openocd/src/target/image.c

1039 lines
28 KiB
C

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "image.h"
#include "target.h"
#include "log.h"
/* convert ELF header field to host endianness */
#define field16(elf,field)\
((elf->endianness == ELFDATA2LSB)? \
le_to_h_u16((uint8_t*)&field):be_to_h_u16((uint8_t*)&field))
#define field32(elf,field)\
((elf->endianness == ELFDATA2LSB)? \
le_to_h_u32((uint8_t*)&field):be_to_h_u32((uint8_t*)&field))
static int autodetect_image_type(image_t *image, char *url)
{
int retval;
fileio_t fileio;
uint32_t read_bytes;
uint8_t buffer[9];
/* read the first 4 bytes of image */
if ((retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY)) != ERROR_OK)
{
return retval;
}
retval = fileio_read(&fileio, 9, buffer, &read_bytes);
if (retval == ERROR_OK)
{
if (read_bytes != 9)
{
retval = ERROR_FILEIO_OPERATION_FAILED;
}
}
fileio_close(&fileio);
if (retval != ERROR_OK)
return retval;
/* check header against known signatures */
if (strncmp((char*)buffer,ELFMAG,SELFMAG) == 0)
{
LOG_DEBUG("ELF image detected.");
image->type = IMAGE_ELF;
}
else if ((buffer[0]==':') /* record start byte */
&&(isxdigit(buffer[1]))
&&(isxdigit(buffer[2]))
&&(isxdigit(buffer[3]))
&&(isxdigit(buffer[4]))
&&(isxdigit(buffer[5]))
&&(isxdigit(buffer[6]))
&&(buffer[7]=='0') /* record type : 00 -> 05 */
&&(buffer[8]>='0') && (buffer[8]<'6'))
{
LOG_DEBUG("IHEX image detected.");
image->type = IMAGE_IHEX;
}
else if ((buffer[0] == 'S') /* record start byte */
&&(isxdigit(buffer[1]))
&&(isxdigit(buffer[2]))
&&(isxdigit(buffer[3]))
&&(buffer[1] >= '0') && (buffer[1] < '9'))
{
LOG_DEBUG("S19 image detected.");
image->type = IMAGE_SRECORD;
}
else
{
image->type = IMAGE_BINARY;
}
return ERROR_OK;
}
static int identify_image_type(image_t *image, char *type_string, char *url)
{
if (type_string)
{
if (!strcmp(type_string, "bin"))
{
image->type = IMAGE_BINARY;
}
else if (!strcmp(type_string, "ihex"))
{
image->type = IMAGE_IHEX;
}
else if (!strcmp(type_string, "elf"))
{
image->type = IMAGE_ELF;
}
else if (!strcmp(type_string, "mem"))
{
image->type = IMAGE_MEMORY;
}
else if (!strcmp(type_string, "s19"))
{
image->type = IMAGE_SRECORD;
}
else if (!strcmp(type_string, "build"))
{
image->type = IMAGE_BUILDER;
}
else
{
return ERROR_IMAGE_TYPE_UNKNOWN;
}
}
else
{
return autodetect_image_type(image, url);
}
return ERROR_OK;
}
static int image_ihex_buffer_complete(image_t *image)
{
image_ihex_t *ihex = image->type_private;
fileio_t *fileio = &ihex->fileio;
uint32_t full_address = 0x0;
uint32_t cooked_bytes;
int i;
char lpszLine[1023];
/* we can't determine the number of sections that we'll have to create ahead of time,
* so we locally hold them until parsing is finished */
image_section_t section[IMAGE_MAX_SECTIONS];
ihex->buffer = malloc(fileio->size >> 1);
cooked_bytes = 0x0;
image->num_sections = 0;
section[image->num_sections].private = &ihex->buffer[cooked_bytes];
section[image->num_sections].base_address = 0x0;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK)
{
uint32_t count;
uint32_t address;
uint32_t record_type;
uint32_t checksum;
uint8_t cal_checksum = 0;
uint32_t bytes_read = 0;
if (sscanf(&lpszLine[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32 , &count, &address, &record_type) != 3)
{
return ERROR_IMAGE_FORMAT_ERROR;
}
bytes_read += 9;
cal_checksum += (uint8_t)count;
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
cal_checksum += (uint8_t)record_type;
if (record_type == 0) /* Data Record */
{
if ((full_address & 0xffff) != address)
{
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0)
{
image->num_sections++;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private = &ihex->buffer[cooked_bytes];
}
section[image->num_sections].base_address =
(full_address & 0xffff0000) | address;
full_address = (full_address & 0xffff0000) | address;
}
while (count-- > 0)
{
unsigned value;
sscanf(&lpszLine[bytes_read], "%2x", &value);
ihex->buffer[cooked_bytes] = (uint8_t)value;
cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
bytes_read += 2;
cooked_bytes += 1;
section[image->num_sections].size += 1;
full_address++;
}
}
else if (record_type == 1) /* End of File Record */
{
/* finish the current section */
image->num_sections++;
/* copy section information */
image->sections = malloc(sizeof(image_section_t) * image->num_sections);
for (i = 0; i < image->num_sections; i++)
{
image->sections[i].private = section[i].private;
image->sections[i].base_address = section[i].base_address;
image->sections[i].size = section[i].size;
image->sections[i].flags = section[i].flags;
}
return ERROR_OK;
}
else if (record_type == 2) /* Linear Address Record */
{
uint16_t upper_address;
sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
cal_checksum += (uint8_t)(upper_address >> 8);
cal_checksum += (uint8_t)upper_address;
bytes_read += 4;
if ((full_address >> 4) != upper_address)
{
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0)
{
image->num_sections++;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private = &ihex->buffer[cooked_bytes];
}
section[image->num_sections].base_address =
(full_address & 0xffff) | (upper_address << 4);
full_address = (full_address & 0xffff) | (upper_address << 4);
}
}
else if (record_type == 3) /* Start Segment Address Record */
{
uint32_t dummy;
/* "Start Segment Address Record" will not be supported */
/* but we must consume it, and do not create an error. */
while (count-- > 0)
{
sscanf(&lpszLine[bytes_read], "%2" SCNx32 , &dummy);
cal_checksum += (uint8_t)dummy;
bytes_read += 2;
}
}
else if (record_type == 4) /* Extended Linear Address Record */
{
uint16_t upper_address;
sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
cal_checksum += (uint8_t)(upper_address >> 8);
cal_checksum += (uint8_t)upper_address;
bytes_read += 4;
if ((full_address >> 16) != upper_address)
{
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0)
{
image->num_sections++;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private = &ihex->buffer[cooked_bytes];
}
section[image->num_sections].base_address =
(full_address & 0xffff) | (upper_address << 16);
full_address = (full_address & 0xffff) | (upper_address << 16);
}
}
else if (record_type == 5) /* Start Linear Address Record */
{
uint32_t start_address;
sscanf(&lpszLine[bytes_read], "%8" SCNx32, &start_address);
cal_checksum += (uint8_t)(start_address >> 24);
cal_checksum += (uint8_t)(start_address >> 16);
cal_checksum += (uint8_t)(start_address >> 8);
cal_checksum += (uint8_t)start_address;
bytes_read += 8;
image->start_address_set = 1;
image->start_address = be_to_h_u32((uint8_t*)&start_address);
}
else
{
LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
return ERROR_IMAGE_FORMAT_ERROR;
}
sscanf(&lpszLine[bytes_read], "%2" SCNx32 , &checksum);
bytes_read += 2;
if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1))
{
/* checksum failed */
LOG_ERROR("incorrect record checksum found in IHEX file");
return ERROR_IMAGE_CHECKSUM;
}
}
LOG_ERROR("premature end of IHEX file, no end-of-file record found");
return ERROR_IMAGE_FORMAT_ERROR;
}
static int image_elf_read_headers(image_t *image)
{
image_elf_t *elf = image->type_private;
uint32_t read_bytes;
uint32_t i,j;
int retval;
elf->header = malloc(sizeof(Elf32_Ehdr));
if (elf->header == NULL)
{
LOG_ERROR("insufficient memory to perform operation ");
return ERROR_FILEIO_OPERATION_FAILED;
}
if ((retval = fileio_read(&elf->fileio, sizeof(Elf32_Ehdr), (uint8_t*)elf->header, &read_bytes)) != ERROR_OK)
{
LOG_ERROR("cannot read ELF file header, read failed");
return ERROR_FILEIO_OPERATION_FAILED;
}
if (read_bytes != sizeof(Elf32_Ehdr))
{
LOG_ERROR("cannot read ELF file header, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
if (strncmp((char*)elf->header->e_ident,ELFMAG,SELFMAG) != 0)
{
LOG_ERROR("invalid ELF file, bad magic number");
return ERROR_IMAGE_FORMAT_ERROR;
}
if (elf->header->e_ident[EI_CLASS]!=ELFCLASS32)
