openocd/src/target/target.c

4566 lines
113 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008, Duane Ellis *
* openocd@duaneeellis.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by Rick Altherr *
* kc8apf@kc8apf.net> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "target_type.h"
#include "target_request.h"
#include "time_support.h"
#include "register.h"
#include "trace.h"
#include "image.h"
#include "jtag.h"
static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
/* targets */
extern target_type_t arm7tdmi_target;
extern target_type_t arm720t_target;
extern target_type_t arm9tdmi_target;
extern target_type_t arm920t_target;
extern target_type_t arm966e_target;
extern target_type_t arm926ejs_target;
extern target_type_t fa526_target;
extern target_type_t feroceon_target;
extern target_type_t xscale_target;
extern target_type_t cortexm3_target;
extern target_type_t cortexa8_target;
extern target_type_t arm11_target;
extern target_type_t mips_m4k_target;
extern target_type_t avr_target;
target_type_t *target_types[] =
{
&arm7tdmi_target,
&arm9tdmi_target,
&arm920t_target,
&arm720t_target,
&arm966e_target,
&arm926ejs_target,
&fa526_target,
&feroceon_target,
&xscale_target,
&cortexm3_target,
&cortexa8_target,
&arm11_target,
&mips_m4k_target,
&avr_target,
NULL,
};
target_t *all_targets = NULL;
target_event_callback_t *target_event_callbacks = NULL;
target_timer_callback_t *target_timer_callbacks = NULL;
const Jim_Nvp nvp_assert[] = {
{ .name = "assert", NVP_ASSERT },
{ .name = "deassert", NVP_DEASSERT },
{ .name = "T", NVP_ASSERT },
{ .name = "F", NVP_DEASSERT },
{ .name = "t", NVP_ASSERT },
{ .name = "f", NVP_DEASSERT },
{ .name = NULL, .value = -1 }
};
const Jim_Nvp nvp_error_target[] = {
{ .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
{ .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
{ .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
{ .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
{ .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
{ .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
{ .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
{ .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
{ .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
{ .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
{ .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
{ .value = -1, .name = NULL }
};
const char *target_strerror_safe(int err)
{
const Jim_Nvp *n;
n = Jim_Nvp_value2name_simple(nvp_error_target, err);
if (n->name == NULL) {
return "unknown";
} else {
return n->name;
}
}
static const Jim_Nvp nvp_target_event[] = {
{ .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
{ .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
{ .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
{ .value = TARGET_EVENT_HALTED, .name = "halted" },
{ .value = TARGET_EVENT_RESUMED, .name = "resumed" },
{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
{ .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
{ .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
{ .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
/* historical name */
{ .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
{ .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
{ .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
{ .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
{ .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
{ .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
{ .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
{ .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
{ .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
{ .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
{ .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
{ .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
{ .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
{ .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
{ .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
{ .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
{ .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
{ .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
{ .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
{ .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
{ .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
{ .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
{ .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
{ .name = NULL, .value = -1 }
};
const Jim_Nvp nvp_target_state[] = {
{ .name = "unknown", .value = TARGET_UNKNOWN },
{ .name = "running", .value = TARGET_RUNNING },
{ .name = "halted", .value = TARGET_HALTED },
{ .name = "reset", .value = TARGET_RESET },
{ .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
{ .name = NULL, .value = -1 },
};
const Jim_Nvp nvp_target_debug_reason [] = {
{ .name = "debug-request" , .value = DBG_REASON_DBGRQ },
{ .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
{ .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
{ .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
{ .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
{ .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
{ .name = "undefined" , .value = DBG_REASON_UNDEFINED },
{ .name = NULL, .value = -1 },
};
const Jim_Nvp nvp_target_endian[] = {
{ .name = "big", .value = TARGET_BIG_ENDIAN },
{ .name = "little", .value = TARGET_LITTLE_ENDIAN },
{ .name = "be", .value = TARGET_BIG_ENDIAN },
{ .name = "le", .value = TARGET_LITTLE_ENDIAN },
{ .name = NULL, .value = -1 },
};
const Jim_Nvp nvp_reset_modes[] = {
{ .name = "unknown", .value = RESET_UNKNOWN },
{ .name = "run" , .value = RESET_RUN },
{ .name = "halt" , .value = RESET_HALT },
{ .name = "init" , .value = RESET_INIT },
{ .name = NULL , .value = -1 },
};
const char *
target_state_name( target_t *t )
{
const char *cp;
cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
if( !cp ){
LOG_ERROR("Invalid target state: %d", (int)(t->state));
cp = "(*BUG*unknown*BUG*)";
}
return cp;
}
static int max_target_number(void)
{
target_t *t;
int x;
x = -1;
t = all_targets;
while (t) {
if (x < t->target_number) {
x = (t->target_number) + 1;
}
t = t->next;
}
return x;
}
/* determine the number of the new target */
static int new_target_number(void)
{
target_t *t;
int x;
/* number is 0 based */
x = -1;
t = all_targets;
while (t) {
if (x < t->target_number) {
x = t->target_number;
}
t = t->next;
}
return x + 1;
}
static int target_continuous_poll = 1;
/* read a uint32_t from a buffer in target memory endianness */
uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u32(buffer);
else
return be_to_h_u32(buffer);
}
/* read a uint16_t from a buffer in target memory endianness */
uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u16(buffer);
else
return be_to_h_u16(buffer);
}
/* read a uint8_t from a buffer in target memory endianness */
uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
{
return *buffer & 0x0ff;
}
/* write a uint32_t to a buffer in target memory endianness */
void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u32_to_le(buffer, value);
else
h_u32_to_be(buffer, value);
}
/* write a uint16_t to a buffer in target memory endianness */
void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u16_to_le(buffer, value);
else
h_u16_to_be(buffer, value);
}
/* write a uint8_t to a buffer in target memory endianness */
void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
{
*buffer = value;
}
/* return a pointer to a configured target; id is name or number */
target_t *get_target(const char *id)
{
target_t *target;
/* try as tcltarget name */
for (target = all_targets; target; target = target->next) {
if (target->cmd_name == NULL)
continue;
if (strcmp(id, target->cmd_name) == 0)
return target;
}
/* no match, try as number */
unsigned num;
if (parse_uint(id, &num) != ERROR_OK)
return NULL;
for (target = all_targets; target; target = target->next) {
if (target->target_number == (int)num)
return target;
}
return NULL;
}
/* returns a pointer to the n-th configured target */
static target_t *get_target_by_num(int num)
{
target_t *target = all_targets;
while (target) {
if (target->target_number == num) {
return target;
}
target = target->next;
}
return NULL;
}
int get_num_by_target(target_t *query_target)
{
return query_target->target_number;
}
target_t* get_current_target(command_context_t *cmd_ctx)
{
target_t *target = get_target_by_num(cmd_ctx->current_target);
if (target == NULL)
{
LOG_ERROR("BUG: current_target out of bounds");
exit(-1);
}
return target;
}
int target_poll(struct target_s *target)
{
/* We can't poll until after examine */
if (!target_was_examined(target))
{
/* Fail silently lest we pollute the log */
return ERROR_FAIL;
}
return target->type->poll(target);
}
int target_halt(struct target_s *target)
{
/* We can't poll until after examine */
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->halt(target);
}
int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
{
int retval;
/* We can't poll until after examine */
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
/* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
* even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
* the application.
*/
if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
return retval;
return retval;
}
int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
{
char buf[100];
int retval;
Jim_Nvp *n;
n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
if (n->name == NULL) {
LOG_ERROR("invalid reset mode");
return ERROR_FAIL;
}
/* disable polling during reset to make reset event scripts
* more predictable, i.e. dr/irscan & pathmove in events will
* not have JTAG operations injected into the middle of a sequence.
*/
int save_poll = target_continuous_poll;
target_continuous_poll = 0;
sprintf(buf, "ocd_process_reset %s", n->name);
retval = Jim_Eval(interp, buf);
target_continuous_poll = save_poll;
if (retval != JIM_OK) {
Jim_PrintErrorMessage(interp);
return ERROR_FAIL;
}
/* We want any events to be processed before the prompt */
retval = target_call_timer_callbacks_now();
return retval;
}
static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
{
*physical = virtual;
return ERROR_OK;
}
static int default_mmu(struct target_s *target, int *enabled)
{
*enabled = 0;
return ERROR_OK;
}
static int default_examine(struct target_s *target)
{
target_set_examined(target);
return ERROR_OK;
}
int target_examine_one(struct target_s *target)
{
return target->type->examine(target);
}
static int jtag_enable_callback(enum jtag_event event, void *priv)
{
target_t *target = priv;
if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
return ERROR_OK;
jtag_unregister_event_callback(jtag_enable_callback, target);
return target_examine_one(target);
}
/* Targets that correctly implement init + examine, i.e.
