openocd/src/jtag/zy1000/zy1000.c

809 lines
17 KiB
C

/***************************************************************************
* Copyright (C) 2007-2008 by Øyvind Harboe *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "embeddedice.h"
#include "minidriver.h"
#include "interface.h"
#include <cyg/hal/hal_io.h> // low level i/o
#include <cyg/hal/hal_diag.h>
#define ZYLIN_VERSION "1.54"
#define ZYLIN_DATE __DATE__
#define ZYLIN_TIME __TIME__
#define ZYLIN_OPENOCD "$Revision$"
#define ZYLIN_OPENOCD_VERSION "Zylin JTAG ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE " " ZYLIN_TIME
/* low level command set
*/
void zy1000_reset(int trst, int srst);
int zy1000_speed(int speed);
int zy1000_register_commands(struct command_context_s *cmd_ctx);
int zy1000_init(void);
int zy1000_quit(void);
/* interface commands */
int zy1000_handle_zy1000_port_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int zy1000_khz(int khz, int *jtag_speed)
{
if (khz == 0)
{
*jtag_speed = 0;
}
else
{
*jtag_speed = 64000/khz;
}
return ERROR_OK;
}
static int zy1000_speed_div(int speed, int *khz)
{
if (speed == 0)
{
*khz = 0;
}
else
{
*khz = 64000/speed;
}
return ERROR_OK;
}
static bool readPowerDropout(void)
{
cyg_uint32 state;
// sample and clear power dropout
HAL_WRITE_UINT32(ZY1000_JTAG_BASE + 0x10, 0x80);
HAL_READ_UINT32(ZY1000_JTAG_BASE + 0x10, state);
bool powerDropout;
powerDropout = (state & 0x80) != 0;
return powerDropout;
}
static bool readSRST(void)
{
cyg_uint32 state;
// sample and clear SRST sensing
HAL_WRITE_UINT32(ZY1000_JTAG_BASE + 0x10, 0x00000040);
HAL_READ_UINT32(ZY1000_JTAG_BASE + 0x10, state);
bool srstAsserted;
srstAsserted = (state & 0x40) != 0;
return srstAsserted;
}
static int zy1000_srst_asserted(int *srst_asserted)
{
*srst_asserted = readSRST();
return ERROR_OK;
}
static int zy1000_power_dropout(int *dropout)
{
*dropout = readPowerDropout();
return ERROR_OK;
}
jtag_interface_t zy1000_interface =
{
.name = "ZY1000",
.execute_queue = NULL,
.speed = zy1000_speed,
.register_commands = zy1000_register_commands,
.init = zy1000_init,
.quit = zy1000_quit,
.khz = zy1000_khz,
.speed_div = zy1000_speed_div,
.power_dropout = zy1000_power_dropout,
.srst_asserted = zy1000_srst_asserted,
};
void zy1000_reset(int trst, int srst)
{
LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
if (!srst)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
}
else
{
/* Danger!!! if clk != 0 when in
* idle in TAP_IDLE, reset halt on str912 will fail.
*/
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
}
if (!trst)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
}
else
{
/* assert reset */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
}
if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
{
waitIdle();
/* we're now in the RESET state until trst is deasserted */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
} else
{
/* We'll get RCLK failure when we assert TRST, so clear any false positives here */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
}
/* wait for srst to float back up */
if (!srst)
{
int i;
for (i = 0; i < 1000; i++)
{
// We don't want to sense our own reset, so we clear here.
