openocd/src/target/riscv/riscv-013.c

4867 lines
150 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Support for RISC-V, debug version 0.13, which is currently (2/4/17) the
* latest draft.
*/
#include <assert.h>
#include <stdlib.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include <helper/log.h>
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/time_support.h"
#include "helper/list.h"
#include "riscv.h"
#include "debug_defines.h"
#include "rtos/rtos.h"
#include "program.h"
#include "asm.h"
#include "batch.h"
static int riscv013_on_step_or_resume(struct target *target, bool step);
static int riscv013_step_or_resume_current_hart(struct target *target,
bool step, bool use_hasel);
static void riscv013_clear_abstract_error(struct target *target);
/* Implementations of the functions in struct riscv_info. */
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, int rid);
static int riscv013_set_register(struct target *target, int regid, uint64_t value);
static int riscv013_select_current_hart(struct target *target);
static int riscv013_halt_prep(struct target *target);
static int riscv013_halt_go(struct target *target);
static int riscv013_resume_go(struct target *target);
static int riscv013_step_current_hart(struct target *target);
static int riscv013_on_halt(struct target *target);
static int riscv013_on_step(struct target *target);
static int riscv013_resume_prep(struct target *target);
static bool riscv013_is_halted(struct target *target);
static enum riscv_halt_reason riscv013_halt_reason(struct target *target);
static int riscv013_write_debug_buffer(struct target *target, unsigned index,
riscv_insn_t d);
static riscv_insn_t riscv013_read_debug_buffer(struct target *target, unsigned
index);
static int riscv013_execute_debug_buffer(struct target *target);
static void riscv013_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d);
static void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a);
static int riscv013_dmi_write_u64_bits(struct target *target);
static void riscv013_fill_dmi_nop_u64(struct target *target, char *buf);
static int register_read(struct target *target, uint64_t *value, uint32_t number);
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number);
static int register_write_direct(struct target *target, unsigned number,
uint64_t value);
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment);
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
static int riscv013_test_sba_config_reg(struct target *target, target_addr_t legal_address,
uint32_t num_words, target_addr_t illegal_address, bool run_sbbusyerror_test);
void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t *write_data,
uint32_t write_size, uint32_t sbcs);
void read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *rd_buf, uint32_t read_size, uint32_t sbcs);
/**
* Since almost everything can be accomplish by scanning the dbus register, all
* functions here assume dbus is already selected. The exception are functions
* called directly by OpenOCD, which can't assume anything about what's
* currently in IR. They should set IR to dbus explicitly.
*/
#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
#define CSR_DCSR_CAUSE_SWBP 1
#define CSR_DCSR_CAUSE_TRIGGER 2
#define CSR_DCSR_CAUSE_DEBUGINT 3
#define CSR_DCSR_CAUSE_STEP 4
#define CSR_DCSR_CAUSE_HALT 5
#define CSR_DCSR_CAUSE_GROUP 6
#define RISCV013_INFO(r) riscv013_info_t *r = get_info(target)
/*** JTAG registers. ***/
typedef enum {
DMI_OP_NOP = 0,
DMI_OP_READ = 1,
DMI_OP_WRITE = 2
} dmi_op_t;
typedef enum {
DMI_STATUS_SUCCESS = 0,
DMI_STATUS_FAILED = 2,
DMI_STATUS_BUSY = 3
} dmi_status_t;
typedef enum slot {
SLOT0,
SLOT1,
SLOT_LAST,
} slot_t;
/*** Debug Bus registers. ***/
#define CMDERR_NONE 0
#define CMDERR_BUSY 1
#define CMDERR_NOT_SUPPORTED 2
#define CMDERR_EXCEPTION 3
#define CMDERR_HALT_RESUME 4
#define CMDERR_OTHER 7
/*** Info about the core being debugged. ***/
struct trigger {
uint64_t address;
uint32_t length;
uint64_t mask;
uint64_t value;
bool read, write, execute;
int unique_id;
};
typedef enum {
YNM_MAYBE,
YNM_YES,
YNM_NO
} yes_no_maybe_t;
typedef struct {
struct list_head list;
int abs_chain_position;
/* The number of harts connected to this DM. */
int hart_count;
/* Indicates we already reset this DM, so don't need to do it again. */
bool was_reset;
/* Targets that are connected to this DM. */
struct list_head target_list;
/* The currently selected hartid on this DM. */
int current_hartid;
bool hasel_supported;
/* The program buffer stores executable code. 0 is an illegal instruction,
* so we use 0 to mean the cached value is invalid. */
uint32_t progbuf_cache[16];
} dm013_info_t;
typedef struct {
struct list_head list;
struct target *target;
} target_list_t;
typedef struct {
/* The indexed used to address this hart in its DM. */
unsigned index;
/* Number of address bits in the dbus register. */
unsigned abits;
/* Number of abstract command data registers. */
unsigned datacount;
/* Number of words in the Program Buffer. */
unsigned progbufsize;
/* We cache the read-only bits of sbcs here. */
uint32_t sbcs;
yes_no_maybe_t progbuf_writable;
/* We only need the address so that we know the alignment of the buffer. */
riscv_addr_t progbuf_address;
/* Number of run-test/idle cycles the target requests we do after each dbus
* access. */
unsigned int dtmcs_idle;
/* This value is incremented every time a dbus access comes back as "busy".
* It's used to determine how many run-test/idle cycles to feed the target
* in between accesses. */
unsigned int dmi_busy_delay;
/* Number of run-test/idle cycles to add between consecutive bus master
* reads/writes respectively. */
unsigned int bus_master_write_delay, bus_master_read_delay;
/* This value is increased every time we tried to execute two commands
* consecutively, and the second one failed because the previous hadn't
* completed yet. It's used to add extra run-test/idle cycles after
* starting a command, so we don't have to waste time checking for busy to
* go low. */
unsigned int ac_busy_delay;
bool abstract_read_csr_supported;
bool abstract_write_csr_supported;
bool abstract_read_fpr_supported;
bool abstract_write_fpr_supported;
yes_no_maybe_t has_aampostincrement;
/* When a function returns some error due to a failure indicated by the
* target in cmderr, the caller can look here to see what that error was.
* (Compare with errno.) */
uint8_t cmderr;
/* Some fields from hartinfo. */
uint8_t datasize;
uint8_t dataaccess;
int16_t dataaddr;
/* The width of the hartsel field. */
unsigned hartsellen;
/* DM that provides access to this target. */
dm013_info_t *dm;
} riscv013_info_t;
LIST_HEAD(dm_list);
static riscv013_info_t *get_info(const struct target *target)
{
struct riscv_info *info = target->arch_info;
assert(info);
assert(info->version_specific);
return info->version_specific;
}
/**
* Return the DM structure for this target. If there isn't one, find it in the
* global list of DMs. If it's not in there, then create one and initialize it
* to 0.
*/
dm013_info_t *get_dm(struct target *target)
{
RISCV013_INFO(info);
if (info->dm)
return info->dm;
int abs_chain_position = target->tap->abs_chain_position;
dm013_info_t *entry;
dm013_info_t *dm = NULL;
list_for_each_entry(entry, &dm_list, list) {
if (entry->abs_chain_position == abs_chain_position) {
dm = entry;
break;
}
}
if (!dm) {
LOG_DEBUG("[%d] Allocating new DM", target->coreid);
dm = calloc(1, sizeof(dm013_info_t));
if (!dm)
return NULL;
dm->abs_chain_position = abs_chain_position;
dm->current_hartid = -1;
dm->hart_count = -1;
INIT_LIST_HEAD(&dm->target_list);
list_add(&dm->list, &dm_list);
}
info->dm = dm;
target_list_t *target_entry;
list_for_each_entry(target_entry, &dm->target_list, list) {
if (target_entry->target == target)
return dm;
}
target_entry = calloc(1, sizeof(*target_entry));
if (!target_entry) {
info->dm = NULL;
return NULL;
}
target_entry->target = target;
list_add(&target_entry->list, &dm->target_list);
return dm;
}
static uint32_t set_hartsel(uint32_t initial, uint32_t index)
{
initial &= ~DM_DMCONTROL_HARTSELLO;
initial &= ~DM_DMCONTROL_HARTSELHI;
uint32_t index_lo = index & ((1 << DM_DMCONTROL_HARTSELLO_LENGTH) - 1);
initial |= index_lo << DM_DMCONTROL_HARTSELLO_OFFSET;
uint32_t index_hi = index >> DM_DMCONTROL_HARTSELLO_LENGTH;
assert(index_hi < 1 << DM_DMCONTROL_HARTSELHI_LENGTH);
initial |= index_hi << DM_DMCONTROL_HARTSELHI_OFFSET;
return initial;
}
static void decode_dmi(char *text, unsigned address, unsigned data)
{
static const struct {
unsigned address;
uint64_t mask;
const char *name;
} description[] = {
{ DM_DMCONTROL, DM_DMCONTROL_HALTREQ, "haltreq" },
{ DM_DMCONTROL, DM_DMCONTROL_RESUMEREQ, "resumereq" },
{ DM_DMCONTROL, DM_DMCONTROL_HARTRESET, "hartreset" },
{ DM_DMCONTROL, DM_DMCONTROL_HASEL, "hasel" },
{ DM_DMCONTROL, DM_DMCONTROL_HARTSELHI, "hartselhi" },
{ DM_DMCONTROL, DM_DMCONTROL_HARTSELLO, "hartsello" },
{ DM_DMCONTROL, DM_DMCONTROL_NDMRESET, "ndmreset" },
{ DM_DMCONTROL, DM_DMCONTROL_DMACTIVE, "dmactive" },
{ DM_DMCONTROL, DM_DMCONTROL_ACKHAVERESET, "ackhavereset" },
{ DM_DMSTATUS, DM_DMSTATUS_IMPEBREAK, "impebreak" },
{ DM_DMSTATUS, DM_DMSTATUS_ALLHAVERESET, "allhavereset" },
{ DM_DMSTATUS, DM_DMSTATUS_ANYHAVERESET, "anyhavereset" },
{ DM_DMSTATUS, DM_DMSTATUS_ALLRESUMEACK, "allresumeack" },
{ DM_DMSTATUS, DM_DMSTATUS_ANYRESUMEACK, "anyresumeack" },
{ DM_DMSTATUS, DM_DMSTATUS_ALLNONEXISTENT, "allnonexistent" },
{ DM_DMSTATUS, DM_DMSTATUS_ANYNONEXISTENT, "anynonexistent" },
{ DM_DMSTATUS, DM_DMSTATUS_ALLUNAVAIL, "allunavail" },
{ DM_DMSTATUS, DM_DMSTATUS_ANYUNAVAIL, "anyunavail" },
{ DM_DMSTATUS, DM_DMSTATUS_ALLRUNNING, "allrunning" },
{ DM_DMSTATUS, DM_DMSTATUS_ANYRUNNING, "anyrunning" },
{ DM_DMSTATUS, DM_DMSTATUS_ALLHALTED, "allhalted" },
{ DM_DMSTATUS, DM_DMSTATUS_ANYHALTED, "anyhalted" },
{ DM_DMSTATUS, DM_DMSTATUS_AUTHENTICATED, "authenticated" },
{ DM_DMSTATUS, DM_DMSTATUS_AUTHBUSY, "authbusy" },
{ DM_DMSTATUS, DM_DMSTATUS_HASRESETHALTREQ, "hasresethaltreq" },
{ DM_DMSTATUS, DM_DMSTATUS_CONFSTRPTRVALID, "confstrptrvalid" },
{ DM_DMSTATUS, DM_DMSTATUS_VERSION, "version" },
{ DM_ABSTRACTCS, DM_ABSTRACTCS_PROGBUFSIZE, "progbufsize" },
{ DM_ABSTRACTCS, DM_ABSTRACTCS_BUSY, "busy" },
{ DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR, "cmderr" },
{ DM_ABSTRACTCS, DM_ABSTRACTCS_DATACOUNT, "datacount" },
{ DM_COMMAND, DM_COMMAND_CMDTYPE, "cmdtype" },
{ DM_SBCS, DM_SBCS_SBVERSION, "sbversion" },
{ DM_SBCS, DM_SBCS_SBBUSYERROR, "sbbusyerror" },
{ DM_SBCS, DM_SBCS_SBBUSY, "sbbusy" },
{ DM_SBCS, DM_SBCS_SBREADONADDR, "sbreadonaddr" },
{ DM_SBCS, DM_SBCS_SBACCESS, "sbaccess" },
{ DM_SBCS, DM_SBCS_SBAUTOINCREMENT, "sbautoincrement" },
{ DM_SBCS, DM_SBCS_SBREADONDATA, "sbreadondata" },
{ DM_SBCS, DM_SBCS_SBERROR, "sberror" },
{ DM_SBCS, DM_SBCS_SBASIZE, "sbasize" },
{ DM_SBCS, DM_SBCS_SBACCESS128, "sbaccess128" },
{ DM_SBCS, DM_SBCS_SBACCESS64, "sbaccess64" },
{ DM_SBCS, DM_SBCS_SBACCESS32, "sbaccess32" },
{ DM_SBCS, DM_SBCS_SBACCESS16, "sbaccess16" },
{ DM_SBCS, DM_SBCS_SBACCESS8, "sbaccess8" },
};
text[0] = 0;
for (unsigned i = 0; i < ARRAY_SIZE(description); i++) {
if (description[i].address == address) {
uint64_t mask = description[i].mask;
unsigned value = get_field(data, mask);
if (value) {
if (i > 0)
*(text++) = ' ';
if (mask & (mask >> 1)) {
/* If the field is more than 1 bit wide. */
sprintf(text, "%s=%d", description[i].name, value);
} else {
strcpy(text, description[i].name);
}
text += strlen(text);
}
}
}
}
static void dump_field(int idle, const struct scan_field *field)
{
static const char * const op_string[] = {"-", "r", "w", "?"};
static const char * const status_string[] = {"+", "?", "F", "b"};
if (debug_level < LOG_LVL_DEBUG)
return;
uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits);
unsigned int out_op = get_field(out, DTM_DMI_OP);
unsigned int out_data = get_field(out, DTM_DMI_DATA);
unsigned int out_address = out >> DTM_DMI_ADDRESS_OFFSET;
uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits);
unsigned int in_op = get_field(in, DTM_DMI_OP);
unsigned int in_data = get_field(in, DTM_DMI_DATA);
unsigned int in_address = in >> DTM_DMI_ADDRESS_OFFSET;
log_printf_lf(LOG_LVL_DEBUG,
__FILE__, __LINE__, "scan",
"%db %s %08x @%02x -> %s %08x @%02x; %di",
field->num_bits, op_string[out_op], out_data, out_address,
status_string[in_op], in_data, in_address, idle);
char out_text[500];
char in_text[500];
decode_dmi(out_text, out_address, out_data);
decode_dmi(in_text, in_address, in_data);
if (in_text[0] || out_text[0]) {
log_printf_lf(LOG_LVL_DEBUG, __FILE__, __LINE__, "scan", "%s -> %s",
out_text, in_text);
}
}
/*** Utility functions. ***/
static void select_dmi(struct target *target)
{
if (bscan_tunnel_ir_width != 0) {
select_dmi_via_bscan(target);
return;
}
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
}
static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
{
struct scan_field field;
uint8_t in_value[4];
uint8_t out_value[4] = { 0 };
if (bscan_tunnel_ir_width != 0)
return dtmcontrol_scan_via_bscan(target, out);
buf_set_u32(out_value, 0, 32, out);
jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
field.num_bits = 32;
field.out_value = out_value;
field.in_value = in_value;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
/* Always return to dmi. */
select_dmi(target);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed jtag scan: %d", retval);
return retval;
}
uint32_t in = buf_get_u32(field.in_value, 0, 32);
LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);
return in;
}
static void increase_dmi_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->dmi_busy_delay += info->dmi_busy_delay / 10 + 1;
LOG_DEBUG("dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcs_idle, info->dmi_busy_delay,
info->ac_busy_delay);
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET);
}
/**
* exec: If this is set, assume the scan results in an execution, so more
* run-test/idle cycles may be required.
*/
static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
uint32_t *data_in, dmi_op_t op, uint32_t address_out, uint32_t data_out,
bool exec)
{
riscv013_info_t *info = get_info(target);
RISCV_INFO(r);
unsigned num_bits = info->abits + DTM_DMI_OP_LENGTH + DTM_DMI_DATA_LENGTH;
size_t num_bytes = (num_bits + 7) / 8;
uint8_t in[num_bytes];
uint8_t out[num_bytes];
struct scan_field field = {
.num_bits = num_bits,
.out_value = out,
.in_value = in
};
riscv_bscan_tunneled_scan_context_t bscan_ctxt;
if (r->reset_delays_wait >= 0) {
r->reset_delays_wait--;
if (r->reset_delays_wait < 0) {
info->dmi_busy_delay = 0;
info->ac_busy_delay = 0;
}
}
memset(in, 0, num_bytes);
memset(out, 0, num_bytes);
assert(info->abits != 0);
buf_set_u32(out, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, op);
buf_set_u32(out, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, data_out);
buf_set_u32(out, DTM_DMI_ADDRESS_OFFSET, info->abits, address_out);
/* I wanted to place this code in a different function, but the way JTAG command
queueing works in the jtag handling functions, the scan fields either have to be
heap allocated, global/static, or else they need to stay on the stack until
the jtag_execute_queue() call. Heap or static fields in this case doesn't seem
the best fit. Declaring stack based field values in a subsidiary function call wouldn't
work. */
if (bscan_tunnel_ir_width != 0) {
riscv_add_bscan_tunneled_scan(target, &field, &bscan_ctxt);
} else {
/* Assume dbus is already selected. */
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
}
int idle_count = info->dmi_busy_delay;
if (exec)
idle_count += info->ac_busy_delay;
if (idle_count)
jtag_add_runtest(idle_count, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dmi_scan failed jtag scan");
if (data_in)
*data_in = ~0;
return DMI_STATUS_FAILED;
}
if (bscan_tunnel_ir_width != 0) {
/* need to right-shift "in" by one bit, because of clock skew between BSCAN TAP and DM TAP */
buffer_shr(in, num_bytes, 1);
}
if (data_in)
*data_in = buf_get_u32(in, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH);
if (address_in)
*address_in = buf_get_u32(in, DTM_DMI_ADDRESS_OFFSET, info->abits);
dump_field(idle_count, &field);
return buf_get_u32(in, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
}
/**
* @param target
* @param data_in The data we received from the target.