* no communication with target during init:
*
* XScale
*/
int target_examine(void)
{
int retval = ERROR_OK;
target_t *target;
for (target = all_targets; target; target = target->next)
{
/* defer examination, but don't skip it */
if (!target->tap->enabled) {
jtag_register_event_callback(jtag_enable_callback,
target);
continue;
}
if ((retval = target_examine_one(target)) != ERROR_OK)
return retval;
}
return retval;
}
const char *target_get_name(struct target_s *target)
{
return target->type->name;
}
static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->write_memory_imp(target, address, size, count, buffer);
}
static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->read_memory_imp(target, address, size, count, buffer);
}
static int target_soft_reset_halt_imp(struct target_s *target)
{
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->soft_reset_halt_imp(target);
}
static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
{
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
}
int target_read_memory(struct target_s *target,
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
return target->type->read_memory(target, address, size, count, buffer);
}
int target_write_memory(struct target_s *target,
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
return target->type->write_memory(target, address, size, count, buffer);
}
int target_bulk_write_memory(struct target_s *target,
uint32_t address, uint32_t count, uint8_t *buffer)
{
return target->type->bulk_write_memory(target, address, count, buffer);
}
int target_add_breakpoint(struct target_s *target,
struct breakpoint_s *breakpoint)
{
return target->type->add_breakpoint(target, breakpoint);
}
int target_remove_breakpoint(struct target_s *target,
struct breakpoint_s *breakpoint)
{
return target->type->remove_breakpoint(target, breakpoint);
}
int target_add_watchpoint(struct target_s *target,
struct watchpoint_s *watchpoint)
{
return target->type->add_watchpoint(target, watchpoint);
}
int target_remove_watchpoint(struct target_s *target,
struct watchpoint_s *watchpoint)
{
return target->type->remove_watchpoint(target, watchpoint);
}
int target_get_gdb_reg_list(struct target_s *target,
struct reg_s **reg_list[], int *reg_list_size)
{
return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
}
int target_step(struct target_s *target,
int current, uint32_t address, int handle_breakpoints)
{
return target->type->step(target, current, address, handle_breakpoints);
}
int target_run_algorithm(struct target_s *target,
int num_mem_params, mem_param_t *mem_params,
int num_reg_params, reg_param_t *reg_param,
uint32_t entry_point, uint32_t exit_point,
int timeout_ms, void *arch_info)
{
return target->type->run_algorithm(target,
num_mem_params, mem_params, num_reg_params, reg_param,
entry_point, exit_point, timeout_ms, arch_info);
}
/// @returns @c true if the target has been examined.
bool target_was_examined(struct target_s *target)
{
return target->type->examined;
}
/// Sets the @c examined flag for the given target.
void target_set_examined(struct target_s *target)
{
target->type->examined = true;
}
// Reset the @c examined flag for the given target.
void target_reset_examined(struct target_s *target)
{
target->type->examined = false;
}
int target_init(struct command_context_s *cmd_ctx)
{
target_t *target = all_targets;
int retval;
while (target)
{
target_reset_examined(target);
if (target->type->examine == NULL)
{
target->type->examine = default_examine;
}
if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
{
LOG_ERROR("target '%s' init failed", target_get_name(target));
return retval;
}
/* Set up default functions if none are provided by target */
if (target->type->virt2phys == NULL)
{
target->type->virt2phys = default_virt2phys;
}
target->type->virt2phys = default_virt2phys;
/* a non-invasive way(in terms of patches) to add some code that
* runs before the type->write/read_memory implementation
*/
target->type->write_memory_imp = target->type->write_memory;
target->type->write_memory = target_write_memory_imp;
target->type->read_memory_imp = target->type->read_memory;
target->type->read_memory = target_read_memory_imp;
target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
target->type->soft_reset_halt = target_soft_reset_halt_imp;
target->type->run_algorithm_imp = target->type->run_algorithm;
target->type->run_algorithm = target_run_algorithm_imp;
if (target->type->mmu == NULL)
{
target->type->mmu = default_mmu;
}
target = target->next;
}
if (all_targets)
{
if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
return retval;
if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
{
target_event_callback_t **callbacks_p = &target_event_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(target_event_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
{
target_timer_callback_t **callbacks_p = &target_timer_callbacks;
struct timeval now;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(target_timer_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->periodic = periodic;
(*callbacks_p)->time_ms = time_ms;
gettimeofday(&now, NULL);
(*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
time_ms -= (time_ms % 1000);
(*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
if ((*callbacks_p)->when.tv_usec > 1000000)
{
(*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
(*callbacks_p)->when.tv_sec += 1;
}
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
{
target_event_callback_t **p = &target_event_callbacks;
target_event_callback_t *c = target_event_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
while (c)
{
target_event_callback_t *next = c->next;
if ((c->callback == callback) && (c->priv == priv))
{
*p = next;
free(c);
return ERROR_OK;
}
else
p = &(c->next);
c = next;
}
return ERROR_OK;
}
int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
{
target_timer_callback_t **p = &target_timer_callbacks;
target_timer_callback_t *c = target_timer_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
while (c)
{
target_timer_callback_t *next = c->next;
if ((c->callback == callback) && (c->priv == priv))
{
*p = next;
free(c);
return ERROR_OK;
}
else
p = &(c->next);
c = next;
}
return ERROR_OK;
}
int target_call_event_callbacks(target_t *target, enum target_event event)
{
target_event_callback_t *callback = target_event_callbacks;
target_event_callback_t *next_callback;
if (event == TARGET_EVENT_HALTED)
{
/* execute early halted first */
target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
}
LOG_DEBUG("target event %i (%s)",
event,
Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
target_handle_event(target, event);
while (callback)
{
next_callback = callback->next;
callback->callback(target, event, callback->priv);
callback = next_callback;
}
return ERROR_OK;
}
static int target_timer_callback_periodic_restart(
target_timer_callback_t *cb, struct timeval *now)
{
int time_ms = cb->time_ms;
cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
time_ms -= (time_ms % 1000);
cb->when.tv_sec = now->tv_sec + time_ms / 1000;
if (cb->when.tv_usec > 1000000)
{
cb->when.tv_usec = cb->when.tv_usec - 1000000;
cb->when.tv_sec += 1;
}
return ERROR_OK;
}
static int target_call_timer_callback(target_timer_callback_t *cb,
struct timeval *now)
{
cb->callback(cb->priv);
if (cb->periodic)
return target_timer_callback_periodic_restart(cb, now);
return target_unregister_timer_callback(cb->callback, cb->priv);
}
static int target_call_timer_callbacks_check_time(int checktime)
{
keep_alive();
struct timeval now;
gettimeofday(&now, NULL);
target_timer_callback_t *callback = target_timer_callbacks;
while (callback)
{
// cleaning up may unregister and free this callback
target_timer_callback_t *next_callback = callback->next;
bool call_it = callback->callback &&
((!checktime && callback->periodic) ||
now.tv_sec > callback->when.tv_sec ||
(now.tv_sec == callback->when.tv_sec &&
now.tv_usec >= callback->when.tv_usec));
if (call_it)
{
int retval = target_call_timer_callback(callback, &now);
if (retval != ERROR_OK)
return retval;
}
callback = next_callback;
}
return ERROR_OK;
}
int target_call_timer_callbacks(void)
{
return target_call_timer_callbacks_check_time(1);
}
/* invoke periodic callbacks immediately */
int target_call_timer_callbacks_now(void)
{
return target_call_timer_callbacks_check_time(0);
}
int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
{
working_area_t *c = target->working_areas;
working_area_t *new_wa = NULL;
/* Reevaluate working area address based on MMU state*/
if (target->working_areas == NULL)
{
int retval;
int enabled;
retval = target->type->mmu(target, &enabled);
if (retval != ERROR_OK)
{
return retval;
}
if (enabled)
{
target->working_area = target->working_area_virt;
}
else
{
target->working_area = target->working_area_phys;
}
}
/* only allocate multiples of 4 byte */
if (size % 4)
{
LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
size = (size + 3) & (~3);
}
/* see if there's already a matching working area */
while (c)
{
if ((c->free) && (c->size == size))
{
new_wa = c;
break;
}
c = c->next;
}
/* if not, allocate a new one */
if (!new_wa)
{
working_area_t **p = &target->working_areas;
uint32_t first_free = target->working_area;
uint32_t free_size = target->working_area_size;
LOG_DEBUG("allocating new working area");
c = target->working_areas;
while (c)
{
first_free += c->size;
free_size -= c->size;
p = &c->next;
c = c->next;
}
if (free_size < size)
{
LOG_WARNING("not enough working area available(requested %u, free %u)",
(unsigned)(size), (unsigned)(free_size));
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
new_wa = malloc(sizeof(working_area_t));
new_wa->next = NULL;
new_wa->size = size;
new_wa->address = first_free;
if (target->backup_working_area)
{
int retval;
new_wa->backup = malloc(new_wa->size);
if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
{
free(new_wa->backup);
free(new_wa);
return retval;
}
}
else
{
new_wa->backup = NULL;
}
/* put new entry in list */
*p = new_wa;
}
/* mark as used, and return the new (reused) area */
new_wa->free = 0;
*area = new_wa;
/* user pointer */