{
LOG_ERROR("invalid ELF file, only 32bits files are supported");
return ERROR_IMAGE_FORMAT_ERROR;
}
elf->endianness = elf->header->e_ident[EI_DATA];
if ((elf->endianness != ELFDATA2LSB)
&&(elf->endianness != ELFDATA2MSB))
{
LOG_ERROR("invalid ELF file, unknown endianess setting");
return ERROR_IMAGE_FORMAT_ERROR;
}
elf->segment_count = field16(elf,elf->header->e_phnum);
if (elf->segment_count == 0)
{
LOG_ERROR("invalid ELF file, no program headers");
return ERROR_IMAGE_FORMAT_ERROR;
}
if ((retval = fileio_seek(&elf->fileio, field32(elf,elf->header->e_phoff))) != ERROR_OK)
{
LOG_ERROR("cannot seek to ELF program header table, read failed");
return retval;
}
elf->segments = malloc(elf->segment_count*sizeof(Elf32_Phdr));
if (elf->segments == NULL)
{
LOG_ERROR("insufficient memory to perform operation ");
return ERROR_FILEIO_OPERATION_FAILED;
}
if ((retval = fileio_read(&elf->fileio, elf->segment_count*sizeof(Elf32_Phdr), (uint8_t*)elf->segments, &read_bytes)) != ERROR_OK)
{
LOG_ERROR("cannot read ELF segment headers, read failed");
return retval;
}
if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr))
{
LOG_ERROR("cannot read ELF segment headers, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
/* count useful segments (loadable), ignore BSS section */
image->num_sections = 0;
for (i = 0;i < elf->segment_count;i++)
if ((field32(elf, elf->segments[i].p_type) == PT_LOAD) && (field32(elf, elf->segments[i].p_filesz) != 0))
image->num_sections++;
/* alloc and fill sections array with loadable segments */
image->sections = malloc(image->num_sections * sizeof(image_section_t));
for (i = 0,j = 0;i < elf->segment_count;i++)
{
if ((field32(elf, elf->segments[i].p_type) == PT_LOAD) && (field32(elf, elf->segments[i].p_filesz) != 0))
{
image->sections[j].size = field32(elf,elf->segments[i].p_filesz);
image->sections[j].base_address = field32(elf,elf->segments[i].p_paddr);
image->sections[j].private = &elf->segments[i];
image->sections[j].flags = field32(elf,elf->segments[i].p_flags);
j++;
}
}
image->start_address_set = 1;
image->start_address = field32(elf,elf->header->e_entry);
return ERROR_OK;
}
static int image_elf_read_section(image_t *image, int section, uint32_t offset, uint32_t size, uint8_t *buffer, uint32_t *size_read)
{
image_elf_t *elf = image->type_private;
Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
uint32_t read_size,really_read;
int retval;
*size_read = 0;
LOG_DEBUG("load segment %d at 0x%" PRIx32 " (sz = 0x%" PRIx32 ")",section,offset,size);
/* read initialized data in current segment if any */
if (offset < field32(elf,segment->p_filesz))
{
/* maximal size present in file for the current segment */
read_size = MIN(size, field32(elf,segment->p_filesz)-offset);
LOG_DEBUG("read elf: size = 0x%" PRIx32 " at 0x%" PRIx32 "",read_size,
field32(elf,segment->p_offset) + offset);
/* read initialized area of the segment */
if ((retval = fileio_seek(&elf->fileio, field32(elf,segment->p_offset) + offset)) != ERROR_OK)
{
LOG_ERROR("cannot find ELF segment content, seek failed");
return retval;
}
if ((retval = fileio_read(&elf->fileio, read_size, buffer, &really_read)) != ERROR_OK)
{
LOG_ERROR("cannot read ELF segment content, read failed");
return retval;
}
buffer += read_size;
size -= read_size;
offset += read_size;
*size_read += read_size;
/* need more data ? */
if (!size)
return ERROR_OK;
}
return ERROR_OK;
}
static int image_mot_buffer_complete(image_t *image)
{
image_mot_t *mot = image->type_private;
fileio_t *fileio = &mot->fileio;
uint32_t full_address = 0x0;
uint32_t cooked_bytes;
int i;
char lpszLine[1023];
/* we can't determine the number of sections that we'll have to create ahead of time,
* so we locally hold them until parsing is finished */
image_section_t section[IMAGE_MAX_SECTIONS];
mot->buffer = malloc(fileio->size >> 1);
cooked_bytes = 0x0;
image->num_sections = 0;
section[image->num_sections].private = &mot->buffer[cooked_bytes];