// There is of course a timing hole where we could loose
// a "real" reset.
if (!readSRST())
break;
/* wait 1ms */
alive_sleep(1);
}
if (i == 1000)
{
LOG_USER("SRST didn't deassert after %dms", i);
} else if (i > 1)
{
LOG_USER("SRST took %dms to deassert", i);
}
}
}
int zy1000_speed(int speed)
{
if (speed == 0)
{
/*0 means RCLK*/
speed = 0;
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
LOG_DEBUG("jtag_speed using RCLK");
}
else
{
if (speed > 8190 || speed < 2)
{
LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
return ERROR_INVALID_ARGUMENTS;
}
LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
}
return ERROR_OK;
}
static bool savePower;
static void setPower(bool power)
{
savePower = power;
if (power)
{
HAL_WRITE_UINT32(ZY1000_JTAG_BASE + 0x14, 0x8);
} else
{
HAL_WRITE_UINT32(ZY1000_JTAG_BASE + 0x10, 0x8);
}
}
int handle_power_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 1)
{
return ERROR_INVALID_ARGUMENTS;
}
if (argc == 1)
{
if (strcmp(args[0], "on") == 0)
{
setPower(1);
}
else if (strcmp(args[0], "off") == 0)
{
setPower(0);
} else
{
command_print(cmd_ctx, "arg is \"on\" or \"off\"");
return ERROR_INVALID_ARGUMENTS;
}
}
command_print(cmd_ctx, "Target power %s", savePower ? "on" : "off");
return ERROR_OK;
}
/* Give TELNET a way to find out what version this is */
static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if ((argc < 1) || (argc > 2))
return JIM_ERR;
char buff[128];
const char *version_str = NULL;
if (argc == 1)
{
version_str = ZYLIN_OPENOCD_VERSION;
} else
{
const char *str = Jim_GetString(argv[1], NULL);
if (strcmp("openocd", str) == 0)
{
int revision;
revision = atol(ZYLIN_OPENOCD + strlen("XRevision: "));
sprintf(buff, "%d", revision);
version_str = buff;
}
else if (strcmp("zy1000", str) == 0)
{
version_str = ZYLIN_VERSION;
}
else if (strcmp("date", str) == 0)
{
version_str = ZYLIN_DATE;
}
else if (strcmp("pcb", str) == 0)
{
#ifdef CYGPKG_HAL_NIOS2
version_str="c";
#else
version_str="b";
#endif
}
else
{
return JIM_ERR;
}
}
Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
return JIM_OK;
}
#ifdef CYGPKG_HAL_NIOS2
static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 2)
return JIM_ERR;
int length;
int stat;
const char *str = Jim_GetString(argv[1], &length);
/* BUG!!!! skip header! */
void *firmware_address=0x4000000;
int firmware_length=0x100000;
if (length>firmware_length)
return JIM_ERR;
void *err_addr;
if ((stat = flash_erase((void *)firmware_address, firmware_length, (void **)&err_addr)) != 0)
{
return JIM_ERR;
}
if ((stat = flash_program(firmware_address, str, length, (void **)&err_addr)) != 0)
return JIM_ERR;
return JIM_OK;
}
#endif
static int
zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
int argc,
Jim_Obj * const *argv)
{
if (argc != 1)
{
Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
return JIM_ERR;
}
cyg_uint32 status;
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
return JIM_OK;
}
int zy1000_register_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, NULL, "power", handle_power_command, COMMAND_ANY,
"power <on/off> - turn power switch to target on/off. No arguments - print status.");
Jim_CreateCommand(interp, "zy1000_version", jim_zy1000_version, NULL, NULL);
Jim_CreateCommand(interp, "powerstatus", zylinjtag_Jim_Command_powerstatus, NULL, NULL);
#ifdef CYGPKG_HAL_NIOS2
Jim_CreateCommand(interp, "updatezy1000firmware", jim_zy1000_writefirmware, NULL, NULL);
#endif
return ERROR_OK;
}
int zy1000_init(void)
{
LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
setPower(true); // on by default
/* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
zy1000_reset(0, 0);
zy1000_speed(jtag_get_speed());
return ERROR_OK;
}
int zy1000_quit(void)
{
return ERROR_OK;
}
int interface_jtag_execute_queue(void)
{
cyg_uint32 empty;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
/* clear JTAG error register */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
if ((empty&0x400) != 0)
{
LOG_WARNING("RCLK timeout");
/* the error is informative only as we don't want to break the firmware if there
* is a false positive.