new_wa->user = area;
return ERROR_OK;
}
int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
{
if (area->free)
return ERROR_OK;
if (restore && target->backup_working_area)
{
int retval;
if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
return retval;
}
area->free = 1;
/* mark user pointer invalid */
*area->user = NULL;
area->user = NULL;
return ERROR_OK;
}
int target_free_working_area(struct target_s *target, working_area_t *area)
{
return target_free_working_area_restore(target, area, 1);
}
/* free resources and restore memory, if restoring memory fails,
* free up resources anyway
*/
void target_free_all_working_areas_restore(struct target_s *target, int restore)
{
working_area_t *c = target->working_areas;
while (c)
{
working_area_t *next = c->next;
target_free_working_area_restore(target, c, restore);
if (c->backup)
free(c->backup);
free(c);
c = next;
}
target->working_areas = NULL;
}
void target_free_all_working_areas(struct target_s *target)
{
target_free_all_working_areas_restore(target, 1);
}
int target_register_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
register_jim(cmd_ctx, "target", jim_target, "configure target");
return ERROR_OK;
}
int target_arch_state(struct target_s *target)
{
int retval;
if (target == NULL)
{
LOG_USER("No target has been configured");
return ERROR_OK;
}
LOG_USER("target state: %s", target_state_name( target ));
if (target->state != TARGET_HALTED)
return ERROR_OK;
retval = target->type->arch_state(target);
return retval;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
* mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
{
int retval;
LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
(int)size, (unsigned)address);
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (size == 0) {
return ERROR_OK;
}
if ((address + size - 1) < address)
{
/* GDB can request this when e.g. PC is 0xfffffffc*/
LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
(unsigned)address,
(unsigned)size);
return ERROR_FAIL;
}
if (((address % 2) == 0) && (size == 2))
{
return target_write_memory(target, address, 2, 1, buffer);
}
/* handle unaligned head bytes */
if (address % 4)
{
uint32_t unaligned = 4 - (address % 4);
if (unaligned > size)
unaligned = size;
if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
return retval;
buffer += unaligned;
address += unaligned;
size -= unaligned;
}
/* handle aligned words */
if (size >= 4)
{
int aligned = size - (size % 4);
/* use bulk writes above a certain limit. This may have to be changed */
if (aligned > 128)
{
if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
return retval;
}
else
{
if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
return retval;
}
buffer += aligned;
address += aligned;
size -= aligned;
}
/* handle tail writes of less than 4 bytes */
if (size > 0)
{
if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
* mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
{
int retval;
LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
(int)size, (unsigned)address);
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (size == 0) {
return ERROR_OK;
}
if ((address + size - 1) < address)
{
/* GDB can request this when e.g. PC is 0xfffffffc*/
LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
address,
size);
return ERROR_FAIL;
}
if (((address % 2) == 0) && (size == 2))
{
return target_read_memory(target, address, 2, 1, buffer);
}
/* handle unaligned head bytes */
if (address % 4)
{
uint32_t unaligned = 4 - (address % 4);
if (unaligned > size)
unaligned = size;
if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
return retval;
buffer += unaligned;
address += unaligned;
size -= unaligned;
}
/* handle aligned words */
if (size >= 4)
{
int aligned = size - (size % 4);
if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
return retval;
buffer += aligned;
address += aligned;
size -= aligned;
}
/* handle tail writes of less than 4 bytes */
if (size > 0)
{
if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
{
uint8_t *buffer;
int retval;
uint32_t i;
uint32_t checksum = 0;
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if ((retval = target->type->checksum_memory(target, address,
size, &checksum)) != ERROR_OK)
{
buffer = malloc(size);
if (buffer == NULL)
{
LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
return ERROR_INVALID_ARGUMENTS;
}
retval = target_read_buffer(target, address, size, buffer);
if (retval != ERROR_OK)
{
free(buffer);
return retval;
}
/* convert to target endianess */
for (i = 0; i < (size/sizeof(uint32_t)); i++)
{
uint32_t target_data;
target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
}
retval = image_calculate_checksum(buffer, size, &checksum);
free(buffer);
}
*crc = checksum;
return retval;
}
int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
{
int retval;
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (target->type->blank_check_memory == 0)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
retval = target->type->blank_check_memory(target, address, size, blank);
return retval;
}
int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
{
uint8_t value_buf[4];
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target_read_memory(target, address, 4, 1, value_buf);
if (retval == ERROR_OK)
{
*value = target_buffer_get_u32(target, value_buf);
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
address,
*value);
}
else
{
*value = 0x0;
LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
address);
}
return retval;
}
int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
{
uint8_t value_buf[2];
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target_read_memory(target, address, 2, 1, value_buf);
if (retval == ERROR_OK)
{
*value = target_buffer_get_u16(target, value_buf);
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
address,
*value);
}
else
{
*value = 0x0;
LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
address);
}
return retval;
}
int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
{
int retval = target_read_memory(target, address, 1, 1, value);
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (retval == ERROR_OK)
{
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
address,
*value);
}
else
{
*value = 0x0;
LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
address);
}
return retval;
}
int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
{
int retval;
uint8_t value_buf[4];
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
address,
value);
target_buffer_set_u32(target, value_buf, value);
if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
return retval;
}
int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
{
int retval;
uint8_t value_buf[2];
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
address,
value);
target_buffer_set_u16(target, value_buf, value);
if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
return retval;
}
int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
{
int retval;
if (!target_was_examined(target))
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
address, value);
if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
return retval;
}
int target_register_user_commands(struct command_context_s *cmd_ctx)
{
int retval = ERROR_OK;
/* script procedures */
register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
"same args as load_image, image stored in memory - mainly for profiling purposes");
register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
"loads active fast load image to current target - mainly for profiling purposes");
register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
return retval;
if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
return retval;
return retval;
}
static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = all_targets;
if (argc == 1)
{
target = get_target(args[0]);
if (target == NULL) {
command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
goto DumpTargets;
}
if (!target->tap->enabled) {
command_print(cmd_ctx,"Target: TAP %s is disabled, "
"can't be the current target\n",
target->tap->dotted_name);
return ERROR_FAIL;
}
cmd_ctx->current_target = target->target_number;
return ERROR_OK;
}
DumpTargets:
target = all_targets;
command_print(cmd_ctx, " TargetName Type Endian TapName State ");
command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
while (target)
{
const char *state;
char marker = ' ';
if (target->tap->enabled)
state = target_state_name( target );
else
state = "tap-disabled";
if (cmd_ctx->current_target == target->target_number)
marker = '*';
/* keep columns lined up to match the headers above */
command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
target->target_number,
marker,
target->cmd_name,
target_get_name(target),
Jim_Nvp_value2name_simple(nvp_target_endian,
target->endianness)->name,
target->tap->dotted_name,
state);
target = target->next;
}
return ERROR_OK;
}
/* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
static int powerDropout;
static int srstAsserted;
static int runPowerRestore;
static int runPowerDropout;
static int runSrstAsserted;
static int runSrstDeasserted;
static int sense_handler(void)
{
static int prevSrstAsserted = 0;
static int prevPowerdropout = 0;
int retval;
if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
return retval;
int powerRestored;
powerRestored = prevPowerdropout && !powerDropout;
if (powerRestored)
{
runPowerRestore = 1;
}
long long current = timeval_ms();
static long long lastPower = 0;
int waitMore = lastPower + 2000 > current;
if (powerDropout && !waitMore)
{
runPowerDropout = 1;
lastPower = current;
}
if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
return retval;
int srstDeasserted;
srstDeasserted = prevSrstAsserted && !srstAsserted;
static long long lastSrst = 0;
waitMore = lastSrst + 2000 > current;
if (srstDeasserted && !waitMore)
{
runSrstDeasserted = 1;
lastSrst = current;
}
if (!prevSrstAsserted && srstAsserted)
{
runSrstAsserted = 1;
}
prevSrstAsserted = srstAsserted;
prevPowerdropout = powerDropout;
if (srstDeasserted || powerRestored)
{
/* Other than logging the event we can't do anything here.