section[image->num_sections].base_address = 0x0;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK)
{
uint32_t count;
uint32_t address;
uint32_t record_type;
uint32_t checksum;
uint8_t cal_checksum = 0;
uint32_t bytes_read = 0;
/* get record type and record length */
if (sscanf(&lpszLine[bytes_read], "S%1" SCNx32 "%2" SCNx32 , &record_type, &count) != 2)
{
return ERROR_IMAGE_FORMAT_ERROR;
}
bytes_read += 4;
cal_checksum += (uint8_t)count;
/* skip checksum byte */
count -=1;
if (record_type == 0)
{
/* S0 - starting record (optional) */
int iValue;
while (count-- > 0) {
sscanf(&lpszLine[bytes_read], "%2x", &iValue);
cal_checksum += (uint8_t)iValue;
bytes_read += 2;
}
}
else if (record_type >= 1 && record_type <= 3)
{
switch (record_type)
{
case 1:
/* S1 - 16 bit address data record */
sscanf(&lpszLine[bytes_read], "%4" SCNx32, &address);
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
bytes_read += 4;
count -=2;
break;
case 2:
/* S2 - 24 bit address data record */
sscanf(&lpszLine[bytes_read], "%6" SCNx32 , &address);
cal_checksum += (uint8_t)(address >> 16);
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
bytes_read += 6;
count -=3;
break;
case 3:
/* S3 - 32 bit address data record */
sscanf(&lpszLine[bytes_read], "%8" SCNx32 , &address);
cal_checksum += (uint8_t)(address >> 24);
cal_checksum += (uint8_t)(address >> 16);
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
bytes_read += 8;
count -=4;
break;
}
if (full_address != address)
{
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0)
{
image->num_sections++;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private = &mot->buffer[cooked_bytes];
}
section[image->num_sections].base_address = address;
full_address = address;
}
while (count-- > 0)
{
unsigned value;
sscanf(&lpszLine[bytes_read], "%2x", &value);
mot->buffer[cooked_bytes] = (uint8_t)value;
cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
bytes_read += 2;
cooked_bytes += 1;
section[image->num_sections].size += 1;
full_address++;
}
}
else if (record_type == 5)
{
/* S5 is the data count record, we ignore it */
uint32_t dummy;
while (count-- > 0)
{
sscanf(&lpszLine[bytes_read], "%2" SCNx32 , &dummy);
cal_checksum += (uint8_t)dummy;
bytes_read += 2;
}
}
else if (record_type >= 7 && record_type <= 9)
{
/* S7, S8, S9 - ending records for 32, 24 and 16bit */
image->num_sections++;
/* copy section information */
image->sections = malloc(sizeof(image_section_t) * image->num_sections);
for (i = 0; i < image->num_sections; i++)
{
image->sections[i].private = section[i].private;
image->sections[i].base_address = section[i].base_address;
image->sections[i].size = section[i].size;
image->sections[i].flags = section[i].flags;
}
return ERROR_OK;
}
else
{
LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
return ERROR_IMAGE_FORMAT_ERROR;
}
/* account for checksum, will always be 0xFF */
sscanf(&lpszLine[bytes_read], "%2" SCNx32 , &checksum);
cal_checksum += (uint8_t)checksum;
bytes_read += 2;
if (cal_checksum != 0xFF)
{
/* checksum failed */
LOG_ERROR("incorrect record checksum found in S19 file");
return ERROR_IMAGE_CHECKSUM;
}
}
LOG_ERROR("premature end of S19 file, no end-of-file record found");
return ERROR_IMAGE_FORMAT_ERROR;
}
int image_open(image_t *image, char *url, char *type_string)
{
int retval = ERROR_OK;
if ((retval = identify_image_type(image, type_string, url)) != ERROR_OK)
{
return retval;
}
if (image->type == IMAGE_BINARY)
{
image_binary_t *image_binary;
image_binary = image->type_private = malloc(sizeof(image_binary_t));
if ((retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY)) != ERROR_OK)
{
return retval;
}
image->num_sections = 1;
image->sections = malloc(sizeof(image_section_t));
image->sections[0].base_address = 0x0;
image->sections[0].size = image_binary->fileio.size;
image->sections[0].flags = 0;
}
else if (image->type == IMAGE_IHEX)
{
image_ihex_t *image_ihex;
image_ihex = image->type_private = malloc(sizeof(image_ihex_t));