* @param dmi_busy_encountered
* If non-NULL, will be updated to reflect whether DMI busy was
* encountered while executing this operation or not.
* @param dmi_op The operation to perform (read/write/nop).
* @param address The address argument to that operation.
* @param data_out The data to send to the target.
* @param timeout_sec
* @param exec When true, this scan will execute something, so extra RTI
* cycles may be added.
* @param ensure_success
* Scan a nop after the requested operation, ensuring the
* DMI operation succeeded.
*/
static int dmi_op_timeout(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int dmi_op, uint32_t address,
uint32_t data_out, int timeout_sec, bool exec, bool ensure_success)
{
select_dmi(target);
dmi_status_t status;
uint32_t address_in;
if (dmi_busy_encountered)
*dmi_busy_encountered = false;
const char *op_name;
switch (dmi_op) {
case DMI_OP_NOP:
op_name = "nop";
break;
case DMI_OP_READ:
op_name = "read";
break;
case DMI_OP_WRITE:
op_name = "write";
break;
default:
LOG_ERROR("Invalid DMI operation: %d", dmi_op);
return ERROR_FAIL;
}
keep_alive();
time_t start = time(NULL);
/* This first loop performs the request. Note that if for some reason this
* stays busy, it is actually due to the previous access. */
while (1) {
status = dmi_scan(target, NULL, NULL, dmi_op, address, data_out,
exec);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
if (dmi_busy_encountered)
*dmi_busy_encountered = true;
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
LOG_ERROR("failed %s at 0x%x, status=%d", op_name, address, status);
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
if (status != DMI_STATUS_SUCCESS) {
LOG_ERROR("Failed %s at 0x%x; status=%d", op_name, address, status);
return ERROR_FAIL;
}
if (ensure_success) {
/* This second loop ensures the request succeeded, and gets back data.
* Note that NOP can result in a 'busy' result as well, but that would be
* noticed on the next DMI access we do. */
while (1) {
status = dmi_scan(target, &address_in, data_in, DMI_OP_NOP, address, 0,
false);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
if (dmi_busy_encountered)
*dmi_busy_encountered = true;
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
if (data_in) {
LOG_ERROR("Failed %s (NOP) at 0x%x; value=0x%x, status=%d",
op_name, address, *data_in, status);
} else {
LOG_ERROR("Failed %s (NOP) at 0x%x; status=%d", op_name, address,
status);
}
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
}
return ERROR_OK;
}
static int dmi_op(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int dmi_op, uint32_t address,
uint32_t data_out, bool exec, bool ensure_success)
{
int result = dmi_op_timeout(target, data_in, dmi_busy_encountered, dmi_op,
address, data_out, riscv_command_timeout_sec, exec, ensure_success);
if (result == ERROR_TIMEOUT_REACHED) {
LOG_ERROR("DMI operation didn't complete in %d seconds. The target is "
"either really slow or broken. You could increase the "
"timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec);
return ERROR_FAIL;
}
return result;
}
static int dmi_read(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, false, true);
}
static int dmi_read_exec(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, true, true);
}
static int dmi_write(struct target *target, uint32_t address, uint32_t value)
{
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, false, true);
}
static int dmi_write_exec(struct target *target, uint32_t address,
uint32_t value, bool ensure_success)
{
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, true, ensure_success);
}
int dmstatus_read_timeout(struct target *target, uint32_t *dmstatus,
bool authenticated, unsigned timeout_sec)
{
int result = dmi_op_timeout(target, dmstatus, NULL, DMI_OP_READ,
DM_DMSTATUS, 0, timeout_sec, false, true);
if (result != ERROR_OK)
return result;
int dmstatus_version = get_field(*dmstatus, DM_DMSTATUS_VERSION);
if (dmstatus_version != 2 && dmstatus_version != 3) {
LOG_ERROR("OpenOCD only supports Debug Module version 2 (0.13) and 3 (1.0), not "
"%d (dmstatus=0x%x). This error might be caused by a JTAG "
"signal issue. Try reducing the JTAG clock speed.",
get_field(*dmstatus, DM_DMSTATUS_VERSION), *dmstatus);
} else if (authenticated && !get_field(*dmstatus, DM_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", *dmstatus);
return ERROR_FAIL;
}
return ERROR_OK;
}
int dmstatus_read(struct target *target, uint32_t *dmstatus,
bool authenticated)
{
return dmstatus_read_timeout(target, dmstatus, authenticated,
riscv_command_timeout_sec);
}
static void increase_ac_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
LOG_DEBUG("dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcs_idle, info->dmi_busy_delay,
info->ac_busy_delay);
}
uint32_t abstract_register_size(unsigned width)
{
switch (width) {
case 32:
return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 2);
case 64:
return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 3);
case 128:
return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 4);
default:
LOG_ERROR("Unsupported register width: %d", width);
return 0;
}
}
static int wait_for_idle(struct target *target, uint32_t *abstractcs)
{
RISCV013_INFO(info);
time_t start = time(NULL);
while (1) {
if (dmi_read(target, abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
if (get_field(*abstractcs, DM_ABSTRACTCS_BUSY) == 0)
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
info->cmderr = get_field(*abstractcs, DM_ABSTRACTCS_CMDERR);
if (info->cmderr != CMDERR_NONE) {
const char *errors[8] = {
"none",
"busy",
"not supported",
"exception",
"halt/resume",
"reserved",
"reserved",
"other" };
LOG_ERROR("Abstract command ended in error '%s' (abstractcs=0x%x)",
errors[info->cmderr], *abstractcs);
}
LOG_ERROR("Timed out after %ds waiting for busy to go low (abstractcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
*abstractcs);
return ERROR_FAIL;
}
}
}
static int execute_abstract_command(struct target *target, uint32_t command)
{
RISCV013_INFO(info);
if (debug_level >= LOG_LVL_DEBUG) {
switch (get_field(command, DM_COMMAND_CMDTYPE)) {
case 0:
LOG_DEBUG("command=0x%x; access register, size=%d, postexec=%d, "
"transfer=%d, write=%d, regno=0x%x",
command,
8 << get_field(command, AC_ACCESS_REGISTER_AARSIZE),
get_field(command, AC_ACCESS_REGISTER_POSTEXEC),
get_field(command, AC_ACCESS_REGISTER_TRANSFER),
get_field(command, AC_ACCESS_REGISTER_WRITE),
get_field(command, AC_ACCESS_REGISTER_REGNO));
break;
default:
LOG_DEBUG("command=0x%x", command);
break;
}
}
if (dmi_write_exec(target, DM_COMMAND, command, false) != ERROR_OK)
return ERROR_FAIL;
uint32_t abstractcs = 0;
int result = wait_for_idle(target, &abstractcs);
info->cmderr = get_field(abstractcs, DM_ABSTRACTCS_CMDERR);
if (info->cmderr != 0 || result != ERROR_OK) {
LOG_DEBUG("command 0x%x failed; abstractcs=0x%x", command, abstractcs);
/* Clear the error. */
dmi_write(target, DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR);
return ERROR_FAIL;
}
return ERROR_OK;
}
static riscv_reg_t read_abstract_arg(struct target *target, unsigned index,
unsigned size_bits)
{
riscv_reg_t value = 0;
uint32_t v;
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_ERROR("Unsupported size: %d bits", size_bits);
return ~0;
case 64:
dmi_read(target, &v, DM_DATA0 + offset + 1);
value |= ((uint64_t) v) << 32;
/* falls through */
case 32:
dmi_read(target, &v, DM_DATA0 + offset);
value |= v;
}
return value;
}
static int write_abstract_arg(struct target *target, unsigned index,
riscv_reg_t value, unsigned size_bits)
{
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_ERROR("Unsupported size: %d bits", size_bits);
return ERROR_FAIL;
case 64:
dmi_write(target, DM_DATA0 + offset + 1, value >> 32);
/* falls through */
case 32:
dmi_write(target, DM_DATA0 + offset, value);
}
return ERROR_OK;
}
/**
* @par size in bits
*/
static uint32_t access_register_command(struct target *target, uint32_t number,
unsigned size, uint32_t flags)
{
uint32_t command = set_field(0, DM_COMMAND_CMDTYPE, 0);
switch (size) {
case 32:
command = set_field(command, AC_ACCESS_REGISTER_AARSIZE, 2);
break;
case 64:
command = set_field(command, AC_ACCESS_REGISTER_AARSIZE, 3);
break;
default:
LOG_ERROR("%d-bit register %s not supported.", size,
gdb_regno_name(number));
assert(0);
}
if (number <= GDB_REGNO_XPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1000 + number - GDB_REGNO_ZERO);
} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1020 + number - GDB_REGNO_FPR0);
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
number - GDB_REGNO_CSR0);
} else if (number >= GDB_REGNO_COUNT) {
/* Custom register. */
assert(target->reg_cache->reg_list[number].arch_info);
riscv_reg_info_t *reg_info = target->reg_cache->reg_list[number].arch_info;
assert(reg_info);
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0xc000 + reg_info->custom_number);
} else {
assert(0);
}
command |= flags;
return command;
}
static int register_read_abstract(struct target *target, uint64_t *value,
uint32_t number, unsigned size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_read_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_read_csr_supported)
return ERROR_FAIL;
/* The spec doesn't define abstract register numbers for vector registers. */
if (number >= GDB_REGNO_V0 && number <= GDB_REGNO_V31)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER);
int result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
if (info->cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_read_fpr_supported = false;
LOG_INFO("Disabling abstract command reads from FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_read_csr_supported = false;
LOG_INFO("Disabling abstract command reads from CSRs.");
}
}
return result;
}
if (value)
*value = read_abstract_arg(target, 0, size);
return ERROR_OK;
}
static int register_write_abstract(struct target *target, uint32_t number,
uint64_t value, unsigned size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_write_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_write_csr_supported)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
if (write_abstract_arg(target, 0, value, size) != ERROR_OK)
return ERROR_FAIL;
int result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
if (info->cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_write_fpr_supported = false;
LOG_INFO("Disabling abstract command writes to FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_write_csr_supported = false;
LOG_INFO("Disabling abstract command writes to CSRs.");
}
}
return result;
}
return ERROR_OK;
}
/*
* Sets the AAMSIZE field of a memory access abstract command based on
* the width (bits).
*/
static uint32_t abstract_memory_size(unsigned width)
{
switch (width) {
case 8:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 0);
case 16:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 1);
case 32:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 2);
case 64:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 3);
case 128:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 4);
default:
LOG_ERROR("Unsupported memory width: %d", width);
return 0;
}
}
/*
* Creates a memory access abstract command.
*/
static uint32_t access_memory_command(struct target *target, bool virtual,
unsigned width, bool postincrement, bool write)
{
uint32_t command = set_field(0, AC_ACCESS_MEMORY_CMDTYPE, 2);
command = set_field(command, AC_ACCESS_MEMORY_AAMVIRTUAL, virtual);
command |= abstract_memory_size(width);
command = set_field(command, AC_ACCESS_MEMORY_AAMPOSTINCREMENT,
postincrement);
command = set_field(command, AC_ACCESS_MEMORY_WRITE, write);
return command;
}
static int examine_progbuf(struct target *target)
{
riscv013_info_t *info = get_info(target);
if (info->progbuf_writable != YNM_MAYBE)
return ERROR_OK;
/* Figure out if progbuf is writable. */
if (info->progbufsize < 1) {
info->progbuf_writable = YNM_NO;
LOG_INFO("No program buffer present.");
return ERROR_OK;
}
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, auipc(S0));
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
if (register_read_direct(target, &info->progbuf_address, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
riscv_program_init(&program, target);
riscv_program_insert(&program, sw(S0, S0, 0));
int result = riscv_program_exec(&program, target);
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
if (result != ERROR_OK) {
/* This program might have failed if the program buffer is not
* writable. */
info->progbuf_writable = YNM_NO;
return ERROR_OK;
}
uint32_t written;
if (dmi_read(target, &written, DM_PROGBUF0) != ERROR_OK)
return ERROR_FAIL;
if (written == (uint32_t) info->progbuf_address) {
LOG_INFO("progbuf is writable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_YES;
} else {
LOG_INFO("progbuf is not writeable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_NO;
}
return ERROR_OK;
}
static int is_fpu_reg(uint32_t gdb_regno)
{
return (gdb_regno >= GDB_REGNO_FPR0 && gdb_regno <= GDB_REGNO_FPR31) ||
(gdb_regno == GDB_REGNO_CSR0 + CSR_FFLAGS) ||
(gdb_regno == GDB_REGNO_CSR0 + CSR_FRM) ||
(gdb_regno == GDB_REGNO_CSR0 + CSR_FCSR);
}
static int is_vector_reg(uint32_t gdb_regno)
{
return (gdb_regno >= GDB_REGNO_V0 && gdb_regno <= GDB_REGNO_V31) ||
gdb_regno == GDB_REGNO_VSTART ||
gdb_regno == GDB_REGNO_VXSAT ||
gdb_regno == GDB_REGNO_VXRM ||
gdb_regno == GDB_REGNO_VL ||
gdb_regno == GDB_REGNO_VTYPE ||
gdb_regno == GDB_REGNO_VLENB;
}
static int prep_for_register_access(struct target *target, uint64_t *mstatus,
int regno)
{
if (is_fpu_reg(regno) || is_vector_reg(regno)) {
if (register_read(target, mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
return ERROR_FAIL;
if (is_fpu_reg(regno) && (*mstatus & MSTATUS_FS) == 0) {
if (register_write_direct(target, GDB_REGNO_MSTATUS,
set_field(*mstatus, MSTATUS_FS, 1)) != ERROR_OK)
return ERROR_FAIL;
} else if (is_vector_reg(regno) && (*mstatus & MSTATUS_VS) == 0) {
if (register_write_direct(target, GDB_REGNO_MSTATUS,
set_field(*mstatus, MSTATUS_VS, 1)) != ERROR_OK)
return ERROR_FAIL;
}
} else {
*mstatus = 0;
}
return ERROR_OK;
}
static int cleanup_after_register_access(struct target *target,
uint64_t mstatus, int regno)
{
if ((is_fpu_reg(regno) && (mstatus & MSTATUS_FS) == 0) ||
(is_vector_reg(regno) && (mstatus & MSTATUS_VS) == 0))
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
typedef enum {
SPACE_DM_DATA,
SPACE_DMI_PROGBUF,
SPACE_DMI_RAM
} memory_space_t;
typedef struct {
/* How can the debugger access this memory? */
memory_space_t memory_space;
/* Memory address to access the scratch memory from the hart. */
riscv_addr_t hart_address;
/* Memory address to access the scratch memory from the debugger. */
riscv_addr_t debug_address;
struct working_area *area;
} scratch_mem_t;
/**
* Find some scratch memory to be used with the given program.
*/
static int scratch_reserve(struct target *target,
scratch_mem_t *scratch,
struct riscv_program *program,
unsigned size_bytes)
{
riscv_addr_t alignment = 1;
while (alignment < size_bytes)
alignment *= 2;
scratch->area = NULL;
riscv013_info_t *info = get_info(target);
/* Option 1: See if data# registers can be used as the scratch memory */
if (info->dataaccess == 1) {
/* Sign extend dataaddr. */
scratch->hart_address = info->dataaddr;
if (info->dataaddr & (1<<11))
scratch->hart_address |= 0xfffffffffffff000ULL;
/* Align. */
scratch->hart_address = (scratch->hart_address + alignment - 1) & ~(alignment - 1);
if ((size_bytes + scratch->hart_address - info->dataaddr + 3) / 4 >=
info->datasize) {
scratch->memory_space = SPACE_DM_DATA;
scratch->debug_address = (scratch->hart_address - info->dataaddr) / 4;
return ERROR_OK;
}
}
/* Option 2: See if progbuf can be used as the scratch memory */
if (examine_progbuf(target) != ERROR_OK)
return ERROR_FAIL;
/* Allow for ebreak at the end of the program. */
unsigned program_size = (program->instruction_count + 1) * 4;
scratch->hart_address = (info->progbuf_address + program_size + alignment - 1) &
~(alignment - 1);
if ((info->progbuf_writable == YNM_YES) &&
((size_bytes + scratch->hart_address - info->progbuf_address + 3) / 4 >=
info->progbufsize)) {
scratch->memory_space = SPACE_DMI_PROGBUF;
scratch->debug_address = (scratch->hart_address - info->progbuf_address) / 4;
return ERROR_OK;
}
/* Option 3: User-configured memory area as scratch RAM */
if (target_alloc_working_area(target, size_bytes + alignment - 1,
&scratch->area) == ERROR_OK) {
scratch->hart_address = (scratch->area->address + alignment - 1) &
~(alignment - 1);
scratch->memory_space = SPACE_DMI_RAM;
scratch->debug_address = scratch->hart_address;
return ERROR_OK;
}
LOG_ERROR("Couldn't find %d bytes of scratch RAM to use. Please configure "
"a work area with 'configure -work-area-phys'.", size_bytes);
return ERROR_FAIL;
}
static int scratch_release(struct target *target,
scratch_mem_t *scratch)
{
return target_free_working_area(target, scratch->area);
}
static int scratch_read64(struct target *target, scratch_mem_t *scratch,
uint64_t *value)
{
uint32_t v;
switch (scratch->memory_space) {
case SPACE_DM_DATA:
if (dmi_read(target, &v, DM_DATA0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dmi_read(target, &v, DM_DATA1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_PROGBUF:
if (dmi_read(target, &v, DM_PROGBUF0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dmi_read(target, &v, DM_PROGBUF1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8] = {0};
if (read_memory(target, scratch->debug_address, 4, 2, buffer, 4) != ERROR_OK)
return ERROR_FAIL;
*value = buffer[0] |
(((uint64_t) buffer[1]) << 8) |
(((uint64_t) buffer[2]) << 16) |
(((uint64_t) buffer[3]) << 24) |
(((uint64_t) buffer[4]) << 32) |
(((uint64_t) buffer[5]) << 40) |
(((uint64_t) buffer[6]) << 48) |
(((uint64_t) buffer[7]) << 56);
}
break;
}
return ERROR_OK;
}
static int scratch_write64(struct target *target, scratch_mem_t *scratch,
uint64_t value)
{
switch (scratch->memory_space) {
case SPACE_DM_DATA:
dmi_write(target, DM_DATA0 + scratch->debug_address, value);
dmi_write(target, DM_DATA1 + scratch->debug_address, value >> 32);
break;
case SPACE_DMI_PROGBUF:
dmi_write(target, DM_PROGBUF0 + scratch->debug_address, value);
dmi_write(target, DM_PROGBUF1 + scratch->debug_address, value >> 32);
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8] = {
value,
value >> 8,
value >> 16,
value >> 24,
value >> 32,
value >> 40,
value >> 48,
value >> 56
};
if (write_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
return ERROR_FAIL;
}
break;
}
return ERROR_OK;
}
/** Return register size in bits. */
static unsigned register_size(struct target *target, unsigned number)
{
/* If reg_cache hasn't been initialized yet, make a guess. We need this for
* when this function is called during examine(). */
if (target->reg_cache)
return target->reg_cache->reg_list[number].size;
else
return riscv_xlen(target);
}
static bool has_sufficient_progbuf(struct target *target, unsigned size)
{
RISCV013_INFO(info);
RISCV_INFO(r);
return info->progbufsize + r->impebreak >= size;
}
/**
* Immediately write the new value to the requested register. This mechanism
* bypasses any caches.