* Issuing a reset is a particularly bad idea as we might
* be inside a reset already.
*/
}
return ERROR_OK;
}
/* process target state changes */
int handle_target(void *priv)
{
int retval = ERROR_OK;
/* we do not want to recurse here... */
static int recursive = 0;
if (! recursive)
{
recursive = 1;
sense_handler();
/* danger! running these procedures can trigger srst assertions and power dropouts.
* We need to avoid an infinite loop/recursion here and we do that by
* clearing the flags after running these events.
*/
int did_something = 0;
if (runSrstAsserted)
{
Jim_Eval(interp, "srst_asserted");
did_something = 1;
}
if (runSrstDeasserted)
{
Jim_Eval(interp, "srst_deasserted");
did_something = 1;
}
if (runPowerDropout)
{
Jim_Eval(interp, "power_dropout");
did_something = 1;
}
if (runPowerRestore)
{
Jim_Eval(interp, "power_restore");
did_something = 1;
}
if (did_something)
{
/* clear detect flags */
sense_handler();
}
/* clear action flags */
runSrstAsserted = 0;
runSrstDeasserted = 0;
runPowerRestore = 0;
runPowerDropout = 0;
recursive = 0;
}
/* Poll targets for state changes unless that's globally disabled.
* Skip targets that are currently disabled.
*/
for (target_t *target = all_targets;
target_continuous_poll && target;
target = target->next)
{
if (!target->tap->enabled)
continue;
/* only poll target if we've got power and srst isn't asserted */
if (!powerDropout && !srstAsserted)
{
/* polling may fail silently until the target has been examined */
if ((retval = target_poll(target)) != ERROR_OK)
return retval;
}
}
return retval;
}
static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
reg_t *reg = NULL;
int count = 0;
char *value;
LOG_DEBUG("-");
target = get_current_target(cmd_ctx);
/* list all available registers for the current target */
if (argc == 0)
{
reg_cache_t *cache = target->reg_cache;
count = 0;
while (cache)
{
int i;
for (i = 0; i < cache->num_regs; i++)
{
value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)",
count++,
cache->reg_list[i].name,
(int)(cache->reg_list[i].size),
value,
cache->reg_list[i].dirty,
cache->reg_list[i].valid);
free(value);
}
cache = cache->next;
}
return ERROR_OK;
}
/* access a single register by its ordinal number */
if ((args[0][0] >= '0') && (args[0][0] <= '9'))
{
unsigned num;
int retval = parse_uint(args[0], &num);
if (ERROR_OK != retval)
return ERROR_COMMAND_SYNTAX_ERROR;
reg_cache_t *cache = target->reg_cache;
count = 0;
while (cache)
{
int i;
for (i = 0; i < cache->num_regs; i++)
{
if (count++ == (int)num)
{
reg = &cache->reg_list[i];
break;
}
}
if (reg)
break;
cache = cache->next;
}
if (!reg)
{
command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
return ERROR_OK;
}
} else /* access a single register by its name */
{
reg = register_get_by_name(target->reg_cache, args[0], 1);
if (!reg)
{
command_print(cmd_ctx, "register %s not found in current target", args[0]);
return ERROR_OK;
}
}
/* display a register */
if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
{
if ((argc == 2) && (strcmp(args[1], "force") == 0))
reg->valid = 0;
if (reg->valid == 0)
{
reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
arch_type->get(reg);
}
value = buf_to_str(reg->value, reg->size, 16);
command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
free(value);
return ERROR_OK;
}
/* set register value */
if (argc == 2)
{
uint8_t *buf = malloc(CEIL(reg->size, 8));
str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
arch_type->set(reg, buf);
value = buf_to_str(reg->value, reg->size, 16);
command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
free(value);
free(buf);
return ERROR_OK;
}
command_print(cmd_ctx, "usage: reg <#|name> [value]");
return ERROR_OK;
}
static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int retval = ERROR_OK;
target_t *target = get_current_target(cmd_ctx);
if (argc == 0)
{
command_print(cmd_ctx, "background polling: %s",
target_continuous_poll ? "on" : "off");
command_print(cmd_ctx, "TAP: %s (%s)",
target->tap->dotted_name,
target->tap->enabled ? "enabled" : "disabled");
if (!target->tap->enabled)
return ERROR_OK;
if ((retval = target_poll(target)) != ERROR_OK)
return retval;
if ((retval = target_arch_state(target)) != ERROR_OK)
return retval;
}
else if (argc == 1)
{
if (strcmp(args[0], "on") == 0)
{
target_continuous_poll = 1;
}
else if (strcmp(args[0], "off") == 0)
{
target_continuous_poll = 0;
}
else
{
command_print(cmd_ctx, "arg is \"on\" or \"off\"");
}
} else
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
return retval;
}
static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned ms = 5000;
if (1 == argc)
{
int retval = parse_uint(args[0], &ms);
if (ERROR_OK != retval)
{
command_print(cmd_ctx, "usage: %s [seconds]", cmd);
return ERROR_COMMAND_SYNTAX_ERROR;
}
// convert seconds (given) to milliseconds (needed)
ms *= 1000;
}
target_t *target = get_current_target(cmd_ctx);
return target_wait_state(target, TARGET_HALTED, ms);
}
/* wait for target state to change. The trick here is to have a low
* latency for short waits and not to suck up all the CPU time
* on longer waits.
*
* After 500ms, keep_alive() is invoked
*/
int target_wait_state(target_t *target, enum target_state state, int ms)
{
int retval;
long long then = 0, cur;
int once = 1;
for (;;)
{
if ((retval = target_poll(target)) != ERROR_OK)
return retval;
if (target->state == state)
{
break;
}
cur = timeval_ms();
if (once)
{
once = 0;
then = timeval_ms();
LOG_DEBUG("waiting for target %s...",
Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
}
if (cur-then > 500)
{
keep_alive();
}
if ((cur-then) > ms)
{
LOG_ERROR("timed out while waiting for target %s",
Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
LOG_DEBUG("-");
target_t *target = get_current_target(cmd_ctx);
int retval = target_halt(target);
if (ERROR_OK != retval)
return retval;
if (argc == 1)
{
unsigned wait;
retval = parse_uint(args[0], &wait);
if (ERROR_OK != retval)
return ERROR_COMMAND_SYNTAX_ERROR;
if (!wait)
return ERROR_OK;
}
return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
}
static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
LOG_USER("requesting target halt and executing a soft reset");
target->type->soft_reset_halt(target);
return ERROR_OK;
}
static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
enum target_reset_mode reset_mode = RESET_RUN;
if (argc == 1)
{
const Jim_Nvp *n;
n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
return ERROR_COMMAND_SYNTAX_ERROR;
}
reset_mode = n->value;
}
/* reset *all* targets */
return target_process_reset(cmd_ctx, reset_mode);
}
static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int current = 1;
if (argc > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
target_t *target = get_current_target(cmd_ctx);
target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
/* with no args, resume from current pc, addr = 0,
* with one arguments, addr = args[0],
* handle breakpoints, not debugging */
uint32_t addr = 0;
if (argc == 1)
{
int retval = parse_u32(args[0], &addr);
if (ERROR_OK != retval)
return retval;
current = 0;
}
return target_resume(target, current, addr, 1, 0);
}
static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("-");
/* with no args, step from current pc, addr = 0,
* with one argument addr = args[0],
* handle breakpoints, debugging */
uint32_t addr = 0;
int current_pc = 1;
if (argc == 1)
{
int retval = parse_u32(args[0], &addr);
if (ERROR_OK != retval)
return retval;
current_pc = 0;
}
target_t *target = get_current_target(cmd_ctx);
return target->type->step(target, current_pc, addr, 1);
}
static void handle_md_output(struct command_context_s *cmd_ctx,
struct target_s *target, uint32_t address, unsigned size,
unsigned count, const uint8_t *buffer)
{
const unsigned line_bytecnt = 32;
unsigned line_modulo = line_bytecnt / size;
char output[line_bytecnt * 4 + 1];
unsigned output_len = 0;
const char *value_fmt;
switch (size) {
case 4: value_fmt = "%8.8x "; break;
case 2: value_fmt = "%4.2x "; break;
case 1: value_fmt = "%2.2x "; break;
default:
LOG_ERROR("invalid memory read size: %u", size);
exit(-1);
}
for (unsigned i = 0; i < count; i++)
{
if (i % line_modulo == 0)
{
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
"0x%8.8x: ",
(unsigned)(address + (i*size)));
}
uint32_t value = 0;
const uint8_t *value_ptr = buffer + i * size;
switch (size) {
case 4: value = target_buffer_get_u32(target, value_ptr); break;
case 2: value = target_buffer_get_u16(target, value_ptr); break;
case 1: value = *value_ptr;
}
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
value_fmt, value);
if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
{
command_print(cmd_ctx, "%s", output);
output_len = 0;
}
}
}
static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned size = 0;
switch (cmd[2]) {
case 'w': size = 4; break;
case 'h': size = 2; break;
case 'b': size = 1; break;
default: return ERROR_COMMAND_SYNTAX_ERROR;