*/
// return ERROR_FAIL;
}
return ERROR_OK;
}
static cyg_uint32 getShiftValue(void)
{
cyg_uint32 value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
VERBOSE(LOG_INFO("getShiftValue %08x", value));
return value;
}
#if 0
static cyg_uint32 getShiftValueFlip(void)
{
cyg_uint32 value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
return value;
}
#endif
#if 0
static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, cyg_uint32 value)
{
VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
cyg_uint32 a,b;
a = state;
b = endState;
ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
VERBOSE(getShiftValueFlip());
}
#endif
extern int jtag_check_value(uint8_t *captured, void *priv);
static void gotoEndState(tap_state_t end_state)
{
setCurrentState(end_state);
}
static __inline void scanFields(int num_fields, const scan_field_t *fields, tap_state_t shiftState, int pause)
{
int i;
int j;
int k;
for (i = 0; i < num_fields; i++)
{
cyg_uint32 value;
uint8_t *inBuffer = NULL;
// figure out where to store the input data
int num_bits = fields[i].num_bits;
if (fields[i].in_value != NULL)
{
inBuffer = fields[i].in_value;
}
// here we shuffle N bits out/in
j = 0;
while (j < num_bits)
{
tap_state_t pause_state;
int l;
k = num_bits-j;
pause_state = (shiftState == TAP_DRSHIFT)?TAP_DRSHIFT:TAP_IRSHIFT;
if (k > 32)
{
k = 32;
/* we have more to shift out */
} else if (pause&&(i == num_fields-1))
{
/* this was the last to shift out this time */
pause_state = (shiftState==TAP_DRSHIFT)?TAP_DRPAUSE:TAP_IRPAUSE;
}
// we have (num_bits + 7)/8 bytes of bits to toggle out.
// bits are pushed out LSB to MSB
value = 0;
if (fields[i].out_value != NULL)
{
for (l = 0; l < k; l += 8)
{
value|=fields[i].out_value[(j + l)/8]<<l;
}
}
/* mask away unused bits for easier debugging */
value&=~(((uint32_t)0xffffffff) << k);
shiftValueInner(shiftState, pause_state, k, value);
if (inBuffer != NULL)
{
// data in, LSB to MSB
value = getShiftValue();
// we're shifting in data to MSB, shift data to be aligned for returning the value
value >>= 32-k;
for (l = 0; l < k; l += 8)
{
inBuffer[(j + l)/8]=(value >> l)&0xff;
}
}
j += k;
}
}
}
int interface_jtag_set_end_state(tap_state_t state)
{
return ERROR_OK;
}
int interface_jtag_add_ir_scan(int num_fields, const scan_field_t *fields, tap_state_t state)
{
int j;
int scan_size = 0;
jtag_tap_t *tap, *nextTap;
for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
{
nextTap = jtag_tap_next_enabled(tap);
int pause = (nextTap==NULL);
int found = 0;
scan_size = tap->ir_length;
/* search the list */
for (j = 0; j < num_fields; j++)
{
if (tap == fields[j].tap)
{
found = 1;
scanFields(1, fields + j, TAP_IRSHIFT, pause);
/* update device information */
buf_cpy(fields[j].out_value, tap->cur_instr, scan_size);
tap->bypass = 0;
break;
}
}
if (!found)
{
/* if a device isn't listed, set it to BYPASS */
uint8_t ones[]={0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
scan_field_t tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.out_value = ones;
tmp.num_bits = scan_size;
scanFields(1, &tmp, TAP_IRSHIFT, pause);
/* update device information */
buf_cpy(tmp.out_value, tap->cur_instr, scan_size);
tap->bypass = 1;
}
}
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_plain_ir_scan(int num_fields, const scan_field_t *fields, tap_state_t state)
{
scanFields(num_fields, fields, TAP_IRSHIFT, 1);
gotoEndState(state);
return ERROR_OK;
}
/*extern jtag_command_t **jtag_get_last_command_p(void);*/