*/
static int register_write_direct(struct target *target, unsigned number,
uint64_t value)
{
LOG_DEBUG("{%d} %s <- 0x%" PRIx64, riscv_current_hartid(target),
gdb_regno_name(number), value);
int result = register_write_abstract(target, number, value,
register_size(target, number));
if (result == ERROR_OK || !has_sufficient_progbuf(target, 2) ||
!riscv_is_halted(target))
return result;
struct riscv_program program;
riscv_program_init(&program, target);
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
uint64_t mstatus;
if (prep_for_register_access(target, &mstatus, number) != ERROR_OK)
return ERROR_FAIL;
scratch_mem_t scratch;
bool use_scratch = false;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
riscv_supports_extension(target, 'D') &&
riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a register, so
* we need to use some scratch RAM. */
use_scratch = true;
riscv_program_insert(&program, fld(number - GDB_REGNO_FPR0, S0, 0));
if (scratch_reserve(target, &scratch, &program, 8) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, scratch.hart_address)
!= ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
if (scratch_write64(target, &scratch, value) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
} else if (number == GDB_REGNO_VTYPE) {
riscv_program_insert(&program, csrr(S0, CSR_VL));
riscv_program_insert(&program, vsetvli(ZERO, S0, value));
} else {
if (register_write_direct(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
if (riscv_supports_extension(target, 'D'))
riscv_program_insert(&program, fmv_d_x(number - GDB_REGNO_FPR0, S0));
else
riscv_program_insert(&program, fmv_w_x(number - GDB_REGNO_FPR0, S0));
} else if (number == GDB_REGNO_VL) {
/* "The XLEN-bit-wide read-only vl CSR can only be updated by the
* vsetvli and vsetvl instructions, and the fault-only-rst vector
* load instruction variants." */
riscv_reg_t vtype;
if (register_read(target, &vtype, GDB_REGNO_VTYPE) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_insert(&program, vsetvli(ZERO, S0, vtype)) != ERROR_OK)
return ERROR_FAIL;
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
riscv_program_csrw(&program, S0, number);
} else {
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
return ERROR_FAIL;
}
}
int exec_out = riscv_program_exec(&program, target);
/* Don't message on error. Probably the register doesn't exist. */
if (exec_out == ERROR_OK && target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, value);
}
if (use_scratch)
scratch_release(target, &scratch);
if (cleanup_after_register_access(target, mstatus, number) != ERROR_OK)
return ERROR_FAIL;
/* Restore S0. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
return exec_out;
}
/** Read register value from the target. Also update the cached value. */
static int register_read(struct target *target, uint64_t *value, uint32_t number)
{
if (number == GDB_REGNO_ZERO) {
*value = 0;
return ERROR_OK;
}
int result = register_read_direct(target, value, number);
if (result != ERROR_OK)
return ERROR_FAIL;
if (target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, *value);
}
return ERROR_OK;
}
/** Actually read registers from the target right now. */
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number)
{
int result = register_read_abstract(target, value, number,
register_size(target, number));
if (result != ERROR_OK &&
has_sufficient_progbuf(target, 2) &&
number > GDB_REGNO_XPR31) {
struct riscv_program program;
riscv_program_init(&program, target);
scratch_mem_t scratch;
bool use_scratch = false;
riscv_reg_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
/* Write program to move data into s0. */
uint64_t mstatus;
if (prep_for_register_access(target, &mstatus, number) != ERROR_OK)
return ERROR_FAIL;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
if (riscv_supports_extension(target, 'D')
&& riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a
* register, so we need to use some scratch RAM. */
riscv_program_insert(&program, fsd(number - GDB_REGNO_FPR0, S0,
0));
if (scratch_reserve(target, &scratch, &program, 8) != ERROR_OK)
return ERROR_FAIL;
use_scratch = true;
if (register_write_direct(target, GDB_REGNO_S0,
scratch.hart_address) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
} else if (riscv_supports_extension(target, 'D')) {
riscv_program_insert(&program, fmv_x_d(S0, number - GDB_REGNO_FPR0));
} else {
riscv_program_insert(&program, fmv_x_w(S0, number - GDB_REGNO_FPR0));
}
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
riscv_program_csrr(&program, S0, number);
} else {
LOG_ERROR("Unsupported register: %s", gdb_regno_name(number));
return ERROR_FAIL;
}
/* Execute program. */
result = riscv_program_exec(&program, target);
/* Don't message on error. Probably the register doesn't exist. */
if (use_scratch) {
result = scratch_read64(target, &scratch, value);
scratch_release(target, &scratch);
if (result != ERROR_OK)
return result;
} else {
/* Read S0 */
if (register_read_direct(target, value, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
}
if (cleanup_after_register_access(target, mstatus, number) != ERROR_OK)
return ERROR_FAIL;
/* Restore S0. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
}
if (result == ERROR_OK) {
LOG_DEBUG("{%d} %s = 0x%" PRIx64, riscv_current_hartid(target),
gdb_regno_name(number), *value);
}
return result;
}
static int wait_for_authbusy(struct target *target, uint32_t *dmstatus)
{
time_t start = time(NULL);
while (1) {
uint32_t value;
if (dmstatus_read(target, &value, false) != ERROR_OK)
return ERROR_FAIL;
if (dmstatus)
*dmstatus = value;
if (!get_field(value, DM_DMSTATUS_AUTHBUSY))
break;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for authbusy to go low (dmstatus=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
value);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/*** OpenOCD target functions. ***/
static void deinit_target(struct target *target)
{
LOG_DEBUG("riscv_deinit_target()");
struct riscv_info *info = target->arch_info;
if (!info)
return;
free(info->version_specific);
/* TODO: free register arch_info */
info->version_specific = NULL;
}
static int set_haltgroup(struct target *target, bool *supported)
{
uint32_t write = set_field(DM_DMCS2_HGWRITE, DM_DMCS2_GROUP, target->smp);
if (dmi_write(target, DM_DMCS2, write) != ERROR_OK)
return ERROR_FAIL;
uint32_t read;
if (dmi_read(target, &read, DM_DMCS2) != ERROR_OK)
return ERROR_FAIL;
*supported = get_field(read, DM_DMCS2_GROUP) == (unsigned)target->smp;
return ERROR_OK;
}
static int discover_vlenb(struct target *target)
{
RISCV_INFO(r);
riscv_reg_t vlenb;
if (register_read(target, &vlenb, GDB_REGNO_VLENB) != ERROR_OK) {
LOG_WARNING("Couldn't read vlenb for %s; vector register access won't work.",
target_name(target));
r->vlenb = 0;
return ERROR_OK;
}
r->vlenb = vlenb;
LOG_INFO("Vector support with vlenb=%d", r->vlenb);
return ERROR_OK;
}
static int examine(struct target *target)
{
/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
uint32_t dtmcontrol = dtmcontrol_scan(target, 0);
LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol);
LOG_DEBUG(" dmireset=%d", get_field(dtmcontrol, DTM_DTMCS_DMIRESET));
LOG_DEBUG(" idle=%d", get_field(dtmcontrol, DTM_DTMCS_IDLE));
LOG_DEBUG(" dmistat=%d", get_field(dtmcontrol, DTM_DTMCS_DMISTAT));
LOG_DEBUG(" abits=%d", get_field(dtmcontrol, DTM_DTMCS_ABITS));
LOG_DEBUG(" version=%d", get_field(dtmcontrol, DTM_DTMCS_VERSION));
if (dtmcontrol == 0) {
LOG_ERROR("dtmcontrol is 0. Check JTAG connectivity/board power.");
return ERROR_FAIL;
}
if (get_field(dtmcontrol, DTM_DTMCS_VERSION) != 1) {
LOG_ERROR("Unsupported DTM version %d. (dtmcontrol=0x%x)",
get_field(dtmcontrol, DTM_DTMCS_VERSION), dtmcontrol);
return ERROR_FAIL;
}
riscv013_info_t *info = get_info(target);
/* TODO: This won't be true if there are multiple DMs. */
info->index = target->coreid;
info->abits = get_field(dtmcontrol, DTM_DTMCS_ABITS);
info->dtmcs_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);
/* Reset the Debug Module. */
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (!dm->was_reset) {
dmi_write(target, DM_DMCONTROL, 0);
dmi_write(target, DM_DMCONTROL, DM_DMCONTROL_DMACTIVE);
dm->was_reset = true;
}
dmi_write(target, DM_DMCONTROL, DM_DMCONTROL_HARTSELLO |
DM_DMCONTROL_HARTSELHI | DM_DMCONTROL_DMACTIVE |
DM_DMCONTROL_HASEL);
uint32_t dmcontrol;
if (dmi_read(target, &dmcontrol, DM_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(dmcontrol, DM_DMCONTROL_DMACTIVE)) {
LOG_ERROR("Debug Module did not become active. dmcontrol=0x%x",
dmcontrol);
return ERROR_FAIL;
}
dm->hasel_supported = get_field(dmcontrol, DM_DMCONTROL_HASEL);
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, false) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("dmstatus: 0x%08x", dmstatus);
int dmstatus_version = get_field(dmstatus, DM_DMSTATUS_VERSION);
if (dmstatus_version != 2 && dmstatus_version != 3) {
/* Error was already printed out in dmstatus_read(). */
return ERROR_FAIL;
}
uint32_t hartsel =
(get_field(dmcontrol, DM_DMCONTROL_HARTSELHI) <<
DM_DMCONTROL_HARTSELLO_LENGTH) |
get_field(dmcontrol, DM_DMCONTROL_HARTSELLO);
info->hartsellen = 0;
while (hartsel & 1) {
info->hartsellen++;
hartsel >>= 1;
}
LOG_DEBUG("hartsellen=%d", info->hartsellen);
uint32_t hartinfo;
if (dmi_read(target, &hartinfo, DM_HARTINFO) != ERROR_OK)
return ERROR_FAIL;
info->datasize = get_field(hartinfo, DM_HARTINFO_DATASIZE);
info->dataaccess = get_field(hartinfo, DM_HARTINFO_DATAACCESS);
info->dataaddr = get_field(hartinfo, DM_HARTINFO_DATAADDR);
if (!get_field(dmstatus, DM_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", dmstatus);
/* If we return ERROR_FAIL here, then in a multicore setup the next
* core won't be examined, which means we won't set up the
* authentication commands for them, which means the config script
* needs to be a lot more complex. */
return ERROR_OK;
}
if (dmi_read(target, &info->sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* Check that abstract data registers are accessible. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->datacount = get_field(abstractcs, DM_ABSTRACTCS_DATACOUNT);
info->progbufsize = get_field(abstractcs, DM_ABSTRACTCS_PROGBUFSIZE);
LOG_INFO("datacount=%d progbufsize=%d", info->datacount, info->progbufsize);
RISCV_INFO(r);
r->impebreak = get_field(dmstatus, DM_DMSTATUS_IMPEBREAK);
if (!has_sufficient_progbuf(target, 2)) {
LOG_WARNING("We won't be able to execute fence instructions on this "
"target. Memory may not always appear consistent. "
"(progbufsize=%d, impebreak=%d)", info->progbufsize,
r->impebreak);
}
if (info->progbufsize < 4 && riscv_enable_virtual) {
LOG_ERROR("set_enable_virtual is not available on this target. It "
"requires a program buffer size of at least 4. (progbufsize=%d) "
"Use `riscv set_enable_virtual off` to continue."
, info->progbufsize);
}
/* Before doing anything else we must first enumerate the harts. */
if (dm->hart_count < 0) {
for (int i = 0; i < MIN(RISCV_MAX_HARTS, 1 << info->hartsellen); ++i) {
r->current_hartid = i;
if (riscv013_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
uint32_t s;
if (dmstatus_read(target, &s, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(s, DM_DMSTATUS_ANYNONEXISTENT))
break;
dm->hart_count = i + 1;
if (get_field(s, DM_DMSTATUS_ANYHAVERESET))
dmi_write(target, DM_DMCONTROL,
set_hartsel(DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_ACKHAVERESET, i));
}
LOG_DEBUG("Detected %d harts.", dm->hart_count);
}
r->current_hartid = target->coreid;
if (dm->hart_count == 0) {
LOG_ERROR("No harts found!");
return ERROR_FAIL;
}
/* Don't call any riscv_* functions until after we've counted the number of
* cores and initialized registers. */
if (riscv013_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
bool halted = riscv_is_halted(target);
if (!halted) {
if (riscv013_halt_go(target) != ERROR_OK) {
LOG_ERROR("Fatal: Hart %d failed to halt during examine()", r->current_hartid);
return ERROR_FAIL;
}
}
/* Without knowing anything else we can at least mess with the
* program buffer. */
r->debug_buffer_size = info->progbufsize;
int result = register_read_abstract(target, NULL, GDB_REGNO_S0, 64);
if (result == ERROR_OK)
r->xlen = 64;
else
r->xlen = 32;
if (register_read(target, &r->misa, GDB_REGNO_MISA)) {
LOG_ERROR("Fatal: Failed to read MISA from hart %d.", r->current_hartid);
return ERROR_FAIL;
}
if (riscv_supports_extension(target, 'V')) {
if (discover_vlenb(target) != ERROR_OK)
return ERROR_FAIL;
}
/* Now init registers based on what we discovered. */
if (riscv_init_registers(target) != ERROR_OK)
return ERROR_FAIL;
/* Display this as early as possible to help people who are using
* really slow simulators. */
LOG_DEBUG(" hart %d: XLEN=%d, misa=0x%" PRIx64, r->current_hartid, r->xlen,
r->misa);
if (!halted)
riscv013_step_or_resume_current_hart(target, false, false);
target_set_examined(target);
if (target->smp) {
bool haltgroup_supported;
if (set_haltgroup(target, &haltgroup_supported) != ERROR_OK)
return ERROR_FAIL;
if (haltgroup_supported)
LOG_INFO("Core %d made part of halt group %d.", target->coreid,
target->smp);
else
LOG_INFO("Core %d could not be made part of halt group %d.",
target->coreid, target->smp);
}
/* Some regression suites rely on seeing 'Examined RISC-V core' to know
* when they can connect with gdb/telnet.