}
uint32_t address;
int retval = parse_u32(args[0], &address);
if (ERROR_OK != retval)
return retval;
unsigned count = 1;
if (argc == 2)
{
retval = parse_uint(args[1], &count);
if (ERROR_OK != retval)
return retval;
}
uint8_t *buffer = calloc(count, size);
target_t *target = get_current_target(cmd_ctx);
retval = target_read_memory(target,
address, size, count, buffer);
if (ERROR_OK == retval)
handle_md_output(cmd_ctx, target, address, size, count, buffer);
free(buffer);
return retval;
}
static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if ((argc < 2) || (argc > 3))
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t address;
int retval = parse_u32(args[0], &address);
if (ERROR_OK != retval)
return retval;
uint32_t value;
retval = parse_u32(args[1], &value);
if (ERROR_OK != retval)
return retval;
unsigned count = 1;
if (argc == 3)
{
retval = parse_uint(args[2], &count);
if (ERROR_OK != retval)
return retval;
}
target_t *target = get_current_target(cmd_ctx);
unsigned wordsize;
uint8_t value_buf[4];
switch (cmd[2])
{
case 'w':
wordsize = 4;
target_buffer_set_u32(target, value_buf, value);
break;
case 'h':
wordsize = 2;
target_buffer_set_u16(target, value_buf, value);
break;
case 'b':
wordsize = 1;
value_buf[0] = value;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
for (unsigned i = 0; i < count; i++)
{
retval = target_write_memory(target,
address + i * wordsize, wordsize, 1, value_buf);
if (ERROR_OK != retval)
return retval;
keep_alive();
}
return ERROR_OK;
}
static int parse_load_image_command_args(char **args, int argc,
image_t *image, uint32_t *min_address, uint32_t *max_address)
{
if (argc < 1 || argc > 5)
return ERROR_COMMAND_SYNTAX_ERROR;
/* a base address isn't always necessary,
* default to 0x0 (i.e. don't relocate) */
if (argc >= 2)
{
uint32_t addr;
int retval = parse_u32(args[1], &addr);
if (ERROR_OK != retval)
return ERROR_COMMAND_SYNTAX_ERROR;
image->base_address = addr;
image->base_address_set = 1;
}
else
image->base_address_set = 0;
image->start_address_set = 0;
if (argc >= 4)
{
int retval = parse_u32(args[3], min_address);
if (ERROR_OK != retval)
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (argc == 5)
{
int retval = parse_u32(args[4], max_address);
if (ERROR_OK != retval)
return ERROR_COMMAND_SYNTAX_ERROR;
// use size (given) to find max (required)
*max_address += *min_address;
}
if (*min_address > *max_address)
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
uint8_t *buffer;
uint32_t buf_cnt;
uint32_t image_size;
uint32_t min_address = 0;
uint32_t max_address = 0xffffffff;
int i;
int retvaltemp;
image_t image;
duration_t duration;
char *duration_text;
int retval = parse_load_image_command_args(args, argc,
&image, &min_address, &max_address);
if (ERROR_OK != retval)
return retval;
target_t *target = get_current_target(cmd_ctx);
duration_start_measure(&duration);
if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
{
return ERROR_OK;
}
image_size = 0x0;
retval = ERROR_OK;
for (i = 0; i < image.num_sections; i++)
{
buffer = malloc(image.sections[i].size);
if (buffer == NULL)
{
command_print(cmd_ctx,
"error allocating buffer for section (%d bytes)",
(int)(image.sections[i].size));
break;
}
if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
{
free(buffer);
break;
}
uint32_t offset = 0;
uint32_t length = buf_cnt;
/* DANGER!!! beware of unsigned comparision here!!! */
if ((image.sections[i].base_address + buf_cnt >= min_address)&&
(image.sections[i].base_address < max_address))
{
if (image.sections[i].base_address < min_address)
{
/* clip addresses below */
offset += min_address-image.sections[i].base_address;
length -= offset;
}
if (image.sections[i].base_address + buf_cnt > max_address)
{
length -= (image.sections[i].base_address + buf_cnt)-max_address;
}
if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
{
free(buffer);
break;
}
image_size += length;
command_print(cmd_ctx, "%u byte written at address 0x%8.8" PRIx32 "",
(unsigned int)length,
image.sections[i].base_address + offset);
}
free(buffer);
}
if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
{
image_close(&image);
return retvaltemp;
}
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "downloaded %u byte in %s",
(unsigned int)image_size,
duration_text);
}
free(duration_text);
image_close(&image);
return retval;
}
static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
fileio_t fileio;
uint8_t buffer[560];
int retvaltemp;
duration_t duration;
char *duration_text;
target_t *target = get_current_target(cmd_ctx);
if (argc != 3)
{
command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
return ERROR_OK;
}
uint32_t address;
int retval = parse_u32(args[1], &address);
if (ERROR_OK != retval)
return retval;
uint32_t size;
retval = parse_u32(args[2], &size);
if (ERROR_OK != retval)
return retval;
if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
duration_start_measure(&duration);
while (size > 0)
{
uint32_t size_written;
uint32_t this_run_size = (size > 560) ? 560 : size;
retval = target_read_buffer(target, address, this_run_size, buffer);
if (retval != ERROR_OK)
{
break;
}
retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
if (retval != ERROR_OK)
{
break;
}
size -= this_run_size;
address += this_run_size;
}
if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
return retvaltemp;
if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
return retvaltemp;
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "dumped %lld byte in %s",
fileio.size, duration_text);
free(duration_text);
}
return retval;
}
static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
{
uint8_t *buffer;
uint32_t buf_cnt;
uint32_t image_size;
int i;
int retval, retvaltemp;
uint32_t checksum = 0;
uint32_t mem_checksum = 0;
image_t image;
duration_t duration;
char *duration_text;
target_t *target = get_current_target(cmd_ctx);
if (argc < 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (!target)
{
LOG_ERROR("no target selected");
return ERROR_FAIL;
}
duration_start_measure(&duration);
if (argc >= 2)
{
uint32_t addr;
retval = parse_u32(args[1], &addr);
if (ERROR_OK != retval)
return ERROR_COMMAND_SYNTAX_ERROR;
image.base_address = addr;
image.base_address_set = 1;
}
else
{
image.base_address_set = 0;
image.base_address = 0x0;
}
image.start_address_set = 0;
if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
{
return retval;
}
image_size = 0x0;
retval = ERROR_OK;
for (i = 0; i < image.num_sections; i++)
{
buffer = malloc(image.sections[i].size);
if (buffer == NULL)
{
command_print(cmd_ctx,
"error allocating buffer for section (%d bytes)",
(int)(image.sections[i].size));
break;
}
if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
{
free(buffer);
break;
}
if (verify)
{
/* calculate checksum of image */
image_calculate_checksum(buffer, buf_cnt, &checksum);
retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
if (retval != ERROR_OK)
{
free(buffer);
break;
}
if (checksum != mem_checksum)
{
/* failed crc checksum, fall back to a binary compare */
uint8_t *data;
command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
data = (uint8_t*)malloc(buf_cnt);
/* Can we use 32bit word accesses? */
int size = 1;
int count = buf_cnt;
if ((count % 4) == 0)
{
size *= 4;
count /= 4;
}
retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
if (retval == ERROR_OK)
{
uint32_t t;
for (t = 0; t < buf_cnt; t++)
{
if (data[t] != buffer[t])
{
command_print(cmd_ctx,
"Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
(unsigned)(t + image.sections[i].base_address),
data[t],
buffer[t]);
free(data);
free(buffer);
retval = ERROR_FAIL;
goto done;
}
if ((t%16384) == 0)
{
keep_alive();
}
}
}
free(data);
}
} else
{
command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
image.sections[i].base_address,
buf_cnt);
}
free(buffer);
image_size += buf_cnt;
}
done:
if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
{
image_close(&image);
return retvaltemp;
}
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "verified %u bytes in %s",
(unsigned int)image_size,
duration_text);
}
free(duration_text);
image_close(&image);
return retval;
}
static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
}
static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
}
static int handle_bp_command_list(struct command_context_s *cmd_ctx)
{
target_t *target = get_current_target(cmd_ctx);
breakpoint_t *breakpoint = target->breakpoints;
while (breakpoint)
{
if (breakpoint->type == BKPT_SOFT)
{
char* buf = buf_to_str(breakpoint->orig_instr,
breakpoint->length, 16);
command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
breakpoint->address,
breakpoint->length,
breakpoint->set, buf);
free(buf);
}
else
{
command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
breakpoint->address,
breakpoint->length, breakpoint->set);
}
breakpoint = breakpoint->next;
}
return ERROR_OK;
}
static int handle_bp_command_set(struct command_context_s *cmd_ctx,
