data16 = data;
target_read_u16(target, 0x200b0000, data16);
}
else
{
ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
u32 data32;
/* data = SLC_DATA, must use 32-bit access */
target_read_u32(target, 0x20020000, &data32);
if (device->bus_width == 8)
{
u8 *data8 = data;
*data8 = data32 & 0xff;
}
else if (device->bus_width == 16)
{
u16 *data16 = data;
*data16 = data32 & 0xffff;
}
else
{
ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
int lpc3180_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
int retval;
u8 status;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u8 *page_buffer;
u8 *oob_buffer;
int quarter, num_quarters;
if (!data && oob)
{
ERROR("LPC3180 MLC controller can't write OOB data only");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (oob && (oob_size > 6))
{
ERROR("LPC3180 MLC controller can't write more than 6 bytes of OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (data_size > device->page_size)
{
ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* MLC_CMD = sequential input */
target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
page_buffer = malloc(512);
oob_buffer = malloc(6);
if (device->page_size == 512)
{
/* MLC_ADDR = 0x0 (one column cycle) */
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
if (device->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
}
else
{
/* MLC_ADDR = 0x0 (two column cycles) */
target_write_u32(target, 0x200b8004, 0x0);
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
}
/* when using the MLC controller, we have to treat a large page device
* as being made out of four quarters, each the size of a small page device
*/
num_quarters = (device->page_size == 2048) ? 4 : 1;
for (quarter = 0; quarter < num_quarters; quarter++)
{
int thisrun_data_size = (data_size > 512) ? 512 : data_size;
int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
memset(page_buffer, 0xff, 512);
if (data)
{
memcpy(page_buffer, data, thisrun_data_size);
data_size -= thisrun_data_size;
data += thisrun_data_size;
}
memset(oob_buffer, 0xff, (device->page_size == 512) ? 6 : 24);
if (oob)
{
memcpy(page_buffer, oob, thisrun_oob_size);
oob_size -= thisrun_oob_size;
oob += thisrun_oob_size;
}
/* write MLC_ECC_ENC_REG to start encode cycle */
target_write_u32(target, 0x200b8008, 0x0);
target->type->write_memory(target, 0x200a8000, 4, 128, page_buffer + (quarter * 512));
target->type->write_memory(target, 0x200a8000, 1, 6, oob_buffer + (quarter * 6));
/* write MLC_ECC_AUTO_ENC_REG to start auto encode */
target_write_u32(target, 0x200b8010, 0x0);
if (!lpc3180_controller_ready(device, 1000))
{
ERROR("timeout while waiting for completion of auto encode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
}
/* MLC_CMD = auto program command */
target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
if ((retval = nand_read_status(device, &status)) != ERROR_OK)
{
ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL)
{
ERROR("write operation didn't pass, status: 0x%2.2x", status);
return ERROR_NAND_OPERATION_FAILED;
}
free(page_buffer);
free(oob_buffer);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
return nand_write_page_raw(device, page, data, data_size, oob, oob_size);
}
return ERROR_OK;
}
int lpc3180_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u8 *page_buffer;
u8 *oob_buffer;
u32 page_bytes_done = 0;
u32 oob_bytes_done = 0;
u32 mlc_isr;
#if 0
if (oob && (oob_size > 6))
{
ERROR("LPC3180 MLC controller can't read more than 6 bytes of OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
#endif
if (data_size > device->page_size)
{
ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (device->page_size == 2048)
{
page_buffer = malloc(2048);
oob_buffer = malloc(64);
}
else
{
page_buffer = malloc(512);
oob_buffer = malloc(16);
}
if (!data && oob)
{
/* MLC_CMD = Read OOB
* we can use the READOOB command on both small and large page devices,
* as the controller translates the 0x50 command to a 0x0 with appropriate
* positioning of the serial buffer read pointer
*/
target_write_u32(target, 0x200b8000, NAND_CMD_READOOB);
}
else
{
/* MLC_CMD = Read0 */
target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
}
if (device->page_size == 512)
{
/* small page device */
/* MLC_ADDR = 0x0 (one column cycle) */
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
if (device->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
}
else
{
/* large page device */
/* MLC_ADDR = 0x0 (two column cycles) */
target_write_u32(target, 0x200b8004, 0x0);
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
/* MLC_CMD = Read Start */
target_write_u32(target, 0x200b8000, NAND_CMD_READSTART);
}
while (page_bytes_done < device->page_size)
{
/* MLC_ECC_AUTO_DEC_REG = dummy */
target_write_u32(target, 0x200b8014, 0xaa55aa55);
if (!lpc3180_controller_ready(device, 1000))
{
ERROR("timeout while waiting for completion of auto decode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
target_read_u32(target, 0x200b8048, &mlc_isr);
if (mlc_isr & 0x8)
{
if (mlc_isr & 0x40)
{
ERROR("uncorrectable error detected: 0x%2.2x", mlc_isr);
return ERROR_NAND_OPERATION_FAILED;
}
WARNING("%i symbol error detected and corrected", ((mlc_isr & 0x30) >> 4) + 1);
}
if (data)
{
target->type->read_memory(target, 0x200a8000, 4, 128, page_buffer + page_bytes_done);
}
if (oob)
{
target->type->read_memory(target, 0x200a8000, 4, 4, oob_buffer + oob_bytes_done);
}
page_bytes_done += 512;
oob_bytes_done += 16;
}
if (data)
memcpy(data, page_buffer, data_size);
if (oob)
memcpy(oob, oob_buffer, oob_size);
free(page_buffer);
free(oob_buffer);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
return nand_read_page_raw(device, page, data, data_size, oob, oob_size);
}
return ERROR_OK;
}
int lpc3180_controller_ready(struct nand_device_s *device, int timeout)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
u8 status = 0x0;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
do
{
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* Read MLC_ISR, wait for controller to become ready */
target_read_u8(target, 0x200b8048, &status);
if (status & 2)
return 1;
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* we pretend that the SLC controller is always ready */
return 1;
}
usleep(1000);
} while (timeout-- > 0);
return 0;
}
int lpc3180_nand_ready(struct nand_device_s *device, int timeout)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
do
{
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u8 status = 0x0;
/* Read MLC_ISR, wait for NAND flash device to become ready */
target_read_u8(target, 0x200b8048, &status);
if (status & 1)
return 1;
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
u32 status = 0x0;
/* Read SLC_STAT and check READY bit */
target_read_u32(target, 0x20020018, &status);
if (status & 1)
return 1;
}
usleep(1000);
} while (timeout-- > 0);
return 0;
}
int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *device = NULL;
lpc3180_nand_controller_t *lpc3180_info = NULL;
char *selected[] =
{
"no", "mlc", "slc"
};
if ((argc < 1) || (argc > 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
device = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (!device)
{
command_print(cmd_ctx, "nand device '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
lpc3180_info = device->controller_priv;
if (argc == 2)
{
if (strcmp(args[1], "mlc") == 0)
{
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
}
else if (strcmp(args[1], "slc") == 0)
{
lpc3180_info->selected_controller = LPC3180_SLC_CONTROLLER;
}
else
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
command_print(cmd_ctx, "%s controller selected", selected[lpc3180_info->selected_controller]);
return ERROR_OK;
}