* We will need to update those suites if we want to change that text. */
LOG_INFO("Examined RISC-V core; found %d harts",
riscv_count_harts(target));
LOG_INFO(" hart %d: XLEN=%d, misa=0x%" PRIx64, r->current_hartid, r->xlen,
r->misa);
return ERROR_OK;
}
static int riscv013_authdata_read(struct target *target, uint32_t *value, unsigned int index)
{
if (index > 0) {
LOG_ERROR("Spec 0.13 only has a single authdata register.");
return ERROR_FAIL;
}
if (wait_for_authbusy(target, NULL) != ERROR_OK)
return ERROR_FAIL;
return dmi_read(target, value, DM_AUTHDATA);
}
static int riscv013_authdata_write(struct target *target, uint32_t value, unsigned int index)
{
if (index > 0) {
LOG_ERROR("Spec 0.13 only has a single authdata register.");
return ERROR_FAIL;
}
uint32_t before, after;
if (wait_for_authbusy(target, &before) != ERROR_OK)
return ERROR_FAIL;
dmi_write(target, DM_AUTHDATA, value);
if (wait_for_authbusy(target, &after) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(before, DM_DMSTATUS_AUTHENTICATED) &&
get_field(after, DM_DMSTATUS_AUTHENTICATED)) {
LOG_INFO("authdata_write resulted in successful authentication");
int result = ERROR_OK;
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
target_list_t *entry;
list_for_each_entry(entry, &dm->target_list, list) {
if (examine(entry->target) != ERROR_OK)
result = ERROR_FAIL;
}
return result;
}
return ERROR_OK;
}
static int riscv013_hart_count(struct target *target)
{
dm013_info_t *dm = get_dm(target);
assert(dm);
return dm->hart_count;
}
/* Try to find out the widest memory access size depending on the selected memory access methods. */
static unsigned riscv013_data_bits(struct target *target)
{
RISCV013_INFO(info);
RISCV_INFO(r);
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
int method = r->mem_access_methods[i];
if (method == RISCV_MEM_ACCESS_PROGBUF) {
if (has_sufficient_progbuf(target, 3))
return riscv_xlen(target);
} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
if (get_field(info->sbcs, DM_SBCS_SBACCESS128))
return 128;
if (get_field(info->sbcs, DM_SBCS_SBACCESS64))
return 64;
if (get_field(info->sbcs, DM_SBCS_SBACCESS32))
return 32;
if (get_field(info->sbcs, DM_SBCS_SBACCESS16))
return 16;
if (get_field(info->sbcs, DM_SBCS_SBACCESS8))
return 8;
} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
/* TODO: Once there is a spec for discovering abstract commands, we can
* take those into account as well. For now we assume abstract commands
* support XLEN-wide accesses. */
return riscv_xlen(target);
} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
/* No further mem access method to try. */
break;
}
LOG_ERROR("Unable to determine supported data bits on this target. Assuming 32 bits.");
return 32;
}
COMMAND_HELPER(riscv013_print_info, struct target *target)
{
RISCV013_INFO(info);
/* Abstract description. */
riscv_print_info_line(CMD, "target", "memory.read_while_running8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
riscv_print_info_line(CMD, "target", "memory.write_while_running8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
riscv_print_info_line(CMD, "target", "memory.read_while_running16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
riscv_print_info_line(CMD, "target", "memory.write_while_running16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
riscv_print_info_line(CMD, "target", "memory.read_while_running32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
riscv_print_info_line(CMD, "target", "memory.write_while_running32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
riscv_print_info_line(CMD, "target", "memory.read_while_running64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
riscv_print_info_line(CMD, "target", "memory.write_while_running64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
riscv_print_info_line(CMD, "target", "memory.read_while_running128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
riscv_print_info_line(CMD, "target", "memory.write_while_running128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
/* Lower level description. */
riscv_print_info_line(CMD, "dm", "abits", info->abits);
riscv_print_info_line(CMD, "dm", "progbufsize", info->progbufsize);
riscv_print_info_line(CMD, "dm", "sbversion", get_field(info->sbcs, DM_SBCS_SBVERSION));
riscv_print_info_line(CMD, "dm", "sbasize", get_field(info->sbcs, DM_SBCS_SBASIZE));
riscv_print_info_line(CMD, "dm", "sbaccess128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
riscv_print_info_line(CMD, "dm", "sbaccess64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
riscv_print_info_line(CMD, "dm", "sbaccess32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
riscv_print_info_line(CMD, "dm", "sbaccess16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
riscv_print_info_line(CMD, "dm", "sbaccess8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, false) == ERROR_OK)
riscv_print_info_line(CMD, "dm", "authenticated", get_field(dmstatus, DM_DMSTATUS_AUTHENTICATED));
return 0;
}
static int prep_for_vector_access(struct target *target, uint64_t *vtype,
uint64_t *vl, unsigned *debug_vl)
{
RISCV_INFO(r);
/* TODO: this continuous save/restore is terrible for performance. */
/* Write vtype and vl. */
unsigned encoded_vsew;
switch (riscv_xlen(target)) {
case 32:
encoded_vsew = 2;
break;
case 64:
encoded_vsew = 3;
break;
default:
LOG_ERROR("Unsupported xlen: %d", riscv_xlen(target));
return ERROR_FAIL;
}
/* Save vtype and vl. */
if (register_read(target, vtype, GDB_REGNO_VTYPE) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, vl, GDB_REGNO_VL) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_VTYPE, encoded_vsew << 3) != ERROR_OK)
return ERROR_FAIL;
*debug_vl = DIV_ROUND_UP(r->vlenb * 8, riscv_xlen(target));
if (register_write_direct(target, GDB_REGNO_VL, *debug_vl) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int cleanup_after_vector_access(struct target *target, uint64_t vtype,
uint64_t vl)
{
/* Restore vtype and vl. */
if (register_write_direct(target, GDB_REGNO_VTYPE, vtype) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_VL, vl) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int riscv013_get_register_buf(struct target *target,
uint8_t *value, int regno)
{
assert(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31);
if (riscv_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
uint64_t mstatus;
if (prep_for_register_access(target, &mstatus, regno) != ERROR_OK)
return ERROR_FAIL;
uint64_t vtype, vl;
unsigned debug_vl;
if (prep_for_vector_access(target, &vtype, &vl, &debug_vl) != ERROR_OK)
return ERROR_FAIL;
unsigned vnum = regno - GDB_REGNO_V0;
unsigned xlen = riscv_xlen(target);
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, vmv_x_s(S0, vnum));
riscv_program_insert(&program, vslide1down_vx(vnum, vnum, S0, true));
int result = ERROR_OK;
for (unsigned i = 0; i < debug_vl; i++) {
/* Executing the program might result in an exception if there is some
* issue with the vector implementation/instructions we're using. If that
* happens, attempt to restore as usual. We may have clobbered the
* vector register we tried to read already.
* For other failures, we just return error because things are probably
* so messed up that attempting to restore isn't going to help. */
result = riscv_program_exec(&program, target);
if (result == ERROR_OK) {
uint64_t v;
if (register_read_direct(target, &v, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
buf_set_u64(value, xlen * i, xlen, v);
} else {
break;
}
}
if (cleanup_after_vector_access(target, vtype, vl) != ERROR_OK)
return ERROR_FAIL;
if (cleanup_after_register_access(target, mstatus, regno) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int riscv013_set_register_buf(struct target *target,
int regno, const uint8_t *value)
{
assert(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31);
if (riscv_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
uint64_t mstatus;
if (prep_for_register_access(target, &mstatus, regno) != ERROR_OK)
return ERROR_FAIL;
uint64_t vtype, vl;
unsigned debug_vl;
if (prep_for_vector_access(target, &vtype, &vl, &debug_vl) != ERROR_OK)
return ERROR_FAIL;
unsigned vnum = regno - GDB_REGNO_V0;
unsigned xlen = riscv_xlen(target);
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, vslide1down_vx(vnum, vnum, S0, true));
int result = ERROR_OK;
for (unsigned i = 0; i < debug_vl; i++) {
if (register_write_direct(target, GDB_REGNO_S0,
buf_get_u64(value, xlen * i, xlen)) != ERROR_OK)
return ERROR_FAIL;
result = riscv_program_exec(&program, target);
if (result != ERROR_OK)
break;
}
if (cleanup_after_vector_access(target, vtype, vl) != ERROR_OK)
return ERROR_FAIL;
if (cleanup_after_register_access(target, mstatus, regno) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static uint32_t sb_sbaccess(unsigned int size_bytes)
{
switch (size_bytes) {
case 1:
return set_field(0, DM_SBCS_SBACCESS, 0);
case 2:
return set_field(0, DM_SBCS_SBACCESS, 1);
case 4:
return set_field(0, DM_SBCS_SBACCESS, 2);
case 8:
return set_field(0, DM_SBCS_SBACCESS, 3);
case 16:
return set_field(0, DM_SBCS_SBACCESS, 4);
}
assert(0);
return 0;
}
static int sb_write_address(struct target *target, target_addr_t address,
bool ensure_success)
{
RISCV013_INFO(info);
unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
/* There currently is no support for >64-bit addresses in OpenOCD. */
if (sbasize > 96)
dmi_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS3, 0, false, false);
if (sbasize > 64)
dmi_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS2, 0, false, false);
if (sbasize > 32)
dmi_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS1, address >> 32, false, false);
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS0, address,
false, ensure_success);
}
static int batch_run(const struct target *target, struct riscv_batch *batch)
{
RISCV013_INFO(info);
RISCV_INFO(r);
if (r->reset_delays_wait >= 0) {
r->reset_delays_wait -= batch->used_scans;
if (r->reset_delays_wait <= 0) {
batch->idle_count = 0;
info->dmi_busy_delay = 0;
info->ac_busy_delay = 0;
}
}
return riscv_batch_run(batch);
}
static int sba_supports_access(struct target *target, unsigned int size_bytes)
{
RISCV013_INFO(info);
switch (size_bytes) {
case 1:
return get_field(info->sbcs, DM_SBCS_SBACCESS8);
case 2:
return get_field(info->sbcs, DM_SBCS_SBACCESS16);
case 4:
return get_field(info->sbcs, DM_SBCS_SBACCESS32);
case 8:
return get_field(info->sbcs, DM_SBCS_SBACCESS64);
case 16:
return get_field(info->sbcs, DM_SBCS_SBACCESS128);
default:
return 0;
}
}
static int sample_memory_bus_v1(struct target *target,
struct riscv_sample_buf *buf,
const riscv_sample_config_t *config,
int64_t until_ms)
{
RISCV013_INFO(info);
unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
if (sbasize > 64) {
LOG_ERROR("Memory sampling is only implemented for sbasize <= 64.");
return ERROR_NOT_IMPLEMENTED;
}
if (get_field(info->sbcs, DM_SBCS_SBVERSION) != 1) {
LOG_ERROR("Memory sampling is only implemented for SBA version 1.");
return ERROR_NOT_IMPLEMENTED;
}
uint32_t sbcs = 0;
uint32_t sbcs_valid = false;
uint32_t sbaddress0 = 0;
bool sbaddress0_valid = false;
uint32_t sbaddress1 = 0;
bool sbaddress1_valid = false;
/* How often to read each value in a batch. */
const unsigned int repeat = 5;
unsigned int enabled_count = 0;
for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
if (config->bucket[i].enabled)
enabled_count++;
}
while (timeval_ms() < until_ms) {
/*
* batch_run() adds to the batch, so we can't simply reuse the same
* batch over and over. So we create a new one every time through the
* loop.
*/
struct riscv_batch *batch = riscv_batch_alloc(
target, 1 + enabled_count * 5 * repeat,
info->dmi_busy_delay + info->bus_master_read_delay);
if (!batch)
return ERROR_FAIL;
unsigned int result_bytes = 0;
for (unsigned int n = 0; n < repeat; n++) {
for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
if (config->bucket[i].enabled) {
if (!sba_supports_access(target, config->bucket[i].size_bytes)) {
LOG_ERROR("Hardware does not support SBA access for %d-byte memory sampling.",
config->bucket[i].size_bytes);
return ERROR_NOT_IMPLEMENTED;
}
uint32_t sbcs_write = DM_SBCS_SBREADONADDR;
if (enabled_count == 1)
sbcs_write |= DM_SBCS_SBREADONDATA;
sbcs_write |= sb_sbaccess(config->bucket[i].size_bytes);
if (!sbcs_valid || sbcs_write != sbcs) {
riscv_batch_add_dmi_write(batch, DM_SBCS, sbcs_write);
sbcs = sbcs_write;
sbcs_valid = true;
}
if (sbasize > 32 &&
(!sbaddress1_valid ||
sbaddress1 != config->bucket[i].address >> 32)) {
sbaddress1 = config->bucket[i].address >> 32;
riscv_batch_add_dmi_write(batch, DM_SBADDRESS1, sbaddress1);
sbaddress1_valid = true;
}
if (!sbaddress0_valid ||
sbaddress0 != (config->bucket[i].address & 0xffffffff)) {
sbaddress0 = config->bucket[i].address;
riscv_batch_add_dmi_write(batch, DM_SBADDRESS0, sbaddress0);
sbaddress0_valid = true;
}
if (config->bucket[i].size_bytes > 4)
riscv_batch_add_dmi_read(batch, DM_SBDATA1);
riscv_batch_add_dmi_read(batch, DM_SBDATA0);
result_bytes += 1 + config->bucket[i].size_bytes;
}
}
}
if (buf->used + result_bytes >= buf->size) {
riscv_batch_free(batch);
break;
}
size_t sbcs_key = riscv_batch_add_dmi_read(batch, DM_SBCS);
int result = batch_run(target, batch);
if (result != ERROR_OK)
return result;
uint32_t sbcs_read = riscv_batch_get_dmi_read_data(batch, sbcs_key);
if (get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
/* Discard this batch (too much hassle to try to recover partial
* data) and try again with a larger delay. */
info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
dmi_write(target, DM_SBCS, sbcs_read | DM_SBCS_SBBUSYERROR | DM_SBCS_SBERROR);
riscv_batch_free(batch);
continue;
}
if (get_field(sbcs_read, DM_SBCS_SBERROR)) {
/* The memory we're sampling was unreadable, somehow. Give up. */
dmi_write(target, DM_SBCS, DM_SBCS_SBBUSYERROR | DM_SBCS_SBERROR);
riscv_batch_free(batch);
return ERROR_FAIL;
}
unsigned int read = 0;
for (unsigned int n = 0; n < repeat; n++) {
for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
if (config->bucket[i].enabled) {
assert(i < RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE);
uint64_t value = 0;
if (config->bucket[i].size_bytes > 4)
value = ((uint64_t)riscv_batch_get_dmi_read_data(batch, read++)) << 32;
value |= riscv_batch_get_dmi_read_data(batch, read++);
buf->buf[buf->used] = i;
buf_set_u64(buf->buf + buf->used + 1, 0, config->bucket[i].size_bytes * 8, value);
buf->used += 1 + config->bucket[i].size_bytes;
}
}
}
riscv_batch_free(batch);
}
return ERROR_OK;
}
static int sample_memory(struct target *target,
struct riscv_sample_buf *buf,
riscv_sample_config_t *config,
int64_t until_ms)
{
if (!config->enabled)
return ERROR_OK;
return sample_memory_bus_v1(target, buf, config, until_ms);
}
static int init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_DEBUG("init");
RISCV_INFO(generic_info);
generic_info->get_register = &riscv013_get_register;
generic_info->set_register = &riscv013_set_register;
generic_info->get_register_buf = &riscv013_get_register_buf;
generic_info->set_register_buf = &riscv013_set_register_buf;
generic_info->select_current_hart = &riscv013_select_current_hart;
generic_info->is_halted = &riscv013_is_halted;
generic_info->resume_go = &riscv013_resume_go;
generic_info->step_current_hart = &riscv013_step_current_hart;
generic_info->on_halt = &riscv013_on_halt;
generic_info->resume_prep = &riscv013_resume_prep;
generic_info->halt_prep = &riscv013_halt_prep;
generic_info->halt_go = &riscv013_halt_go;
generic_info->on_step = &riscv013_on_step;
generic_info->halt_reason = &riscv013_halt_reason;
generic_info->read_debug_buffer = &riscv013_read_debug_buffer;
generic_info->write_debug_buffer = &riscv013_write_debug_buffer;
generic_info->execute_debug_buffer = &riscv013_execute_debug_buffer;
generic_info->fill_dmi_write_u64 = &riscv013_fill_dmi_write_u64;
generic_info->fill_dmi_read_u64 = &riscv013_fill_dmi_read_u64;
generic_info->fill_dmi_nop_u64 = &riscv013_fill_dmi_nop_u64;
generic_info->dmi_write_u64_bits = &riscv013_dmi_write_u64_bits;
generic_info->authdata_read = &riscv013_authdata_read;
generic_info->authdata_write = &riscv013_authdata_write;
generic_info->dmi_read = &dmi_read;
generic_info->dmi_write = &dmi_write;
generic_info->read_memory = read_memory;
generic_info->test_sba_config_reg = &riscv013_test_sba_config_reg;
generic_info->hart_count = &riscv013_hart_count;
generic_info->data_bits = &riscv013_data_bits;
generic_info->print_info = &riscv013_print_info;
if (!generic_info->version_specific) {
generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
if (!generic_info->version_specific)
return ERROR_FAIL;
}
generic_info->sample_memory = sample_memory;
riscv013_info_t *info = get_info(target);
info->progbufsize = -1;
info->dmi_busy_delay = 0;
info->bus_master_read_delay = 0;
info->bus_master_write_delay = 0;
info->ac_busy_delay = 0;
/* Assume all these abstract commands are supported until we learn
* otherwise.
* TODO: The spec allows eg. one CSR to be able to be accessed abstractly
* while another one isn't. We don't track that this closely here, but in
* the future we probably should. */
info->abstract_read_csr_supported = true;
info->abstract_write_csr_supported = true;
info->abstract_read_fpr_supported = true;
info->abstract_write_fpr_supported = true;
info->has_aampostincrement = YNM_MAYBE;
return ERROR_OK;
}
static int assert_reset(struct target *target)
{
RISCV_INFO(r);
select_dmi(target);
uint32_t control_base = set_field(0, DM_DMCONTROL_DMACTIVE, 1);
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
/* Run the user-supplied script if there is one. */
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
} else if (target->rtos) {
/* There's only one target, and OpenOCD thinks each hart is a thread.