uint32_t addr, uint32_t length, int hw)
{
target_t *target = get_current_target(cmd_ctx);
int retval = breakpoint_add(target, addr, length, hw);
if (ERROR_OK == retval)
command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
else
LOG_ERROR("Failure setting breakpoint");
return retval;
}
static int handle_bp_command(struct command_context_s *cmd_ctx,
char *cmd, char **args, int argc)
{
if (argc == 0)
return handle_bp_command_list(cmd_ctx);
if (argc < 2 || argc > 3)
{
command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
return ERROR_COMMAND_SYNTAX_ERROR;
}
uint32_t addr;
int retval = parse_u32(args[0], &addr);
if (ERROR_OK != retval)
return retval;
uint32_t length;
retval = parse_u32(args[1], &length);
if (ERROR_OK != retval)
return retval;
int hw = BKPT_SOFT;
if (argc == 3)
{
if (strcmp(args[2], "hw") == 0)
hw = BKPT_HARD;
else
return ERROR_COMMAND_SYNTAX_ERROR;
}
return handle_bp_command_set(cmd_ctx, addr, length, hw);
}
static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t addr;
int retval = parse_u32(args[0], &addr);
if (ERROR_OK != retval)
return retval;
target_t *target = get_current_target(cmd_ctx);
breakpoint_remove(target, addr);
return ERROR_OK;
}
static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
if (argc == 0)
{
watchpoint_t *watchpoint = target->watchpoints;
while (watchpoint)
{
command_print(cmd_ctx,
"address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
watchpoint->address,
watchpoint->length,
(int)(watchpoint->rw),
watchpoint->value,
watchpoint->mask);
watchpoint = watchpoint->next;
}
return ERROR_OK;
}
enum watchpoint_rw type = WPT_ACCESS;
uint32_t addr = 0;
uint32_t length = 0;
uint32_t data_value = 0x0;
uint32_t data_mask = 0xffffffff;
int retval;
switch (argc)
{
case 5:
retval = parse_u32(args[4], &data_mask);
if (ERROR_OK != retval)
return retval;
// fall through
case 4:
retval = parse_u32(args[3], &data_value);
if (ERROR_OK != retval)
return retval;
// fall through
case 3:
switch (args[2][0])
{
case 'r':
type = WPT_READ;
break;
case 'w':
type = WPT_WRITE;
break;
case 'a':
type = WPT_ACCESS;
break;
default:
LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
// fall through
case 2:
retval = parse_u32(args[1], &length);
if (ERROR_OK != retval)
return retval;
retval = parse_u32(args[0], &addr);
if (ERROR_OK != retval)
return retval;
break;
default:
command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = watchpoint_add(target, addr, length, type,
data_value, data_mask);
if (ERROR_OK != retval)
LOG_ERROR("Failure setting watchpoints");
return retval;
}
static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t addr;
int retval = parse_u32(args[0], &addr);
if (ERROR_OK != retval)
return retval;
target_t *target = get_current_target(cmd_ctx);
watchpoint_remove(target, addr);
return ERROR_OK;
}
/**
* Translate a virtual address to a physical address.
*
* The low-level target implementation must have logged a detailed error
* which is forwarded to telnet/GDB session.
*/
static int handle_virt2phys_command(command_context_t *cmd_ctx,
char *cmd, char **args, int argc)
{
if (argc != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t va;
int retval = parse_u32(args[0], &va);
if (ERROR_OK != retval)
return retval;
uint32_t pa;
target_t *target = get_current_target(cmd_ctx);
retval = target->type->virt2phys(target, va, &pa);
if (retval == ERROR_OK)
command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
return retval;
}
static void writeData(FILE *f, const void *data, size_t len)
{
size_t written = fwrite(data, 1, len, f);
if (written != len)
LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
}
static void writeLong(FILE *f, int l)
{
int i;
for (i = 0; i < 4; i++)
{
char c = (l >> (i*8))&0xff;
writeData(f, &c, 1);
}
}
static void writeString(FILE *f, char *s)
{
writeData(f, s, strlen(s));
}
/* Dump a gmon.out histogram file. */
static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
{
uint32_t i;
FILE *f = fopen(filename, "w");
if (f == NULL)
return;
writeString(f, "gmon");
writeLong(f, 0x00000001); /* Version */
writeLong(f, 0); /* padding */
writeLong(f, 0); /* padding */
writeLong(f, 0); /* padding */
uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
writeData(f, &zero, 1);
/* figure out bucket size */
uint32_t min = samples[0];
uint32_t max = samples[0];
for (i = 0; i < sampleNum; i++)
{
if (min > samples[i])
{
min = samples[i];
}
if (max < samples[i])
{
max = samples[i];
}
}
int addressSpace = (max-min + 1);
static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
uint32_t length = addressSpace;
if (length > maxBuckets)
{
length = maxBuckets;
}
int *buckets = malloc(sizeof(int)*length);
if (buckets == NULL)
{
fclose(f);
return;
}
memset(buckets, 0, sizeof(int)*length);
for (i = 0; i < sampleNum;i++)
{
uint32_t address = samples[i];
long long a = address-min;
long long b = length-1;
long long c = addressSpace-1;
int index = (a*b)/c; /* danger!!!! int32 overflows */
buckets[index]++;
}
/* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
writeLong(f, min); /* low_pc */
writeLong(f, max); /* high_pc */
writeLong(f, length); /* # of samples */
writeLong(f, 64000000); /* 64MHz */
writeString(f, "seconds");
for (i = 0; i < (15-strlen("seconds")); i++)
writeData(f, &zero, 1);
writeString(f, "s");
/*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
char *data = malloc(2*length);
if (data != NULL)
{
for (i = 0; i < length;i++)
{
int val;
val = buckets[i];
if (val > 65535)
{
val = 65535;
}
data[i*2]=val&0xff;
data[i*2 + 1]=(val >> 8)&0xff;
}
free(buckets);
writeData(f, data, length * 2);
free(data);
} else
{
free(buckets);
}
fclose(f);
}
/* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
struct timeval timeout, now;
gettimeofday(&timeout, NULL);
if (argc != 2)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
unsigned offset;
int retval = parse_uint(args[0], &offset);
if (ERROR_OK != retval)
return retval;
timeval_add_time(&timeout, offset, 0);
command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
static const int maxSample = 10000;
uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
if (samples == NULL)
return ERROR_OK;
int numSamples = 0;
/* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
for (;;)
{
target_poll(target);
if (target->state == TARGET_HALTED)
{
uint32_t t=*((uint32_t *)reg->value);
samples[numSamples++]=t;
retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
target_poll(target);
alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
} else if (target->state == TARGET_RUNNING)
{
/* We want to quickly sample the PC. */
if ((retval = target_halt(target)) != ERROR_OK)
{
free(samples);
return retval;
}
} else
{
command_print(cmd_ctx, "Target not halted or running");
retval = ERROR_OK;
break;
}
if (retval != ERROR_OK)
{
break;
}
gettimeofday(&now, NULL);
if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
{
command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
if ((retval = target_poll(target)) != ERROR_OK)
{
free(samples);
return retval;
}
if (target->state == TARGET_HALTED)
{
target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
}
if ((retval = target_poll(target)) != ERROR_OK)
{
free(samples);
return retval;
}
writeGmon(samples, numSamples, args[1]);
command_print(cmd_ctx, "Wrote %s", args[1]);
break;
}
}
free(samples);
return ERROR_OK;
}
static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
{
char *namebuf;
Jim_Obj *nameObjPtr, *valObjPtr;
int result;
namebuf = alloc_printf("%s(%d)", varname, idx);
if (!namebuf)
return JIM_ERR;
nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
valObjPtr = Jim_NewIntObj(interp, val);
if (!nameObjPtr || !valObjPtr)
{
free(namebuf);
return JIM_ERR;
}
Jim_IncrRefCount(nameObjPtr);
Jim_IncrRefCount(valObjPtr);
result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
Jim_DecrRefCount(interp, nameObjPtr);
Jim_DecrRefCount(interp, valObjPtr);
free(namebuf);
/* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
return result;
}
static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
command_context_t *context;
target_t *target;
context = Jim_GetAssocData(interp, "context");
if (context == NULL)
{
LOG_ERROR("mem2array: no command context");
return JIM_ERR;
}
target = get_current_target(context);
if (target == NULL)
{
LOG_ERROR("mem2array: no current target");
return JIM_ERR;
}
return target_mem2array(interp, target, argc-1, argv + 1);
}
static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
{
long l;
uint32_t width;
int len;
uint32_t addr;
uint32_t count;
uint32_t v;
const char *varname;
uint8_t buffer[4096];
int n, e, retval;
uint32_t i;
/* argv[1] = name of array to receive the data
* argv[2] = desired width
* argv[3] = memory address
* argv[4] = count of times to read
*/
if (argc != 4) {
Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
return JIM_ERR;
}
varname = Jim_GetString(argv[0], &len);
/* given "foo" get space for worse case "foo(%d)" .. add 20 */