if ((retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT)) != ERROR_OK)
{
return retval;
}
if ((retval = image_ihex_buffer_complete(image)) != ERROR_OK)
{
LOG_ERROR("failed buffering IHEX image, check daemon output for additional information");
fileio_close(&image_ihex->fileio);
return retval;
}
}
else if (image->type == IMAGE_ELF)
{
image_elf_t *image_elf;
image_elf = image->type_private = malloc(sizeof(image_elf_t));
if ((retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY)) != ERROR_OK)
{
return retval;
}
if ((retval = image_elf_read_headers(image)) != ERROR_OK)
{
fileio_close(&image_elf->fileio);
return retval;
}
}
else if (image->type == IMAGE_MEMORY)
{
target_t *target = get_target(url);
if (target == NULL)
{
LOG_ERROR("target '%s' not defined", url);
return ERROR_FAIL;
}
image_memory_t *image_memory;
image->num_sections = 1;
image->sections = malloc(sizeof(image_section_t));
image->sections[0].base_address = 0x0;
image->sections[0].size = 0xffffffff;
image->sections[0].flags = 0;
image_memory = image->type_private = malloc(sizeof(image_memory_t));
image_memory->target = target;
image_memory->cache = NULL;
image_memory->cache_address = 0x0;
}
else if (image->type == IMAGE_SRECORD)
{
image_mot_t *image_mot;
image_mot = image->type_private = malloc(sizeof(image_mot_t));
if ((retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT)) != ERROR_OK)
{
return retval;
}
if ((retval = image_mot_buffer_complete(image)) != ERROR_OK)
{
LOG_ERROR("failed buffering S19 image, check daemon output for additional information");
fileio_close(&image_mot->fileio);
return retval;
}
}
else if (image->type == IMAGE_BUILDER)
{
image->num_sections = 0;
image->sections = NULL;
image->type_private = NULL;
}
if (image->base_address_set)
{
/* relocate */
int section;
for (section = 0; section < image->num_sections; section++)
{
image->sections[section].base_address += image->base_address;
}
/* we're done relocating. The two statements below are mainly
* for documenation purposes: stop anyone from empirically
* thinking they should use these values henceforth. */
image->base_address = 0;
image->base_address_set = 0;
}
return retval;
};
int image_read_section(image_t *image, int section, uint32_t offset, uint32_t size, uint8_t *buffer, uint32_t *size_read)
{
int retval;
/* don't read past the end of a section */
if (offset + size > image->sections[section].size)
{
LOG_DEBUG("read past end of section: 0x%8.8" PRIx32 " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
offset, size, image->sections[section].size);
return ERROR_INVALID_ARGUMENTS;
}
if (image->type == IMAGE_BINARY)
{
image_binary_t *image_binary = image->type_private;
/* only one section in a plain binary */
if (section != 0)
return ERROR_INVALID_ARGUMENTS;
/* seek to offset */
if ((retval = fileio_seek(&image_binary->fileio, offset)) != ERROR_OK)
{
return retval;
}
/* return requested bytes */
if ((retval = fileio_read(&image_binary->fileio, size, buffer, size_read)) != ERROR_OK)
{
return retval;
}
}
else if (image->type == IMAGE_IHEX)
{
memcpy(buffer, (uint8_t*)image->sections[section].private + offset, size);
*size_read = size;
return ERROR_OK;
}
else if (image->type == IMAGE_ELF)
{
return image_elf_read_section(image, section, offset, size, buffer, size_read);
}
else if (image->type == IMAGE_MEMORY)
{
image_memory_t *image_memory = image->type_private;
uint32_t address = image->sections[section].base_address + offset;
*size_read = 0;
while ((size - *size_read) > 0)
{
uint32_t size_in_cache;
if (!image_memory->cache
|| (address < image_memory->cache_address)
|| (address >= (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE)))
{
if (!image_memory->cache)
image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
if (target_read_buffer(image_memory->target, address & ~(IMAGE_MEMORY_CACHE_SIZE - 1),
IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK)
{
free(image_memory->cache);
image_memory->cache = NULL;