* We must reset them all. */
/* TODO: Try to use hasel in dmcontrol */
/* Set haltreq for each hart. */
uint32_t control = control_base;
control = set_hartsel(control_base, target->coreid);
control = set_field(control, DM_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
dmi_write(target, DM_DMCONTROL, control);
/* Assert ndmreset */
control = set_field(control, DM_DMCONTROL_NDMRESET, 1);
dmi_write(target, DM_DMCONTROL, control);
} else {
/* Reset just this hart. */
uint32_t control = set_hartsel(control_base, r->current_hartid);
control = set_field(control, DM_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
control = set_field(control, DM_DMCONTROL_NDMRESET, 1);
dmi_write(target, DM_DMCONTROL, control);
}
target->state = TARGET_RESET;
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
/* The DM might have gotten reset if OpenOCD called us in some reset that
* involves SRST being toggled. So clear our cache which may be out of
* date. */
memset(dm->progbuf_cache, 0, sizeof(dm->progbuf_cache));
return ERROR_OK;
}
static int deassert_reset(struct target *target)
{
RISCV_INFO(r);
RISCV013_INFO(info);
select_dmi(target);
/* Clear the reset, but make sure haltreq is still set */
uint32_t control = 0, control_haltreq;
control = set_field(control, DM_DMCONTROL_DMACTIVE, 1);
control_haltreq = set_field(control, DM_DMCONTROL_HALTREQ, target->reset_halt ? 1 : 0);
dmi_write(target, DM_DMCONTROL,
set_hartsel(control_haltreq, r->current_hartid));
uint32_t dmstatus;
int dmi_busy_delay = info->dmi_busy_delay;
time_t start = time(NULL);
for (int i = 0; i < riscv_count_harts(target); ++i) {
int index = i;
if (target->rtos) {
if (index != target->coreid)
continue;
dmi_write(target, DM_DMCONTROL,
set_hartsel(control_haltreq, index));
} else {
index = r->current_hartid;
}
LOG_DEBUG("Waiting for hart %d to come out of reset.", index);
while (1) {
int result = dmstatus_read_timeout(target, &dmstatus, true,
riscv_reset_timeout_sec);
if (result == ERROR_TIMEOUT_REACHED)
LOG_ERROR("Hart %d didn't complete a DMI read coming out of "
"reset in %ds; Increase the timeout with riscv "
"set_reset_timeout_sec.",
index, riscv_reset_timeout_sec);
if (result != ERROR_OK)
return result;
/* Certain debug modules, like the one in GD32VF103
* MCUs, violate the specification's requirement that
* each hart is in "exactly one of four states" and,
* during reset, report harts as both unavailable and
* halted/running. To work around this, we check for
* the absence of the unavailable state rather than
* the presence of any other state. */
if (!get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL))
break;
if (time(NULL) - start > riscv_reset_timeout_sec) {
LOG_ERROR("Hart %d didn't leave reset in %ds; "
"dmstatus=0x%x; "
"Increase the timeout with riscv set_reset_timeout_sec.",
index, riscv_reset_timeout_sec, dmstatus);
return ERROR_FAIL;
}
}
target->state = TARGET_HALTED;
if (get_field(dmstatus, DM_DMSTATUS_ALLHAVERESET)) {
/* Ack reset and clear DM_DMCONTROL_HALTREQ if previously set */
dmi_write(target, DM_DMCONTROL,
set_hartsel(control, index) |
DM_DMCONTROL_ACKHAVERESET);
}
if (!target->rtos)
break;
}
info->dmi_busy_delay = dmi_busy_delay;
return ERROR_OK;
}
static int execute_fence(struct target *target)
{
/* FIXME: For non-coherent systems we need to flush the caches right
* here, but there's no ISA-defined way of doing that. */
{
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_fence_i(&program);
riscv_program_fence(&program);
int result = riscv_program_exec(&program, target);
if (result != ERROR_OK)
LOG_DEBUG("Unable to execute pre-fence");
}
return ERROR_OK;
}
static void log_memory_access(target_addr_t address, uint64_t value,
unsigned size_bytes, bool read)
{
if (debug_level < LOG_LVL_DEBUG)
return;
char fmt[80];
sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%0%d" PRIx64,
address, read ? "read" : "write", size_bytes * 2);
switch (size_bytes) {
case 1:
value &= 0xff;
break;
case 2:
value &= 0xffff;
break;
case 4:
value &= 0xffffffffUL;
break;
case 8:
break;
default:
assert(false);
}
LOG_DEBUG(fmt, value);
}
/* Read the relevant sbdata regs depending on size, and put the results into
* buffer. */
static int read_memory_bus_word(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
uint32_t value;
int result;
static int sbdata[4] = { DM_SBDATA0, DM_SBDATA1, DM_SBDATA2, DM_SBDATA3 };
assert(size <= 16);
for (int i = (size - 1) / 4; i >= 0; i--) {
result = dmi_op(target, &value, NULL, DMI_OP_READ, sbdata[i], 0, false, true);
if (result != ERROR_OK)
return result;
buf_set_u32(buffer + i * 4, 0, 8 * MIN(size, 4), value);
log_memory_access(address + i * 4, value, MIN(size, 4), true);
}
return ERROR_OK;
}
static target_addr_t sb_read_address(struct target *target)
{
RISCV013_INFO(info);
unsigned sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
target_addr_t address = 0;
uint32_t v;
if (sbasize > 32) {
dmi_read(target, &v, DM_SBADDRESS1);
address |= v;
address <<= 32;
}
dmi_read(target, &v, DM_SBADDRESS0);
address |= v;
return address;
}
static int read_sbcs_nonbusy(struct target *target, uint32_t *sbcs)
{
time_t start = time(NULL);
while (1) {
if (dmi_read(target, sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(*sbcs, DM_SBCS_SBBUSY))
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec, *sbcs);
return ERROR_FAIL;
}
}
}
static int modify_privilege(struct target *target, uint64_t *mstatus, uint64_t *mstatus_old)
{
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5)) {
/* Read DCSR */
uint64_t dcsr;
if (register_read(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
/* Read and save MSTATUS */
if (register_read(target, mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
return ERROR_FAIL;
*mstatus_old = *mstatus;
/* If we come from m-mode with mprv set, we want to keep mpp */
if (get_field(dcsr, DCSR_PRV) < 3) {
/* MPP = PRIV */
*mstatus = set_field(*mstatus, MSTATUS_MPP, get_field(dcsr, DCSR_PRV));
/* MPRV = 1 */
*mstatus = set_field(*mstatus, MSTATUS_MPRV, 1);
/* Write MSTATUS */
if (*mstatus != *mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, *mstatus) != ERROR_OK)
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int read_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (size != increment) {
LOG_ERROR("sba v0 reads only support size==increment");
return ERROR_NOT_IMPLEMENTED;
}
LOG_DEBUG("System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
uint8_t *t_buffer = buffer;
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
uint32_t access = 0;
const int DM_SBCS_SBSINGLEREAD_OFFSET = 20;
const uint32_t DM_SBCS_SBSINGLEREAD = (0x1U << DM_SBCS_SBSINGLEREAD_OFFSET);
const int DM_SBCS_SBAUTOREAD_OFFSET = 15;
const uint32_t DM_SBCS_SBAUTOREAD = (0x1U << DM_SBCS_SBAUTOREAD_OFFSET);
/* ww favorise one off reading if there is an issue */
if (count == 1) {
for (uint32_t i = 0; i < count; i++) {
if (dmi_read(target, &access, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
dmi_write(target, DM_SBADDRESS0, cur_addr);
/* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DM_SBCS_SBACCESS, size/2);
access = set_field(access, DM_SBCS_SBSINGLEREAD, 1);
LOG_DEBUG("\r\nread_memory: sab: access: 0x%08x", access);
dmi_write(target, DM_SBCS, access);
/* 3) read */
uint32_t value;
if (dmi_read(target, &value, DM_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("\r\nread_memory: sab: value: 0x%08x", value);
buf_set_u32(t_buffer, 0, 8 * size, value);
t_buffer += size;
cur_addr += size;
}
return ERROR_OK;
}
/* has to be the same size if we want to read a block */
LOG_DEBUG("reading block until final address 0x%" PRIx64, fin_addr);
if (dmi_read(target, &access, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* set current address */
dmi_write(target, DM_SBADDRESS0, cur_addr);
/* 2) write sbaccess=2, sbsingleread,sbautoread,sbautoincrement
* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DM_SBCS_SBACCESS, size/2);
access = set_field(access, DM_SBCS_SBAUTOREAD, 1);
access = set_field(access, DM_SBCS_SBSINGLEREAD, 1);
access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 1);
LOG_DEBUG("\r\naccess: 0x%08x", access);
dmi_write(target, DM_SBCS, access);
while (cur_addr < fin_addr) {
LOG_DEBUG("\r\nsab:autoincrement: \r\n size: %d\tcount:%d\taddress: 0x%08"
PRIx64, size, count, cur_addr);
/* read */
uint32_t value;
if (dmi_read(target, &value, DM_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
buf_set_u32(t_buffer, 0, 8 * size, value);
cur_addr += size;
t_buffer += size;
/* if we are reaching last address, we must clear autoread */
if (cur_addr == fin_addr && count != 1) {
dmi_write(target, DM_SBCS, 0);
if (dmi_read(target, &value, DM_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
buf_set_u32(t_buffer, 0, 8 * size, value);
}
}
uint32_t sbcs;
if (dmi_read(target, &sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
/**
* Read the requested memory using the system bus interface.
*/
static int read_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (increment != size && increment != 0) {
LOG_ERROR("sba v1 reads only support increment of size or 0");
return ERROR_NOT_IMPLEMENTED;
}
RISCV013_INFO(info);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
while (next_address < end_address) {
uint32_t sbcs_write = set_field(0, DM_SBCS_SBREADONADDR, 1);
sbcs_write |= sb_sbaccess(size);
if (increment == size)
sbcs_write = set_field(sbcs_write, DM_SBCS_SBAUTOINCREMENT, 1);
if (count > 1)
sbcs_write = set_field(sbcs_write, DM_SBCS_SBREADONDATA, count > 1);
if (dmi_write(target, DM_SBCS, sbcs_write) != ERROR_OK)
return ERROR_FAIL;
/* This address write will trigger the first read. */
if (sb_write_address(target, next_address, true) != ERROR_OK)
return ERROR_FAIL;
if (info->bus_master_read_delay) {
jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_ERROR("Failed to scan idle sequence");
return ERROR_FAIL;
}
}
/* First value has been read, and is waiting for us to issue a DMI read
* to get it. */
static int sbdata[4] = {DM_SBDATA0, DM_SBDATA1, DM_SBDATA2, DM_SBDATA3};
assert(size <= 16);
target_addr_t next_read = address - 1;
for (uint32_t i = (next_address - address) / size; i < count - 1; i++) {
for (int j = (size - 1) / 4; j >= 0; j--) {
uint32_t value;
unsigned attempt = 0;
while (1) {
if (attempt++ > 100) {
LOG_ERROR("DMI keeps being busy in while reading memory just past " TARGET_ADDR_FMT,
next_read);
return ERROR_FAIL;
}
keep_alive();
dmi_status_t status = dmi_scan(target, NULL, &value,
DMI_OP_READ, sbdata[j], 0, false);
if (status == DMI_STATUS_BUSY)
increase_dmi_busy_delay(target);
else if (status == DMI_STATUS_SUCCESS)
break;
else
return ERROR_FAIL;
}
if (next_read != address - 1) {
buf_set_u32(buffer + next_read - address, 0, 8 * MIN(size, 4), value);
log_memory_access(next_read, value, MIN(size, 4), true);
}
next_read = address + i * size + j * 4;
}
}
uint32_t sbcs_read = 0;
if (count > 1) {
uint32_t value;
unsigned attempt = 0;
while (1) {
if (attempt++ > 100) {
LOG_ERROR("DMI keeps being busy in while reading memory just past " TARGET_ADDR_FMT,
next_read);
return ERROR_FAIL;
}
dmi_status_t status = dmi_scan(target, NULL, &value, DMI_OP_NOP, 0, 0, false);
if (status == DMI_STATUS_BUSY)
increase_dmi_busy_delay(target);
else if (status == DMI_STATUS_SUCCESS)
break;
else
return ERROR_FAIL;
}
buf_set_u32(buffer + next_read - address, 0, 8 * MIN(size, 4), value);
log_memory_access(next_read, value, MIN(size, 4), true);
/* "Writes to sbcs while sbbusy is high result in undefined behavior.
* A debugger must not write to sbcs until it reads sbbusy as 0." */
if (read_sbcs_nonbusy(target, &sbcs_read) != ERROR_OK)
return ERROR_FAIL;
sbcs_write = set_field(sbcs_write, DM_SBCS_SBREADONDATA, 0);
if (dmi_write(target, DM_SBCS, sbcs_write) != ERROR_OK)
return ERROR_FAIL;
}
/* Read the last word, after we disabled sbreadondata if necessary. */
if (!get_field(sbcs_read, DM_SBCS_SBERROR) &&
!get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
if (read_memory_bus_word(target, address + (count - 1) * size, size,
buffer + (count - 1) * size) != ERROR_OK)
return ERROR_FAIL;
if (read_sbcs_nonbusy(target, &sbcs_read) != ERROR_OK)
return ERROR_FAIL;
}
if (get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
/* We read while the target was busy. Slow down and try again. */
if (dmi_write(target, DM_SBCS, sbcs_read | DM_SBCS_SBBUSYERROR) != ERROR_OK)
return ERROR_FAIL;
next_address = sb_read_address(target);
info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
continue;
}
unsigned error = get_field(sbcs_read, DM_SBCS_SBERROR);
if (error == 0) {
next_address = end_address;
} else {
/* Some error indicating the bus access failed, but not because of
* something we did wrong. */
if (dmi_write(target, DM_SBCS, DM_SBCS_SBERROR) != ERROR_OK)
return ERROR_FAIL;
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static void log_mem_access_result(struct target *target, bool success, int method, bool read)
{
RISCV_INFO(r);
bool warn = false;
char msg[60];
/* Compose the message */
snprintf(msg, 60, "%s to %s memory via %s.",
success ? "Succeeded" : "Failed",
read ? "read" : "write",
(method == RISCV_MEM_ACCESS_PROGBUF) ? "program buffer" :
(method == RISCV_MEM_ACCESS_SYSBUS) ? "system bus" : "abstract access");
/* Determine the log message severity. Show warnings only once. */
if (!success) {
if (method == RISCV_MEM_ACCESS_PROGBUF) {
warn = r->mem_access_progbuf_warn;
r->mem_access_progbuf_warn = false;
}
if (method == RISCV_MEM_ACCESS_SYSBUS) {
warn = r->mem_access_sysbus_warn;
r->mem_access_sysbus_warn = false;
}
if (method == RISCV_MEM_ACCESS_ABSTRACT) {
warn = r->mem_access_abstract_warn;
r->mem_access_abstract_warn = false;
}
}
if (warn)
LOG_WARNING("%s", msg);
else
LOG_DEBUG("%s", msg);
}
static bool mem_should_skip_progbuf(struct target *target, target_addr_t address,
uint32_t size, bool read, char **skip_reason)
{
assert(skip_reason);
if (!has_sufficient_progbuf(target, 3)) {
LOG_DEBUG("Skipping mem %s via progbuf - insufficient progbuf size.",
read ? "read" : "write");
*skip_reason = "skipped (insufficient progbuf)";
return true;
}
if (target->state != TARGET_HALTED) {
LOG_DEBUG("Skipping mem %s via progbuf - target not halted.",
read ? "read" : "write");
*skip_reason = "skipped (target not halted)";
return true;
}
if (riscv_xlen(target) < size * 8) {
LOG_DEBUG("Skipping mem %s via progbuf - XLEN (%d) is too short for %d-bit memory access.",
read ? "read" : "write", riscv_xlen(target), size * 8);
*skip_reason = "skipped (XLEN too short)";
return true;
}
if (size > 8) {
LOG_DEBUG("Skipping mem %s via progbuf - unsupported size.",
read ? "read" : "write");
*skip_reason = "skipped (unsupported size)";
return true;
}
if ((sizeof(address) * 8 > riscv_xlen(target)) && (address >> riscv_xlen(target))) {
LOG_DEBUG("Skipping mem %s via progbuf - progbuf only supports %u-bit address.",
read ? "read" : "write", riscv_xlen(target));
*skip_reason = "skipped (too large address)";
return true;
}
return false;
}
static bool mem_should_skip_sysbus(struct target *target, target_addr_t address,
uint32_t size, uint32_t increment, bool read, char **skip_reason)
{
assert(skip_reason);
RISCV013_INFO(info);
if (!sba_supports_access(target, size)) {
LOG_DEBUG("Skipping mem %s via system bus - unsupported size.",
read ? "read" : "write");
*skip_reason = "skipped (unsupported size)";
return true;
}
unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
if ((sizeof(address) * 8 > sbasize) && (address >> sbasize)) {
LOG_DEBUG("Skipping mem %s via system bus - sba only supports %u-bit address.",
read ? "read" : "write", sbasize);
*skip_reason = "skipped (too large address)";
return true;
}
if (read && increment != size && (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0 || increment != 0)) {
LOG_DEBUG("Skipping mem read via system bus - "
"sba reads only support size==increment or also size==0 for sba v1.");
*skip_reason = "skipped (unsupported increment)";
return true;
}
return false;
}
static bool mem_should_skip_abstract(struct target *target, target_addr_t address,
uint32_t size, uint32_t increment, bool read, char **skip_reason)
{
assert(skip_reason);
if (size > 8) {
/* TODO: Add 128b support if it's ever used. Involves modifying
read/write_abstract_arg() to work on two 64b values. */
LOG_DEBUG("Skipping mem %s via abstract access - unsupported size: %d bits",
read ? "read" : "write", size * 8);
*skip_reason = "skipped (unsupported size)";
return true;
}
if ((sizeof(address) * 8 > riscv_xlen(target)) && (address >> riscv_xlen(target))) {
LOG_DEBUG("Skipping mem %s via abstract access - abstract access only supports %u-bit address.",
read ? "read" : "write", riscv_xlen(target));
*skip_reason = "skipped (too large address)";
return true;
}
if (read && size != increment) {
LOG_ERROR("Skipping mem read via abstract access - "
"abstract command reads only support size==increment.");
*skip_reason = "skipped (unsupported increment)";
return true;
}
return false;
}
/*
* Performs a memory read using memory access abstract commands. The read sizes
* supported are 1, 2, and 4 bytes despite the spec's support of 8 and 16 byte
* aamsize fields in the memory access abstract command.