e = Jim_GetLong(interp, argv[1], &l);
width = l;
if (e != JIM_OK) {
return e;
}
e = Jim_GetLong(interp, argv[2], &l);
addr = l;
if (e != JIM_OK) {
return e;
}
e = Jim_GetLong(interp, argv[3], &l);
len = l;
if (e != JIM_OK) {
return e;
}
switch (width) {
case 8:
width = 1;
break;
case 16:
width = 2;
break;
case 32:
width = 4;
break;
default:
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
return JIM_ERR;
}
if (len == 0) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
return JIM_ERR;
}
if ((addr + (len * width)) < addr) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
return JIM_ERR;
}
/* absurd transfer size? */
if (len > 65536) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
return JIM_ERR;
}
if ((width == 1) ||
((width == 2) && ((addr & 1) == 0)) ||
((width == 4) && ((addr & 3) == 0))) {
/* all is well */
} else {
char buf[100];
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
addr,
width);
Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
return JIM_ERR;
}
/* Transfer loop */
/* index counter */
n = 0;
/* assume ok */
e = JIM_OK;
while (len) {
/* Slurp... in buffer size chunks */
count = len; /* in objects.. */
if (count > (sizeof(buffer)/width)) {
count = (sizeof(buffer)/width);
}
retval = target_read_memory(target, addr, width, count, buffer);
if (retval != ERROR_OK) {
/* BOO !*/
LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
(unsigned int)addr,
(int)width,
(int)count);
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
e = JIM_ERR;
len = 0;
} else {
v = 0; /* shut up gcc */
for (i = 0 ;i < count ;i++, n++) {
switch (width) {
case 4:
v = target_buffer_get_u32(target, &buffer[i*width]);
break;
case 2:
v = target_buffer_get_u16(target, &buffer[i*width]);
break;
case 1:
v = buffer[i] & 0x0ff;
break;
}
new_int_array_element(interp, varname, n, v);
}
len -= count;
}
}
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
return JIM_OK;
}
static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
{
char *namebuf;
Jim_Obj *nameObjPtr, *valObjPtr;
int result;
long l;
namebuf = alloc_printf("%s(%d)", varname, idx);
if (!namebuf)
return JIM_ERR;
nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
if (!nameObjPtr)
{
free(namebuf);
return JIM_ERR;
}
Jim_IncrRefCount(nameObjPtr);
valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
Jim_DecrRefCount(interp, nameObjPtr);
free(namebuf);
if (valObjPtr == NULL)
return JIM_ERR;
result = Jim_GetLong(interp, valObjPtr, &l);
/* printf("%s(%d) => 0%08x\n", varname, idx, val); */
*val = l;
return result;
}
static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
command_context_t *context;
target_t *target;
context = Jim_GetAssocData(interp, "context");
if (context == NULL) {
LOG_ERROR("array2mem: no command context");
return JIM_ERR;
}
target = get_current_target(context);
if (target == NULL) {
LOG_ERROR("array2mem: no current target");
return JIM_ERR;
}
return target_array2mem(interp,target, argc-1, argv + 1);
}
static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
{
long l;
uint32_t width;
int len;
uint32_t addr;
uint32_t count;
uint32_t v;
const char *varname;
uint8_t buffer[4096];
int n, e, retval;
uint32_t i;
/* argv[1] = name of array to get the data
* argv[2] = desired width
* argv[3] = memory address
* argv[4] = count to write
*/
if (argc != 4) {
Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
return JIM_ERR;
}
varname = Jim_GetString(argv[0], &len);
/* given "foo" get space for worse case "foo(%d)" .. add 20 */
e = Jim_GetLong(interp, argv[1], &l);
width = l;
if (e != JIM_OK) {
return e;
}
e = Jim_GetLong(interp, argv[2], &l);
addr = l;
if (e != JIM_OK) {
return e;
}
e = Jim_GetLong(interp, argv[3], &l);
len = l;
if (e != JIM_OK) {
return e;
}
switch (width) {
case 8:
width = 1;
break;
case 16:
width = 2;
break;
case 32:
width = 4;
break;
default:
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
return JIM_ERR;
}
if (len == 0) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
return JIM_ERR;
}
if ((addr + (len * width)) < addr) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
return JIM_ERR;
}
/* absurd transfer size? */
if (len > 65536) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
return JIM_ERR;
}
if ((width == 1) ||
((width == 2) && ((addr & 1) == 0)) ||
((width == 4) && ((addr & 3) == 0))) {
/* all is well */
} else {
char buf[100];
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
(unsigned int)addr,
(int)width);
Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
return JIM_ERR;
}
/* Transfer loop */
/* index counter */
n = 0;
/* assume ok */
e = JIM_OK;
while (len) {
/* Slurp... in buffer size chunks */
count = len; /* in objects.. */
if (count > (sizeof(buffer)/width)) {
count = (sizeof(buffer)/width);
}
v = 0; /* shut up gcc */
for (i = 0 ;i < count ;i++, n++) {
get_int_array_element(interp, varname, n, &v);
switch (width) {
case 4:
target_buffer_set_u32(target, &buffer[i*width], v);
break;
case 2:
target_buffer_set_u16(target, &buffer[i*width], v);
break;
case 1:
buffer[i] = v & 0x0ff;
break;
}
}
len -= count;
retval = target_write_memory(target, addr, width, count, buffer);
if (retval != ERROR_OK) {
/* BOO !*/
LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
(unsigned int)addr,
(int)width,
(int)count);
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
e = JIM_ERR;
len = 0;
}
}
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
return JIM_OK;
}
void target_all_handle_event(enum target_event e)
{
target_t *target;
LOG_DEBUG("**all*targets: event: %d, %s",
(int)e,
Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
target = all_targets;
while (target) {
target_handle_event(target, e);
target = target->next;
}
}
void target_handle_event(target_t *target, enum target_event e)
{
target_event_action_t *teap;
int done;
teap = target->event_action;
done = 0;
while (teap) {
if (teap->event == e) {
done = 1;
LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
target->target_number,
target->cmd_name,
target_get_name(target),
e,
Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
Jim_GetString(teap->body, NULL));
if (Jim_EvalObj(interp, teap->body) != JIM_OK)
{
Jim_PrintErrorMessage(interp);
}
}
teap = teap->next;
}
if (!done) {
LOG_DEBUG("event: %d %s - no action",
e,
Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
}
}
enum target_cfg_param {
TCFG_TYPE,
TCFG_EVENT,
TCFG_WORK_AREA_VIRT,
TCFG_WORK_AREA_PHYS,
TCFG_WORK_AREA_SIZE,
TCFG_WORK_AREA_BACKUP,
TCFG_ENDIAN,
TCFG_VARIANT,
TCFG_CHAIN_POSITION,
};
static Jim_Nvp nvp_config_opts[] = {
{ .name = "-type", .value = TCFG_TYPE },
{ .name = "-event", .value = TCFG_EVENT },
{ .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
{ .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
{ .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
{ .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
{ .name = "-endian" , .value = TCFG_ENDIAN },
{ .name = "-variant", .value = TCFG_VARIANT },
{ .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
{ .name = NULL, .value = -1 }
};
static int target_configure(Jim_GetOptInfo *goi, target_t *target)
{
Jim_Nvp *n;
Jim_Obj *o;
jim_wide w;
char *cp;
int e;
/* parse config or cget options ... */
while (goi->argc > 0) {
Jim_SetEmptyResult(goi->interp);
/* Jim_GetOpt_Debug(goi); */
if (target->type->target_jim_configure) {
/* target defines a configure function */
/* target gets first dibs on parameters */
e = (*(target->type->target_jim_configure))(target, goi);
if (e == JIM_OK) {
/* more? */
continue;
}
if (e == JIM_ERR) {
/* An error */
return e;
}
/* otherwise we 'continue' below */
}
e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
return e;
}
switch (n->value) {
case TCFG_TYPE:
/* not setable */
if (goi->isconfigure) {
Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
return JIM_ERR;
} else {
no_params:
if (goi->argc != 0) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
return JIM_ERR;
}
}
Jim_SetResultString(goi->interp, target_get_name(target), -1);
/* loop for more */
break;
case TCFG_EVENT:
if (goi->argc == 0) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
return JIM_ERR;
}
e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
return e;
}
if (goi->isconfigure) {
if (goi->argc != 1) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
return JIM_ERR;
}
} else {
if (goi->argc != 0) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
return JIM_ERR;
}
}
{
target_event_action_t *teap;
teap = target->event_action;
/* replace existing? */
while (teap) {
if (teap->event == (enum target_event)n->value) {
break;
}
teap = teap->next;
}
if (goi->isconfigure) {
if (teap == NULL) {
/* create new */
teap = calloc(1, sizeof(*teap));
}
teap->event = n->value;
Jim_GetOpt_Obj(goi, &o);
if (teap->body) {
Jim_DecrRefCount(interp, teap->body);
}
teap->body = Jim_DuplicateObj(goi->interp, o);
/*
* FIXME:
* Tcl/TK - "tk events" have a nice feature.