int interface_jtag_add_dr_scan(int num_fields, const scan_field_t *fields, tap_state_t state)
{
int j;
jtag_tap_t *tap, *nextTap;
for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
{
nextTap = jtag_tap_next_enabled(tap);
int found = 0;
int pause = (nextTap==NULL);
for (j = 0; j < num_fields; j++)
{
if (tap == fields[j].tap)
{
found = 1;
scanFields(1, fields+j, TAP_DRSHIFT, pause);
}
}
if (!found)
{
scan_field_t tmp;
/* program the scan field to 1 bit length, and ignore it's value */
tmp.num_bits = 1;
tmp.out_value = NULL;
tmp.in_value = NULL;
scanFields(1, &tmp, TAP_DRSHIFT, pause);
}
else
{
}
}
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_plain_dr_scan(int num_fields, const scan_field_t *fields, tap_state_t state)
{
scanFields(num_fields, fields, TAP_DRSHIFT, 1);
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_tlr()
{
setCurrentState(TAP_RESET);
return ERROR_OK;
}
extern int jtag_nsrst_delay;
extern int jtag_ntrst_delay;
int interface_jtag_add_reset(int req_trst, int req_srst)
{
zy1000_reset(req_trst, req_srst);
return ERROR_OK;
}
static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
{
/* num_cycles can be 0 */
setCurrentState(clockstate);
/* execute num_cycles, 32 at the time. */
int i;
for (i = 0; i < num_cycles; i += 32)
{
int num;
num = 32;
if (num_cycles-i < num)
{
num = num_cycles-i;
}
shiftValueInner(clockstate, clockstate, num, 0);
}
#if !TEST_MANUAL()
/* finish in end_state */
setCurrentState(state);
#else
tap_state_t t = TAP_IDLE;
/* test manual drive code on any target */
int tms;
uint8_t tms_scan = tap_get_tms_path(t, state);
int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
for (i = 0; i < tms_count; i++)
{
tms = (tms_scan >> i) & 1;
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
#endif
return ERROR_OK;
}
int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
{
return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
}
int interface_jtag_add_clocks(int num_cycles)
{
return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
}
int interface_jtag_add_sleep(uint32_t us)
{
jtag_sleep(us);
return ERROR_OK;
}
int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
{
int state_count;
int tms = 0;
/*wait for the fifo to be empty*/
waitIdle();
state_count = 0;
tap_state_t cur_state = cmd_queue_cur_state;
while (num_states)
{
if (tap_state_transition(cur_state, false) == path[state_count])
{
tms = 0;
}
else if (tap_state_transition(cur_state, true) == path[state_count])
{
tms = 1;
}
else
{
LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
exit(-1);
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
cur_state = path[state_count];
state_count++;
num_states--;
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, cur_state);
return ERROR_OK;
}
void embeddedice_write_dcc(jtag_tap_t *tap, int reg_addr, uint8_t *buffer, int little, int count)
{
// static int const reg_addr = 0x5;
tap_state_t end_state = jtag_get_end_state();
if (jtag_tap_next_enabled(jtag_tap_next_enabled(NULL)) == NULL)
{
/* better performance via code duplication */
if (little)
{
int i;
for (i = 0; i < count; i++)
{
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, 1));
shiftValueInner(TAP_DRSHIFT, end_state, 6, reg_addr | (1 << 5));
buffer += 4;
}
} else
{
int i;
for (i = 0; i < count; i++)
{
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, 0));
shiftValueInner(TAP_DRSHIFT, end_state, 6, reg_addr | (1 << 5));
buffer += 4;
}
}
}
else
{
int i;
for (i = 0; i < count; i++)
{
embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
}
}