*/
static int read_memory_abstract(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
RISCV013_INFO(info);
int result = ERROR_OK;
bool use_aampostincrement = info->has_aampostincrement != YNM_NO;
LOG_DEBUG("reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
memset(buffer, 0, count * size);
/* Convert the size (bytes) to width (bits) */
unsigned width = size << 3;
/* Create the command (physical address, postincrement, read) */
uint32_t command = access_memory_command(target, false, width, use_aampostincrement, false);
/* Execute the reads */
uint8_t *p = buffer;
bool updateaddr = true;
unsigned int width32 = (width < 32) ? 32 : width;
for (uint32_t c = 0; c < count; c++) {
/* Update the address if it is the first time or aampostincrement is not supported by the target. */
if (updateaddr) {
/* Set arg1 to the address: address + c * size */
result = write_abstract_arg(target, 1, address + c * size, riscv_xlen(target));
if (result != ERROR_OK) {
LOG_ERROR("Failed to write arg1 during read_memory_abstract().");
return result;
}
}
/* Execute the command */
result = execute_abstract_command(target, command);
if (info->has_aampostincrement == YNM_MAYBE) {
if (result == ERROR_OK) {
/* Safety: double-check that the address was really auto-incremented */
riscv_reg_t new_address = read_abstract_arg(target, 1, riscv_xlen(target));
if (new_address == address + size) {
LOG_DEBUG("aampostincrement is supported on this target.");
info->has_aampostincrement = YNM_YES;
} else {
LOG_WARNING("Buggy aampostincrement! Address not incremented correctly.");
info->has_aampostincrement = YNM_NO;
}
} else {
/* Try the same access but with postincrement disabled. */
command = access_memory_command(target, false, width, false, false);
result = execute_abstract_command(target, command);
if (result == ERROR_OK) {
LOG_DEBUG("aampostincrement is not supported on this target.");
info->has_aampostincrement = YNM_NO;
}
}
}
if (result != ERROR_OK)
return result;
/* Copy arg0 to buffer (rounded width up to nearest 32) */
riscv_reg_t value = read_abstract_arg(target, 0, width32);
buf_set_u64(p, 0, 8 * size, value);
if (info->has_aampostincrement == YNM_YES)
updateaddr = false;
p += size;
}
return result;
}
/*
* Performs a memory write using memory access abstract commands. The write
* sizes supported are 1, 2, and 4 bytes despite the spec's support of 8 and 16
* byte aamsize fields in the memory access abstract command.
*/
static int write_memory_abstract(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
int result = ERROR_OK;
bool use_aampostincrement = info->has_aampostincrement != YNM_NO;
LOG_DEBUG("writing %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
/* Convert the size (bytes) to width (bits) */
unsigned width = size << 3;
/* Create the command (physical address, postincrement, write) */
uint32_t command = access_memory_command(target, false, width, use_aampostincrement, true);
/* Execute the writes */
const uint8_t *p = buffer;
bool updateaddr = true;
for (uint32_t c = 0; c < count; c++) {
/* Move data to arg0 */
riscv_reg_t value = buf_get_u64(p, 0, 8 * size);
result = write_abstract_arg(target, 0, value, riscv_xlen(target));
if (result != ERROR_OK) {
LOG_ERROR("Failed to write arg0 during write_memory_abstract().");
return result;
}
/* Update the address if it is the first time or aampostincrement is not supported by the target. */
if (updateaddr) {
/* Set arg1 to the address: address + c * size */
result = write_abstract_arg(target, 1, address + c * size, riscv_xlen(target));
if (result != ERROR_OK) {
LOG_ERROR("Failed to write arg1 during write_memory_abstract().");
return result;
}
}
/* Execute the command */
result = execute_abstract_command(target, command);
if (info->has_aampostincrement == YNM_MAYBE) {
if (result == ERROR_OK) {
/* Safety: double-check that the address was really auto-incremented */
riscv_reg_t new_address = read_abstract_arg(target, 1, riscv_xlen(target));
if (new_address == address + size) {
LOG_DEBUG("aampostincrement is supported on this target.");
info->has_aampostincrement = YNM_YES;
} else {
LOG_WARNING("Buggy aampostincrement! Address not incremented correctly.");
info->has_aampostincrement = YNM_NO;
}
} else {
/* Try the same access but with postincrement disabled. */
command = access_memory_command(target, false, width, false, true);
result = execute_abstract_command(target, command);
if (result == ERROR_OK) {
LOG_DEBUG("aampostincrement is not supported on this target.");
info->has_aampostincrement = YNM_NO;
}
}
}
if (result != ERROR_OK)
return result;
if (info->has_aampostincrement == YNM_YES)
updateaddr = false;
p += size;
}
return result;
}
/**
* Read the requested memory, taking care to execute every read exactly once,
* even if cmderr=busy is encountered.
*/
static int read_memory_progbuf_inner(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
RISCV013_INFO(info);
int result = ERROR_OK;
/* Write address to S0. */
result = register_write_direct(target, GDB_REGNO_S0, address);
if (result != ERROR_OK)
return result;
if (increment == 0 &&
register_write_direct(target, GDB_REGNO_S2, 0) != ERROR_OK)
return ERROR_FAIL;
uint32_t command = access_register_command(target, GDB_REGNO_S1,
riscv_xlen(target),
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
if (execute_abstract_command(target, command) != ERROR_OK)
return ERROR_FAIL;
/* First read has just triggered. Result is in s1. */
if (count == 1) {
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
buf_set_u64(buffer, 0, 8 * size, value);
log_memory_access(address, value, size, true);
return ERROR_OK;
}
if (dmi_write(target, DM_ABSTRACTAUTO,
1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET) != ERROR_OK)
goto error;
/* Read garbage from dmi_data0, which triggers another execution of the
* program. Now dmi_data0 contains the first good result, and s1 the next
* memory value. */
if (dmi_read_exec(target, NULL, DM_DATA0) != ERROR_OK)
goto error;
/* read_addr is the next address that the hart will read from, which is the
* value in s0. */
unsigned index = 2;
while (index < count) {
riscv_addr_t read_addr = address + index * increment;
LOG_DEBUG("i=%d, count=%d, read_addr=0x%" PRIx64, index, count, read_addr);
/* The pipeline looks like this:
* memory -> s1 -> dm_data0 -> debugger
* Right now:
* s0 contains read_addr
* s1 contains mem[read_addr-size]
* dm_data0 contains[read_addr-size*2]
*/
struct riscv_batch *batch = riscv_batch_alloc(target, 32,
info->dmi_busy_delay + info->ac_busy_delay);
if (!batch)
return ERROR_FAIL;
unsigned reads = 0;
for (unsigned j = index; j < count; j++) {
if (size > 4)
riscv_batch_add_dmi_read(batch, DM_DATA1);
riscv_batch_add_dmi_read(batch, DM_DATA0);
reads++;
if (riscv_batch_full(batch))
break;
}
batch_run(target, batch);
/* Wait for the target to finish performing the last abstract command,
* and update our copy of cmderr. If we see that DMI is busy here,
* dmi_busy_delay will be incremented. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
while (get_field(abstractcs, DM_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DM_ABSTRACTCS_CMDERR);
unsigned next_index;
unsigned ignore_last = 0;
switch (info->cmderr) {
case CMDERR_NONE:
LOG_DEBUG("successful (partial?) memory read");
next_index = index + reads;
break;
case CMDERR_BUSY:
LOG_DEBUG("memory read resulted in busy response");
increase_ac_busy_delay(target);
riscv013_clear_abstract_error(target);
dmi_write(target, DM_ABSTRACTAUTO, 0);
uint32_t dmi_data0, dmi_data1 = 0;
/* This is definitely a good version of the value that we
* attempted to read when we discovered that the target was
* busy. */
if (dmi_read(target, &dmi_data0, DM_DATA0) != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
if (size > 4 && dmi_read(target, &dmi_data1, DM_DATA1) != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* See how far we got, clobbering dmi_data0. */
if (increment == 0) {
uint64_t counter;
result = register_read_direct(target, &counter, GDB_REGNO_S2);
next_index = counter;
} else {
uint64_t next_read_addr;
result = register_read_direct(target, &next_read_addr,
GDB_REGNO_S0);
next_index = (next_read_addr - address) / increment;
}
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
uint64_t value64 = (((uint64_t)dmi_data1) << 32) | dmi_data0;
buf_set_u64(buffer + (next_index - 2) * size, 0, 8 * size, value64);
log_memory_access(address + (next_index - 2) * size, value64, size, true);
/* Restore the command, and execute it.
* Now DM_DATA0 contains the next value just as it would if no
* error had occurred. */
dmi_write_exec(target, DM_COMMAND, command, true);
next_index++;
dmi_write(target, DM_ABSTRACTAUTO,
1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
ignore_last = 1;
break;
default:
LOG_DEBUG("error when reading memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
/* Now read whatever we got out of the batch. */
dmi_status_t status = DMI_STATUS_SUCCESS;
unsigned read = 0;
assert(index >= 2);
for (unsigned j = index - 2; j < index + reads; j++) {
assert(j < count);
LOG_DEBUG("index=%d, reads=%d, next_index=%d, ignore_last=%d, j=%d",
index, reads, next_index, ignore_last, j);
if (j + 3 + ignore_last > next_index)
break;
status = riscv_batch_get_dmi_read_op(batch, read);
uint64_t value = riscv_batch_get_dmi_read_data(batch, read);
read++;
if (status != DMI_STATUS_SUCCESS) {
/* If we're here because of busy count, dmi_busy_delay will
* already have been increased and busy state will have been
* cleared in dmi_read(). */
/* In at least some implementations, we issue a read, and then
* can get busy back when we try to scan out the read result,
* and the actual read value is lost forever. Since this is
* rare in any case, we return error here and rely on our
* caller to reread the entire block. */
LOG_WARNING("Batch memory read encountered DMI error %d. "
"Falling back on slower reads.", status);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
if (size > 4) {
status = riscv_batch_get_dmi_read_op(batch, read);
if (status != DMI_STATUS_SUCCESS) {
LOG_WARNING("Batch memory read encountered DMI error %d. "
"Falling back on slower reads.", status);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
value <<= 32;
value |= riscv_batch_get_dmi_read_data(batch, read);
read++;
}
riscv_addr_t offset = j * size;
buf_set_u64(buffer + offset, 0, 8 * size, value);
log_memory_access(address + j * increment, value, size, true);
}
index = next_index;
riscv_batch_free(batch);
}
dmi_write(target, DM_ABSTRACTAUTO, 0);
if (count > 1) {
/* Read the penultimate word. */
uint32_t dmi_data0, dmi_data1 = 0;
if (dmi_read(target, &dmi_data0, DM_DATA0) != ERROR_OK)
return ERROR_FAIL;
if (size > 4 && dmi_read(target, &dmi_data1, DM_DATA1) != ERROR_OK)
return ERROR_FAIL;
uint64_t value64 = (((uint64_t)dmi_data1) << 32) | dmi_data0;
buf_set_u64(buffer + size * (count - 2), 0, 8 * size, value64);
log_memory_access(address + size * (count - 2), value64, size, true);
}
/* Read the last word. */
uint64_t value;
result = register_read_direct(target, &value, GDB_REGNO_S1);
if (result != ERROR_OK)
goto error;
buf_set_u64(buffer + size * (count-1), 0, 8 * size, value);
log_memory_access(address + size * (count-1), value, size, true);
return ERROR_OK;
error:
dmi_write(target, DM_ABSTRACTAUTO, 0);
return result;
}
/* Only need to save/restore one GPR to read a single word, and the progbuf
* program doesn't need to increment. */
static int read_memory_progbuf_one(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
return ERROR_FAIL;
uint64_t s0;
int result = ERROR_FAIL;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
goto restore_mstatus;
/* Write the program (load, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrsi(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
switch (size) {
case 1:
riscv_program_lbr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_lhr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_lwr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
case 8:
riscv_program_ldr(&program, GDB_REGNO_S0, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
goto restore_mstatus;
}
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrci(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
if (riscv_program_ebreak(&program) != ERROR_OK)
goto restore_mstatus;
if (riscv_program_write(&program) != ERROR_OK)
goto restore_mstatus;
/* Write address to S0, and execute buffer. */
if (write_abstract_arg(target, 0, address, riscv_xlen(target)) != ERROR_OK)
goto restore_mstatus;
uint32_t command = access_register_command(target, GDB_REGNO_S0,
riscv_xlen(target), AC_ACCESS_REGISTER_WRITE |
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
if (execute_abstract_command(target, command) != ERROR_OK)
goto restore_s0;
uint64_t value;
if (register_read(target, &value, GDB_REGNO_S0) != ERROR_OK)
goto restore_s0;
buf_set_u64(buffer, 0, 8 * size, value);
log_memory_access(address, value, size, true);
result = ERROR_OK;
restore_s0:
if (riscv_set_register(target, GDB_REGNO_S0, s0) != ERROR_OK)
result = ERROR_FAIL;
restore_mstatus:
if (mstatus != mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
result = ERROR_FAIL;
return result;
}
/**
* Read the requested memory, silently handling memory access errors.
*/
static int read_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (riscv_xlen(target) < size * 8) {
LOG_ERROR("XLEN (%d) is too short for %d-bit memory read.",
riscv_xlen(target), size * 8);
return ERROR_FAIL;
}
int result = ERROR_OK;
LOG_DEBUG("reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
select_dmi(target);
memset(buffer, 0, count*size);
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
if (count == 1)
return read_memory_progbuf_one(target, address, size, buffer);
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
return ERROR_FAIL;
/* s0 holds the next address to read from
* s1 holds the next data value read
* s2 is a counter in case increment is 0
*/
uint64_t s0, s1, s2;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, &s1, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
if (increment == 0 && register_read(target, &s2, GDB_REGNO_S2) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (load, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrsi(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
switch (size) {
case 1:
riscv_program_lbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_lhr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_lwr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 8:
riscv_program_ldr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrci(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
if (increment == 0)
riscv_program_addi(&program, GDB_REGNO_S2, GDB_REGNO_S2, 1);
else
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, increment);
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_write(&program) != ERROR_OK)
return ERROR_FAIL;
result = read_memory_progbuf_inner(target, address, size, count, buffer, increment);
if (result != ERROR_OK) {
/* The full read did not succeed, so we will try to read each word individually. */
/* This will not be fast, but reading outside actual memory is a special case anyway. */
/* It will make the toolchain happier, especially Eclipse Memory View as it reads ahead. */
target_addr_t address_i = address;
uint32_t count_i = 1;
uint8_t *buffer_i = buffer;
for (uint32_t i = 0; i < count; i++, address_i += increment, buffer_i += size) {
/* TODO: This is much slower than it needs to be because we end up
* writing the address to read for every word we read. */
result = read_memory_progbuf_inner(target, address_i, size, count_i, buffer_i, increment);
/* The read of a single word failed, so we will just return 0 for that instead */
if (result != ERROR_OK) {
LOG_DEBUG("error reading single word of %d bytes from 0x%" TARGET_PRIxADDR,
size, address_i);
buf_set_u64(buffer_i, 0, 8 * size, 0);
}
}
result = ERROR_OK;
}
riscv_set_register(target, GDB_REGNO_S0, s0);
riscv_set_register(target, GDB_REGNO_S1, s1);
if (increment == 0)
riscv_set_register(target, GDB_REGNO_S2, s2);
/* Restore MSTATUS */
if (mstatus != mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
return ERROR_FAIL;
return result;
}
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (count == 0)
return ERROR_OK;
if (size != 1 && size != 2 && size != 4 && size != 8 && size != 16) {
LOG_ERROR("BUG: Unsupported size for memory read: %d", size);
return ERROR_FAIL;
}
int ret = ERROR_FAIL;
RISCV_INFO(r);
RISCV013_INFO(info);
char *progbuf_result = "disabled";
char *sysbus_result = "disabled";
char *abstract_result = "disabled";
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
int method = r->mem_access_methods[i];
if (method == RISCV_MEM_ACCESS_PROGBUF) {
if (mem_should_skip_progbuf(target, address, size, true, &progbuf_result))
continue;
ret = read_memory_progbuf(target, address, size, count, buffer, increment);
if (ret != ERROR_OK)
progbuf_result = "failed";
} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
if (mem_should_skip_sysbus(target, address, size, increment, true, &sysbus_result))
continue;
if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0)
ret = read_memory_bus_v0(target, address, size, count, buffer, increment);
else if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 1)
ret = read_memory_bus_v1(target, address, size, count, buffer, increment);
if (ret != ERROR_OK)
sysbus_result = "failed";
} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
if (mem_should_skip_abstract(target, address, size, increment, true, &abstract_result))
continue;
ret = read_memory_abstract(target, address, size, count, buffer, increment);
if (ret != ERROR_OK)
abstract_result = "failed";
} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
/* No further mem access method to try. */
break;
log_mem_access_result(target, ret == ERROR_OK, method, true);
if (ret == ERROR_OK)
return ret;
}
LOG_ERROR("Target %s: Failed to read memory (addr=0x%" PRIx64 ")", target_name(target), address);
LOG_ERROR(" progbuf=%s, sysbus=%s, abstract=%s", progbuf_result, sysbus_result, abstract_result);
return ret;
}
static int write_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
/*1) write sbaddress: for singlewrite and autoincrement, we need to write the address once*/
LOG_DEBUG("System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
dmi_write(target, DM_SBADDRESS0, address);
int64_t value = 0;
int64_t access = 0;
riscv_addr_t offset = 0;
riscv_addr_t t_addr = 0;
const uint8_t *t_buffer = buffer + offset;
/* B.8 Writing Memory, single write check if we write in one go */
if (count == 1) { /* count is in bytes here */
value = buf_get_u64(t_buffer, 0, 8 * size);
access = 0;
access = set_field(access, DM_SBCS_SBACCESS, size/2);
dmi_write(target, DM_SBCS, access);
LOG_DEBUG("\r\naccess: 0x%08" PRIx64, access);
LOG_DEBUG("\r\nwrite_memory:SAB: ONE OFF: value 0x%08" PRIx64, value);
dmi_write(target, DM_SBDATA0, value);
return ERROR_OK;
}
/*B.8 Writing Memory, using autoincrement*/
access = 0;
access = set_field(access, DM_SBCS_SBACCESS, size/2);
access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 1);
LOG_DEBUG("\r\naccess: 0x%08" PRIx64, access);
dmi_write(target, DM_SBCS, access);
/*2)set the value according to the size required and write*/
for (riscv_addr_t i = 0; i < count; ++i) {
offset = size*i;
/* for monitoring only */
t_addr = address + offset;
t_buffer = buffer + offset;
value = buf_get_u64(t_buffer, 0, 8 * size);
LOG_DEBUG("SAB:autoincrement: expected address: 0x%08x value: 0x%08x"
PRIx64, (uint32_t)t_addr, (uint32_t)value);
dmi_write(target, DM_SBDATA0, value);
}
/*reset the autoincrement when finished (something weird is happening if this is not done at the end*/
access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DM_SBCS, access);
return ERROR_OK;
}
static int write_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
uint32_t sbcs = sb_sbaccess(size);
sbcs = set_field(sbcs, DM_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DM_SBCS, sbcs);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
int result;
sb_write_address(target, next_address, true);
while (next_address < end_address) {
LOG_DEBUG("transferring burst starting at address 0x%" TARGET_PRIxADDR,
next_address);
struct riscv_batch *batch = riscv_batch_alloc(
target,
32,
info->dmi_busy_delay + info->bus_master_write_delay);
if (!batch)
return ERROR_FAIL;
for (uint32_t i = (next_address - address) / size; i < count; i++) {
const uint8_t *p = buffer + i * size;
if (riscv_batch_available_scans(batch) < (size + 3) / 4)
break;
if (size > 12)
riscv_batch_add_dmi_write(batch, DM_SBDATA3,
((uint32_t) p[12]) |
(((uint32_t) p[13]) << 8) |
(((uint32_t) p[14]) << 16) |
(((uint32_t) p[15]) << 24));
if (size > 8)
riscv_batch_add_dmi_write(batch, DM_SBDATA2,
((uint32_t) p[8]) |
(((uint32_t) p[9]) << 8) |
(((uint32_t) p[10]) << 16) |
(((uint32_t) p[11]) << 24));
if (size > 4)
riscv_batch_add_dmi_write(batch, DM_SBDATA1,
((uint32_t) p[4]) |
(((uint32_t) p[5]) << 8) |
(((uint32_t) p[6]) << 16) |
(((uint32_t) p[7]) << 24));
uint32_t value = p[0];
if (size > 2) {
value |= ((uint32_t) p[2]) << 16;
value |= ((uint32_t) p[3]) << 24;
}
if (size > 1)
value |= ((uint32_t) p[1]) << 8;
riscv_batch_add_dmi_write(batch, DM_SBDATA0, value);
log_memory_access(address + i * size, value, size, false);
next_address += size;
}
/* Execute the batch of writes */
result = batch_run(target, batch);
riscv_batch_free(batch);
if (result != ERROR_OK)
return result;
/* Read sbcs value.