return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
}
image_memory->cache_address = address & ~(IMAGE_MEMORY_CACHE_SIZE - 1);
}
size_in_cache = (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
memcpy(buffer + *size_read,
image_memory->cache + (address - image_memory->cache_address),
(size_in_cache > size) ? size : size_in_cache
);
*size_read += (size_in_cache > size) ? size : size_in_cache;
address += (size_in_cache > size) ? size : size_in_cache;
}
}
else if (image->type == IMAGE_SRECORD)
{
memcpy(buffer, (uint8_t*)image->sections[section].private + offset, size);
*size_read = size;
return ERROR_OK;
}
else if (image->type == IMAGE_BUILDER)
{
memcpy(buffer, (uint8_t*)image->sections[section].private + offset, size);
*size_read = size;
return ERROR_OK;
}
return ERROR_OK;
}
int image_add_section(image_t *image, uint32_t base, uint32_t size, int flags, uint8_t *data)
{
image_section_t *section;
/* only image builder supports adding sections */
if (image->type != IMAGE_BUILDER)
return ERROR_INVALID_ARGUMENTS;
/* see if there's a previous section */
if (image->num_sections)
{
section = &image->sections[image->num_sections - 1];
/* see if it's enough to extend the last section,
* adding data to previous sections or merging is not supported */
if (((section->base_address + section->size) == base) && (section->flags == flags))
{
section->private = realloc(section->private, section->size + size);
memcpy((uint8_t*)section->private + section->size, data, size);
section->size += size;
return ERROR_OK;
}
}
/* allocate new section */
image->num_sections++;
image->sections = realloc(image->sections, sizeof(image_section_t) * image->num_sections);
section = &image->sections[image->num_sections - 1];
section->base_address = base;
section->size = size;
section->flags = flags;
section->private = malloc(sizeof(uint8_t) * size);
memcpy((uint8_t*)section->private, data, size);
return ERROR_OK;
}
void image_close(image_t *image)
{
if (image->type == IMAGE_BINARY)
{
image_binary_t *image_binary = image->type_private;
fileio_close(&image_binary->fileio);
}
else if (image->type == IMAGE_IHEX)
{
image_ihex_t *image_ihex = image->type_private;
fileio_close(&image_ihex->fileio);
if (image_ihex->buffer)
{
free(image_ihex->buffer);
image_ihex->buffer = NULL;
}
}
else if (image->type == IMAGE_ELF)
{
image_elf_t *image_elf = image->type_private;
fileio_close(&image_elf->fileio);
if (image_elf->header)
{
free(image_elf->header);
image_elf->header = NULL;
}
if (image_elf->segments)
{
free(image_elf->segments);
image_elf->segments = NULL;
}
}
else if (image->type == IMAGE_MEMORY)
{
image_memory_t *image_memory = image->type_private;
if (image_memory->cache)
{
free(image_memory->cache);
image_memory->cache = NULL;
}
}
else if (image->type == IMAGE_SRECORD)
{
image_mot_t *image_mot = image->type_private;
fileio_close(&image_mot->fileio);
if (image_mot->buffer)
{
free(image_mot->buffer);
image_mot->buffer = NULL;
}
}
else if (image->type == IMAGE_BUILDER)
{
int i;
for (i = 0; i < image->num_sections; i++)
{
free(image->sections[i].private);
image->sections[i].private = NULL;
}
}
if (image->type_private)
{
free(image->type_private);
image->type_private = NULL;
}
if (image->sections)
{
free(image->sections);
image->sections = NULL;
}
}
int image_calculate_checksum(uint8_t* buffer, uint32_t nbytes, uint32_t* checksum)
{
uint32_t crc = 0xffffffff;
LOG_DEBUG("Calculating checksum");
uint32_t crc32_table[256];
/* Initialize the CRC table and the decoding table. */
int i, j;
unsigned int c;
for (i = 0; i < 256; i++)
{
/* as per gdb */
for (c = i << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
crc32_table[i] = c;
}
while (nbytes > 0)
{
int run = nbytes;
if (run > 32768)
{
run = 32768;
}
nbytes -= run;
while (run--)
{
/* as per gdb */
crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
}
keep_alive();
}
LOG_DEBUG("Calculating checksum done");
*checksum = crc;
return ERROR_OK;
}