* At the same time, detect if DMI busy has occurred during the batch write. */
bool dmi_busy_encountered;
if (dmi_op(target, &sbcs, &dmi_busy_encountered, DMI_OP_READ,
DM_SBCS, 0, false, true) != ERROR_OK)
return ERROR_FAIL;
if (dmi_busy_encountered)
LOG_DEBUG("DMI busy encountered during system bus write.");
/* Wait until sbbusy goes low */
time_t start = time(NULL);
while (get_field(sbcs, DM_SBCS_SBBUSY)) {
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec, sbcs);
return ERROR_FAIL;
}
if (dmi_read(target, &sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
}
if (get_field(sbcs, DM_SBCS_SBBUSYERROR)) {
/* We wrote while the target was busy. */
LOG_DEBUG("Sbbusyerror encountered during system bus write.");
/* Clear the sticky error flag. */
dmi_write(target, DM_SBCS, sbcs | DM_SBCS_SBBUSYERROR);
/* Slow down before trying again. */
info->bus_master_write_delay += info->bus_master_write_delay / 10 + 1;
}
if (get_field(sbcs, DM_SBCS_SBBUSYERROR) || dmi_busy_encountered) {
/* Recover from the case when the write commands were issued too fast.
* Determine the address from which to resume writing. */
next_address = sb_read_address(target);
if (next_address < address) {
/* This should never happen, probably buggy hardware. */
LOG_DEBUG("unexpected sbaddress=0x%" TARGET_PRIxADDR
" - buggy sbautoincrement in hw?", next_address);
/* Fail the whole operation. */
return ERROR_FAIL;
}
/* Try again - resume writing. */
continue;
}
unsigned int sberror = get_field(sbcs, DM_SBCS_SBERROR);
if (sberror != 0) {
/* Sberror indicates the bus access failed, but not because we issued the writes
* too fast. Cannot recover. Sbaddress holds the address where the error occurred
* (unless sbautoincrement in the HW is buggy).
*/
target_addr_t sbaddress = sb_read_address(target);
LOG_DEBUG("System bus access failed with sberror=%u (sbaddress=0x%" TARGET_PRIxADDR ")",
sberror, sbaddress);
if (sbaddress < address) {
/* This should never happen, probably buggy hardware.
* Make a note to the user not to trust the sbaddress value. */
LOG_DEBUG("unexpected sbaddress=0x%" TARGET_PRIxADDR
" - buggy sbautoincrement in hw?", next_address);
}
/* Clear the sticky error flag */
dmi_write(target, DM_SBCS, DM_SBCS_SBERROR);
/* Fail the whole operation */
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int write_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
if (riscv_xlen(target) < size * 8) {
LOG_ERROR("XLEN (%d) is too short for %d-bit memory write.",
riscv_xlen(target), size * 8);
return ERROR_FAIL;
}
LOG_DEBUG("writing %d words of %d bytes to 0x%08lx", count, size, (long)address);
select_dmi(target);
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
return ERROR_FAIL;
/* s0 holds the next address to write to
* s1 holds the next data value to write
*/
int result = ERROR_OK;
uint64_t s0, s1;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, &s1, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (store, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrsi(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
switch (size) {
case 1:
riscv_program_sbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_shr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_swr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 8:
riscv_program_sdr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("write_memory_progbuf(): Unsupported size: %d", size);
result = ERROR_FAIL;
goto error;
}
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5) && get_field(mstatus, MSTATUS_MPRV))
riscv_program_csrrci(&program, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN, GDB_REGNO_DCSR);
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
result = riscv_program_ebreak(&program);
if (result != ERROR_OK)
goto error;
riscv_program_write(&program);
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
bool setup_needed = true;
LOG_DEBUG("writing until final address 0x%016" PRIx64, fin_addr);
while (cur_addr < fin_addr) {
LOG_DEBUG("transferring burst starting at address 0x%016" PRIx64,
cur_addr);
struct riscv_batch *batch = riscv_batch_alloc(
target,
32,
info->dmi_busy_delay + info->ac_busy_delay);
if (!batch)
goto error;
/* To write another word, we put it in S1 and execute the program. */
unsigned start = (cur_addr - address) / size;
for (unsigned i = start; i < count; ++i) {
unsigned offset = size*i;
const uint8_t *t_buffer = buffer + offset;
uint64_t value = buf_get_u64(t_buffer, 0, 8 * size);
log_memory_access(address + offset, value, size, false);
cur_addr += size;
if (setup_needed) {
result = register_write_direct(target, GDB_REGNO_S0,
address + offset);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Write value. */
if (size > 4)
dmi_write(target, DM_DATA1, value >> 32);
dmi_write(target, DM_DATA0, value);
/* Write and execute command that moves value into S1 and
* executes program buffer. */
uint32_t command = access_register_command(target,
GDB_REGNO_S1, riscv_xlen(target),
AC_ACCESS_REGISTER_POSTEXEC |
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Turn on autoexec */
dmi_write(target, DM_ABSTRACTAUTO,
1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
setup_needed = false;
} else {
if (size > 4)
riscv_batch_add_dmi_write(batch, DM_DATA1, value >> 32);
riscv_batch_add_dmi_write(batch, DM_DATA0, value);
if (riscv_batch_full(batch))
break;
}
}
result = batch_run(target, batch);
riscv_batch_free(batch);
if (result != ERROR_OK)
goto error;
/* Note that if the scan resulted in a Busy DMI response, it
* is this read to abstractcs that will cause the dmi_busy_delay
* to be incremented if necessary. */
uint32_t abstractcs;
bool dmi_busy_encountered;
result = dmi_op(target, &abstractcs, &dmi_busy_encountered,
DMI_OP_READ, DM_ABSTRACTCS, 0, false, true);
if (result != ERROR_OK)
goto error;
while (get_field(abstractcs, DM_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DM_ABSTRACTCS_CMDERR);
if (info->cmderr == CMDERR_NONE && !dmi_busy_encountered) {
LOG_DEBUG("successful (partial?) memory write");
} else if (info->cmderr == CMDERR_BUSY || dmi_busy_encountered) {
if (info->cmderr == CMDERR_BUSY)
LOG_DEBUG("Memory write resulted in abstract command busy response.");
else if (dmi_busy_encountered)
LOG_DEBUG("Memory write resulted in DMI busy response.");
riscv013_clear_abstract_error(target);
increase_ac_busy_delay(target);
dmi_write(target, DM_ABSTRACTAUTO, 0);
result = register_read_direct(target, &cur_addr, GDB_REGNO_S0);
if (result != ERROR_OK)
goto error;
setup_needed = true;
} else {
LOG_ERROR("error when writing memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
result = ERROR_FAIL;
goto error;
}
}
error:
dmi_write(target, DM_ABSTRACTAUTO, 0);
if (register_write_direct(target, GDB_REGNO_S1, s1) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
/* Restore MSTATUS */
if (mstatus != mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
return ERROR_FAIL;
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
if (size != 1 && size != 2 && size != 4 && size != 8 && size != 16) {
LOG_ERROR("BUG: Unsupported size for memory write: %d", size);
return ERROR_FAIL;
}
int ret = ERROR_FAIL;
RISCV_INFO(r);
RISCV013_INFO(info);
char *progbuf_result = "disabled";
char *sysbus_result = "disabled";
char *abstract_result = "disabled";
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
int method = r->mem_access_methods[i];
if (method == RISCV_MEM_ACCESS_PROGBUF) {
if (mem_should_skip_progbuf(target, address, size, false, &progbuf_result))
continue;
ret = write_memory_progbuf(target, address, size, count, buffer);
if (ret != ERROR_OK)
progbuf_result = "failed";
} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
if (mem_should_skip_sysbus(target, address, size, 0, false, &sysbus_result))
continue;
if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0)
ret = write_memory_bus_v0(target, address, size, count, buffer);
else if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 1)
ret = write_memory_bus_v1(target, address, size, count, buffer);
if (ret != ERROR_OK)
sysbus_result = "failed";
} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
if (mem_should_skip_abstract(target, address, size, 0, false, &abstract_result))
continue;
ret = write_memory_abstract(target, address, size, count, buffer);
if (ret != ERROR_OK)
abstract_result = "failed";
} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
/* No further mem access method to try. */
break;
log_mem_access_result(target, ret == ERROR_OK, method, false);
if (ret == ERROR_OK)
return ret;
}
LOG_ERROR("Target %s: Failed to write memory (addr=0x%" PRIx64 ")", target_name(target), address);
LOG_ERROR(" progbuf=%s, sysbus=%s, abstract=%s", progbuf_result, sysbus_result, abstract_result);
return ret;
}
static int arch_state(struct target *target)
{
return ERROR_OK;
}
struct target_type riscv013_target = {
.name = "riscv",
.init_target = init_target,
.deinit_target = deinit_target,
.examine = examine,
.poll = &riscv_openocd_poll,
.halt = &riscv_halt,
.step = &riscv_openocd_step,
.assert_reset = assert_reset,
.deassert_reset = deassert_reset,
.write_memory = write_memory,
.arch_state = arch_state
};
/*** 0.13-specific implementations of various RISC-V helper functions. ***/
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, int rid)
{
LOG_DEBUG("[%s] reading register %s", target_name(target),
gdb_regno_name(rid));
if (riscv_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
int result = ERROR_OK;
if (rid == GDB_REGNO_PC) {
/* TODO: move this into riscv.c. */
result = register_read(target, value, GDB_REGNO_DPC);
LOG_DEBUG("[%d] read PC from DPC: 0x%" PRIx64, target->coreid, *value);
} else if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
/* TODO: move this into riscv.c. */
result = register_read(target, &dcsr, GDB_REGNO_DCSR);
*value = set_field(0, VIRT_PRIV_V, get_field(dcsr, CSR_DCSR_V));
*value = set_field(*value, VIRT_PRIV_PRV, get_field(dcsr, CSR_DCSR_PRV));
} else {
result = register_read(target, value, rid);
if (result != ERROR_OK)
*value = -1;
}
return result;
}
static int riscv013_set_register(struct target *target, int rid, uint64_t value)
{
riscv013_select_current_hart(target);
LOG_DEBUG("[%d] writing 0x%" PRIx64 " to register %s",
target->coreid, value, gdb_regno_name(rid));
if (rid <= GDB_REGNO_XPR31) {
return register_write_direct(target, rid, value);
} else if (rid == GDB_REGNO_PC) {
LOG_DEBUG("[%d] writing PC to DPC: 0x%" PRIx64, target->coreid, value);
register_write_direct(target, GDB_REGNO_DPC, value);
uint64_t actual_value;
register_read_direct(target, &actual_value, GDB_REGNO_DPC);
LOG_DEBUG("[%d] actual DPC written: 0x%016" PRIx64, target->coreid, actual_value);
if (value != actual_value) {
LOG_ERROR("Written PC (0x%" PRIx64 ") does not match read back "
"value (0x%" PRIx64 ")", value, actual_value);
return ERROR_FAIL;
}
} else if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
register_read(target, &dcsr, GDB_REGNO_DCSR);
dcsr = set_field(dcsr, CSR_DCSR_PRV, get_field(value, VIRT_PRIV_PRV));
dcsr = set_field(dcsr, CSR_DCSR_V, get_field(value, VIRT_PRIV_V));
return register_write_direct(target, GDB_REGNO_DCSR, dcsr);
} else {
return register_write_direct(target, rid, value);
}
return ERROR_OK;
}
static int riscv013_select_current_hart(struct target *target)
{
RISCV_INFO(r);
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (r->current_hartid == dm->current_hartid)
return ERROR_OK;
uint32_t dmcontrol;
/* TODO: can't we just "dmcontrol = DMI_DMACTIVE"? */
if (dmi_read(target, &dmcontrol, DM_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
int result = dmi_write(target, DM_DMCONTROL, dmcontrol);
dm->current_hartid = r->current_hartid;
return result;
}
/* Select all harts that were prepped and that are selectable, clearing the
* prepped flag on the harts that actually were selected. */
static int select_prepped_harts(struct target *target, bool *use_hasel)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (!dm->hasel_supported) {
RISCV_INFO(r);
r->prepped = false;
*use_hasel = false;
return ERROR_OK;
}
assert(dm->hart_count);
unsigned hawindow_count = (dm->hart_count + 31) / 32;
uint32_t hawindow[hawindow_count];
memset(hawindow, 0, sizeof(uint32_t) * hawindow_count);
target_list_t *entry;
unsigned total_selected = 0;
list_for_each_entry(entry, &dm->target_list, list) {
struct target *t = entry->target;
struct riscv_info *r = riscv_info(t);
riscv013_info_t *info = get_info(t);
unsigned index = info->index;
LOG_DEBUG("index=%d, coreid=%d, prepped=%d", index, t->coreid, r->prepped);
r->selected = r->prepped;
if (r->prepped) {
hawindow[index / 32] |= 1 << (index % 32);
r->prepped = false;
total_selected++;
}
index++;
}
/* Don't use hasel if we only need to talk to one hart. */
if (total_selected <= 1) {
*use_hasel = false;
return ERROR_OK;
}
for (unsigned i = 0; i < hawindow_count; i++) {
if (dmi_write(target, DM_HAWINDOWSEL, i) != ERROR_OK)
return ERROR_FAIL;
if (dmi_write(target, DM_HAWINDOW, hawindow[i]) != ERROR_OK)
return ERROR_FAIL;
}
*use_hasel = true;
return ERROR_OK;
}
static int riscv013_halt_prep(struct target *target)
{
return ERROR_OK;
}
static int riscv013_halt_go(struct target *target)
{
bool use_hasel = false;
if (select_prepped_harts(target, &use_hasel) != ERROR_OK)
return ERROR_FAIL;
RISCV_INFO(r);
LOG_DEBUG("halting hart %d", r->current_hartid);
/* Issue the halt command, and then wait for the current hart to halt. */
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_HALTREQ;
if (use_hasel)
dmcontrol |= DM_DMCONTROL_HASEL;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
dmi_write(target, DM_DMCONTROL, dmcontrol);
for (size_t i = 0; i < 256; ++i)
if (riscv_is_halted(target))
break;
if (!riscv_is_halted(target)) {
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (dmi_read(target, &dmcontrol, DM_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR("unable to halt hart %d", r->current_hartid);
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
return ERROR_FAIL;
}
dmcontrol = set_field(dmcontrol, DM_DMCONTROL_HALTREQ, 0);
dmi_write(target, DM_DMCONTROL, dmcontrol);
if (use_hasel) {
target_list_t *entry;
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
list_for_each_entry(entry, &dm->target_list, list) {
struct target *t = entry->target;
t->state = TARGET_HALTED;
if (t->debug_reason == DBG_REASON_NOTHALTED)
t->debug_reason = DBG_REASON_DBGRQ;
}
}
/* The "else" case is handled in halt_go(). */
return ERROR_OK;
}
static int riscv013_resume_go(struct target *target)
{
bool use_hasel = false;
if (select_prepped_harts(target, &use_hasel) != ERROR_OK)
return ERROR_FAIL;
return riscv013_step_or_resume_current_hart(target, false, use_hasel);
}
static int riscv013_step_current_hart(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, true, false);
}
static int riscv013_resume_prep(struct target *target)
{
return riscv013_on_step_or_resume(target, false);
}
static int riscv013_on_step(struct target *target)
{
return riscv013_on_step_or_resume(target, true);
}
static int riscv013_on_halt(struct target *target)
{
return ERROR_OK;
}
static bool riscv013_is_halted(struct target *target)
{
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return false;
if (get_field(dmstatus, DM_DMSTATUS_ANYUNAVAIL))
LOG_ERROR("Hart %d is unavailable.", riscv_current_hartid(target));
if (get_field(dmstatus, DM_DMSTATUS_ANYNONEXISTENT))
LOG_ERROR("Hart %d doesn't exist.", riscv_current_hartid(target));
if (get_field(dmstatus, DM_DMSTATUS_ANYHAVERESET)) {
int hartid = riscv_current_hartid(target);
LOG_INFO("Hart %d unexpectedly reset!", hartid);
/* TODO: Can we make this more obvious to eg. a gdb user? */
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE |
DM_DMCONTROL_ACKHAVERESET;
dmcontrol = set_hartsel(dmcontrol, hartid);
/* If we had been halted when we reset, request another halt. If we
* ended up running out of reset, then the user will (hopefully) get a
* message that a reset happened, that the target is running, and then
* that it is halted again once the request goes through.
*/
if (target->state == TARGET_HALTED)
dmcontrol |= DM_DMCONTROL_HALTREQ;
dmi_write(target, DM_DMCONTROL, dmcontrol);
}
return get_field(dmstatus, DM_DMSTATUS_ALLHALTED);
}
static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
{
riscv_reg_t dcsr;
int result = register_read(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return RISCV_HALT_UNKNOWN;
LOG_DEBUG("dcsr.cause: 0x%" PRIx64, get_field(dcsr, CSR_DCSR_CAUSE));
switch (get_field(dcsr, CSR_DCSR_CAUSE)) {
case CSR_DCSR_CAUSE_SWBP:
return RISCV_HALT_BREAKPOINT;
case CSR_DCSR_CAUSE_TRIGGER:
/* We could get here before triggers are enumerated if a trigger was
* already set when we connected. Force enumeration now, which has the
* side effect of clearing any triggers we did not set. */
riscv_enumerate_triggers(target);
LOG_DEBUG("{%d} halted because of trigger", target->coreid);
return RISCV_HALT_TRIGGER;
case CSR_DCSR_CAUSE_STEP:
return RISCV_HALT_SINGLESTEP;
case CSR_DCSR_CAUSE_DEBUGINT:
case CSR_DCSR_CAUSE_HALT:
return RISCV_HALT_INTERRUPT;
case CSR_DCSR_CAUSE_GROUP:
return RISCV_HALT_GROUP;
}
LOG_ERROR("Unknown DCSR cause field: 0x%" PRIx64, get_field(dcsr, CSR_DCSR_CAUSE));
LOG_ERROR(" dcsr=0x%016lx", (long)dcsr);
return RISCV_HALT_UNKNOWN;
}
int riscv013_write_debug_buffer(struct target *target, unsigned index, riscv_insn_t data)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (dm->progbuf_cache[index] != data) {
if (dmi_write(target, DM_PROGBUF0 + index, data) != ERROR_OK)
return ERROR_FAIL;
dm->progbuf_cache[index] = data;
} else {
LOG_DEBUG("cache hit for 0x%" PRIx32 " @%d", data, index);
}
return ERROR_OK;
}
riscv_insn_t riscv013_read_debug_buffer(struct target *target, unsigned index)
{
uint32_t value;
dmi_read(target, &value, DM_PROGBUF0 + index);
return value;
}
int riscv013_execute_debug_buffer(struct target *target)
{
uint32_t run_program = 0;
run_program = set_field(run_program, AC_ACCESS_REGISTER_AARSIZE, 2);
run_program = set_field(run_program, AC_ACCESS_REGISTER_POSTEXEC, 1);
run_program = set_field(run_program, AC_ACCESS_REGISTER_TRANSFER, 0);
run_program = set_field(run_program, AC_ACCESS_REGISTER_REGNO, 0x1000);
return execute_abstract_command(target, run_program);
}
void riscv013_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_WRITE);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, d);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_READ);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
void riscv013_fill_dmi_nop_u64(struct target *target, char *buf)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_NOP);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0);
}
/* Helper function for riscv013_test_sba_config_reg */
static int get_max_sbaccess(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DM_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DM_SBCS_SBACCESS64);
uint32_t sbaccess32 = get_field(info->sbcs, DM_SBCS_SBACCESS32);
uint32_t sbaccess16 = get_field(info->sbcs, DM_SBCS_SBACCESS16);
uint32_t sbaccess8 = get_field(info->sbcs, DM_SBCS_SBACCESS8);
if (sbaccess128)
return 4;
else if (sbaccess64)
return 3;
else if (sbaccess32)
return 2;
else if (sbaccess16)
return 1;
else if (sbaccess8)
return 0;
else
return -1;
}
static uint32_t get_num_sbdata_regs(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DM_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DM_SBCS_SBACCESS64);
uint32_t sbaccess32 = get_field(info->sbcs, DM_SBCS_SBACCESS32);
if (sbaccess128)
return 4;
else if (sbaccess64)
return 2;
else if (sbaccess32)
return 1;
else
return 0;
}
static int riscv013_test_sba_config_reg(struct target *target,
target_addr_t legal_address, uint32_t num_words,
target_addr_t illegal_address, bool run_sbbusyerror_test)
{
LOG_INFO("Testing System Bus Access as defined by RISC-V Debug Spec v0.13");
uint32_t tests_failed = 0;
uint32_t rd_val;
uint32_t sbcs_orig;
dmi_read(target, &sbcs_orig, DM_SBCS);
uint32_t sbcs = sbcs_orig;
bool test_passed;
int max_sbaccess = get_max_sbaccess(target);
if (max_sbaccess == -1) {
LOG_ERROR("System Bus Access not supported in this config.");
return ERROR_FAIL;
}
if (get_field(sbcs, DM_SBCS_SBVERSION) != 1) {
LOG_ERROR("System Bus Access unsupported SBVERSION (%d). Only version 1 is supported.",
get_field(sbcs, DM_SBCS_SBVERSION));
return ERROR_FAIL;
}
uint32_t num_sbdata_regs = get_num_sbdata_regs(target);
assert(num_sbdata_regs);
uint32_t rd_buf[num_sbdata_regs];
/* Test 1: Simple write/read test */
test_passed = true;
sbcs = set_field(sbcs_orig, DM_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DM_SBCS, sbcs);
uint32_t test_patterns[4] = {0xdeadbeef, 0xfeedbabe, 0x12345678, 0x08675309};
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DM_SBCS_SBACCESS, sbaccess);
dmi_write(target, DM_SBCS, sbcs);
uint32_t compare_mask = (sbaccess == 0) ? 0xff : (sbaccess == 1) ? 0xffff : 0xffffffff;
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess);
uint32_t wr_data[num_sbdata_regs];
for (uint32_t j = 0; j < num_sbdata_regs; j++)
wr_data[j] = test_patterns[j] + i;
write_memory_sba_simple(target, addr, wr_data, num_sbdata_regs, sbcs);
}
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess);
read_memory_sba_simple(target, addr, rd_buf, num_sbdata_regs, sbcs);
for (uint32_t j = 0; j < num_sbdata_regs; j++) {
if (((test_patterns[j]+i)&compare_mask) != (rd_buf[j]&compare_mask)) {
LOG_ERROR("System Bus Access Test 1: Error reading non-autoincremented address %x,"
"expected val = %x, read val = %x", addr, test_patterns[j]+i, rd_buf[j]);
test_passed = false;
tests_failed++;
}
}
}
}
if (test_passed)
LOG_INFO("System Bus Access Test 1: Simple write/read test PASSED.");
/* Test 2: Address autoincrement test */
target_addr_t curr_addr;
target_addr_t prev_addr;
test_passed = true;
sbcs = set_field(sbcs_orig, DM_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DM_SBCS, sbcs);
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DM_SBCS_SBACCESS, sbaccess);
dmi_write(target, DM_SBCS, sbcs);
dmi_write(target, DM_SBADDRESS0, legal_address);
read_sbcs_nonbusy(target, &sbcs);
curr_addr = legal_address;
for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs);
curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && (i != 0)) {
LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x.", sbaccess);
test_passed = false;
tests_failed++;
}
dmi_write(target, DM_SBDATA0, i);
}
read_sbcs_nonbusy(target, &sbcs);
dmi_write(target, DM_SBADDRESS0, legal_address);
uint32_t val;
sbcs = set_field(sbcs, DM_SBCS_SBREADONDATA, 1);
dmi_write(target, DM_SBCS, sbcs);
dmi_read(target, &val, DM_SBDATA0); /* Dummy read to trigger first system bus read */
curr_addr = legal_address;
for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs);
curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && (i != 0)) {
LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x", sbaccess);
test_passed = false;
tests_failed++;
}
dmi_read(target, &val, DM_SBDATA0);
read_sbcs_nonbusy(target, &sbcs);
if (i != val) {
LOG_ERROR("System Bus Access Test 2: Error reading auto-incremented address,"
"expected val = %x, read val = %x.", i, val);
test_passed = false;
tests_failed++;
}
}
}
if (test_passed)
LOG_INFO("System Bus Access Test 2: Address auto-increment test PASSED.");
/* Test 3: Read from illegal address */
read_memory_sba_simple(target, illegal_address, rd_buf, 1, sbcs_orig);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 2) {
sbcs = set_field(sbcs_orig, DM_SBCS_SBERROR, 2);
dmi_write(target, DM_SBCS, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 3: Illegal address read test PASSED.");
else
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED, unable to clear to 0.");
} else {
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED, unable to set error code.");
}
/* Test 4: Write to illegal address */
write_memory_sba_simple(target, illegal_address, test_patterns, 1, sbcs_orig);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 2) {
sbcs = set_field(sbcs_orig, DM_SBCS_SBERROR, 2);
dmi_write(target, DM_SBCS, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 4: Illegal address write test PASSED.");
else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED, unable to set error code.");
tests_failed++;
}
/* Test 5: Write with unsupported sbaccess size */
uint32_t sbaccess128 = get_field(sbcs_orig, DM_SBCS_SBACCESS128);
if (sbaccess128) {
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED, all sbaccess sizes supported.");
} else {
sbcs = set_field(sbcs_orig, DM_SBCS_SBACCESS, 4);
write_memory_sba_simple(target, legal_address, test_patterns, 1, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 4) {
sbcs = set_field(sbcs_orig, DM_SBCS_SBERROR, 4);
dmi_write(target, DM_SBCS, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED.");
else {
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to set error code.");
tests_failed++;
}
}
/* Test 6: Write to misaligned address */
sbcs = set_field(sbcs_orig, DM_SBCS_SBACCESS, 1);
write_memory_sba_simple(target, legal_address+1, test_patterns, 1, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 3) {
sbcs = set_field(sbcs_orig, DM_SBCS_SBERROR, 3);
dmi_write(target, DM_SBCS, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 6: SBCS address alignment error test PASSED");
else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to set error code.");
tests_failed++;
}
/* Test 7: Set sbbusyerror, only run this case in simulation as it is likely
* impossible to hit otherwise */
if (run_sbbusyerror_test) {
sbcs = set_field(sbcs_orig, DM_SBCS_SBREADONADDR, 1);
dmi_write(target, DM_SBCS, sbcs);
for (int i = 0; i < 16; i++)
dmi_write(target, DM_SBDATA0, 0xdeadbeef);
for (int i = 0; i < 16; i++)
dmi_write(target, DM_SBADDRESS0, legal_address);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBBUSYERROR)) {
sbcs = set_field(sbcs_orig, DM_SBCS_SBBUSYERROR, 1);
dmi_write(target, DM_SBCS, sbcs);
dmi_read(target, &rd_val, DM_SBCS);
if (get_field(rd_val, DM_SBCS_SBBUSYERROR) == 0)
LOG_INFO("System Bus Access Test 7: SBCS sbbusyerror test PASSED.");
else {
LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to set error code.");
tests_failed++;
}
}
if (tests_failed == 0) {
LOG_INFO("ALL TESTS PASSED");
return ERROR_OK;
} else {
LOG_ERROR("%d TESTS FAILED", tests_failed);
return ERROR_FAIL;
}
}
void write_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *write_data, uint32_t write_size, uint32_t sbcs)
{
RISCV013_INFO(info);
uint32_t rd_sbcs;
uint32_t masked_addr;
uint32_t sba_size = get_field(info->sbcs, DM_SBCS_SBASIZE);
read_sbcs_nonbusy(target, &rd_sbcs);
uint32_t sbcs_no_readonaddr = set_field(sbcs, DM_SBCS_SBREADONADDR, 0);
dmi_write(target, DM_SBCS, sbcs_no_readonaddr);
for (uint32_t i = 0; i < sba_size/32; i++) {
masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3)
dmi_write(target, DM_SBADDRESS0+i, masked_addr);
else
dmi_write(target, DM_SBADDRESS3, masked_addr);
}
/* Write SBDATA registers starting with highest address, since write to
* SBDATA0 triggers write */
for (int i = write_size-1; i >= 0; i--)
dmi_write(target, DM_SBDATA0+i, write_data[i]);
}
void read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *rd_buf, uint32_t read_size, uint32_t sbcs)
{
RISCV013_INFO(info);
uint32_t rd_sbcs;
uint32_t masked_addr;
uint32_t sba_size = get_field(info->sbcs, DM_SBCS_SBASIZE);
read_sbcs_nonbusy(target, &rd_sbcs);
uint32_t sbcs_readonaddr = set_field(sbcs, DM_SBCS_SBREADONADDR, 1);
dmi_write(target, DM_SBCS, sbcs_readonaddr);
/* Write addresses starting with highest address register */
for (int i = sba_size/32-1; i >= 0; i--) {
masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3)
dmi_write(target, DM_SBADDRESS0+i, masked_addr);
else
dmi_write(target, DM_SBADDRESS3, masked_addr);
}
read_sbcs_nonbusy(target, &rd_sbcs);
for (uint32_t i = 0; i < read_size; i++)
dmi_read(target, &(rd_buf[i]), DM_SBDATA0+i);
}
int riscv013_dmi_write_u64_bits(struct target *target)
{
RISCV013_INFO(info);
return info->abits + DTM_DMI_DATA_LENGTH + DTM_DMI_OP_LENGTH;
}
static int maybe_execute_fence_i(struct target *target)
{
if (has_sufficient_progbuf(target, 3))
return execute_fence(target);
return ERROR_OK;
}
/* Helper Functions. */
static int riscv013_on_step_or_resume(struct target *target, bool step)
{
if (maybe_execute_fence_i(target) != ERROR_OK)
return ERROR_FAIL;
/* We want to twiddle some bits in the debug CSR so debugging works. */
riscv_reg_t dcsr;
int result = register_read(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return result;
dcsr = set_field(dcsr, CSR_DCSR_STEP, step);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKM, riscv_ebreakm);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKS, riscv_ebreaks);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKU, riscv_ebreaku);
return riscv_set_register(target, GDB_REGNO_DCSR, dcsr);
}
static int riscv013_step_or_resume_current_hart(struct target *target,
bool step, bool use_hasel)
{
RISCV_INFO(r);
LOG_DEBUG("resuming hart %d (for step?=%d)", r->current_hartid, step);
if (!riscv_is_halted(target)) {
LOG_ERROR("Hart %d is not halted!", r->current_hartid);
return ERROR_FAIL;
}
/* Issue the resume command, and then wait for the current hart to resume. */
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_RESUMEREQ;
if (use_hasel)
dmcontrol |= DM_DMCONTROL_HASEL;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
dmi_write(target, DM_DMCONTROL, dmcontrol);
dmcontrol = set_field(dmcontrol, DM_DMCONTROL_HASEL, 0);
dmcontrol = set_field(dmcontrol, DM_DMCONTROL_RESUMEREQ, 0);
uint32_t dmstatus;
for (size_t i = 0; i < 256; ++i) {
usleep(10);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(dmstatus, DM_DMSTATUS_ALLRESUMEACK) == 0)
continue;
if (step && get_field(dmstatus, DM_DMSTATUS_ALLHALTED) == 0)
continue;
dmi_write(target, DM_DMCONTROL, dmcontrol);
return ERROR_OK;
}
dmi_write(target, DM_DMCONTROL, dmcontrol);
LOG_ERROR("unable to resume hart %d", r->current_hartid);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
if (step) {
LOG_ERROR(" was stepping, halting");
riscv_halt(target);
return ERROR_OK;
}
return ERROR_FAIL;
}
void riscv013_clear_abstract_error(struct target *target)
{
/* Wait for busy to go away. */
time_t start = time(NULL);
uint32_t abstractcs;
dmi_read(target, &abstractcs, DM_ABSTRACTCS);
while (get_field(abstractcs, DM_ABSTRACTCS_BUSY)) {
dmi_read(target, &abstractcs, DM_ABSTRACTCS);
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("abstractcs.busy is not going low after %d seconds "
"(abstractcs=0x%x). The target is either really slow or "
"broken. You could increase the timeout with riscv "
"set_command_timeout_sec.",
riscv_command_timeout_sec, abstractcs);
break;
}
}
/* Clear the error status. */
dmi_write(target, DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR);
}