* See the "BIND" command.
* We should support that here.
* You can specify %X and %Y in the event code.
* The idea is: %T - target name.
* The idea is: %N - target number
* The idea is: %E - event name.
*/
Jim_IncrRefCount(teap->body);
/* add to head of event list */
teap->next = target->event_action;
target->event_action = teap;
Jim_SetEmptyResult(goi->interp);
} else {
/* get */
if (teap == NULL) {
Jim_SetEmptyResult(goi->interp);
} else {
Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
}
}
}
/* loop for more */
break;
case TCFG_WORK_AREA_VIRT:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = Jim_GetOpt_Wide(goi, &w);
if (e != JIM_OK) {
return e;
}
target->working_area_virt = w;
} else {
if (goi->argc != 0) {
goto no_params;
}
}
Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
/* loop for more */
break;
case TCFG_WORK_AREA_PHYS:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = Jim_GetOpt_Wide(goi, &w);
if (e != JIM_OK) {
return e;
}
target->working_area_phys = w;
} else {
if (goi->argc != 0) {
goto no_params;
}
}
Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
/* loop for more */
break;
case TCFG_WORK_AREA_SIZE:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = Jim_GetOpt_Wide(goi, &w);
if (e != JIM_OK) {
return e;
}
target->working_area_size = w;
} else {
if (goi->argc != 0) {
goto no_params;
}
}
Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
/* loop for more */
break;
case TCFG_WORK_AREA_BACKUP:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = Jim_GetOpt_Wide(goi, &w);
if (e != JIM_OK) {
return e;
}
/* make this exactly 1 or 0 */
target->backup_working_area = (!!w);
} else {
if (goi->argc != 0) {
goto no_params;
}
}
Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
/* loop for more e*/
break;
case TCFG_ENDIAN:
if (goi->isconfigure) {
e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
return e;
}
target->endianness = n->value;
} else {
if (goi->argc != 0) {
goto no_params;
}
}
n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
if (n->name == NULL) {
target->endianness = TARGET_LITTLE_ENDIAN;
n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
}
Jim_SetResultString(goi->interp, n->name, -1);
/* loop for more */
break;
case TCFG_VARIANT:
if (goi->isconfigure) {
if (goi->argc < 1) {
Jim_SetResult_sprintf(goi->interp,
"%s ?STRING?",
n->name);
return JIM_ERR;
}
if (target->variant) {
free((void *)(target->variant));
}
e = Jim_GetOpt_String(goi, &cp, NULL);
target->variant = strdup(cp);
} else {
if (goi->argc != 0) {
goto no_params;
}
}
Jim_SetResultString(goi->interp, target->variant,-1);
/* loop for more */
break;
case TCFG_CHAIN_POSITION:
if (goi->isconfigure) {
Jim_Obj *o;
jtag_tap_t *tap;
target_free_all_working_areas(target);
e = Jim_GetOpt_Obj(goi, &o);
if (e != JIM_OK) {
return e;
}
tap = jtag_tap_by_jim_obj(goi->interp, o);
if (tap == NULL) {
return JIM_ERR;
}
/* make this exactly 1 or 0 */
target->tap = tap;
} else {
if (goi->argc != 0) {
goto no_params;
}
}
Jim_SetResultString(interp, target->tap->dotted_name, -1);
/* loop for more e*/
break;
}
} /* while (goi->argc) */
/* done - we return */
return JIM_OK;
}
/** this is the 'tcl' handler for the target specific command */
static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
Jim_GetOptInfo goi;
jim_wide a,b,c;
int x,y,z;
uint8_t target_buf[32];
Jim_Nvp *n;
target_t *target;
struct command_context_s *cmd_ctx;
int e;
enum {
TS_CMD_CONFIGURE,
TS_CMD_CGET,
TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
TS_CMD_EXAMINE,
TS_CMD_POLL,
TS_CMD_RESET,
TS_CMD_HALT,
TS_CMD_WAITSTATE,
TS_CMD_EVENTLIST,
TS_CMD_CURSTATE,
TS_CMD_INVOKE_EVENT,
};
static const Jim_Nvp target_options[] = {
{ .name = "configure", .value = TS_CMD_CONFIGURE },
{ .name = "cget", .value = TS_CMD_CGET },
{ .name = "mww", .value = TS_CMD_MWW },
{ .name = "mwh", .value = TS_CMD_MWH },
{ .name = "mwb", .value = TS_CMD_MWB },
{ .name = "mdw", .value = TS_CMD_MDW },
{ .name = "mdh", .value = TS_CMD_MDH },
{ .name = "mdb", .value = TS_CMD_MDB },
{ .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
{ .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
{ .name = "eventlist", .value = TS_CMD_EVENTLIST },
{ .name = "curstate", .value = TS_CMD_CURSTATE },
{ .name = "arp_examine", .value = TS_CMD_EXAMINE },
{ .name = "arp_poll", .value = TS_CMD_POLL },
{ .name = "arp_reset", .value = TS_CMD_RESET },
{ .name = "arp_halt", .value = TS_CMD_HALT },
{ .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
{ .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
{ .name = NULL, .value = -1 },
};
/* go past the "command" */
Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
target = Jim_CmdPrivData(goi.interp);
cmd_ctx = Jim_GetAssocData(goi.interp, "context");
/* commands here are in an NVP table */
e = Jim_GetOpt_Nvp(&goi, target_options, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
return e;
}
/* Assume blank result */
Jim_SetEmptyResult(goi.interp);
switch (n->value) {
case TS_CMD_CONFIGURE:
if (goi.argc < 2) {
Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
return JIM_ERR;
}
goi.isconfigure = 1;
return target_configure(&goi, target);
case TS_CMD_CGET:
// some things take params
if (goi.argc < 1) {
Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
return JIM_ERR;
}
goi.isconfigure = 0;
return target_configure(&goi, target);
break;
case TS_CMD_MWW:
case TS_CMD_MWH:
case TS_CMD_MWB:
/* argv[0] = cmd
* argv[1] = address
* argv[2] = data
* argv[3] = optional count.
*/
if ((goi.argc == 2) || (goi.argc == 3)) {
/* all is well */
} else {
mwx_error:
Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
return JIM_ERR;
}
e = Jim_GetOpt_Wide(&goi, &a);
if (e != JIM_OK) {
goto mwx_error;
}
e = Jim_GetOpt_Wide(&goi, &b);
if (e != JIM_OK) {
goto mwx_error;
}
if (goi.argc == 3) {
e = Jim_GetOpt_Wide(&goi, &c);
if (e != JIM_OK) {
goto mwx_error;
}
} else {
c = 1;
}
switch (n->value) {
case TS_CMD_MWW:
target_buffer_set_u32(target, target_buf, b);
b = 4;
break;
case TS_CMD_MWH:
target_buffer_set_u16(target, target_buf, b);
b = 2;
break;
case TS_CMD_MWB:
target_buffer_set_u8(target, target_buf, b);
b = 1;
break;
}
for (x = 0 ; x < c ; x++) {
e = target_write_memory(target, a, b, 1, target_buf);
if (e != ERROR_OK) {
Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
return JIM_ERR;
}
/* b = width */
a = a + b;
}
return JIM_OK;
break;
/* display */
case TS_CMD_MDW:
case TS_CMD_MDH:
case TS_CMD_MDB:
/* argv[0] = command
* argv[1] = address
* argv[2] = optional count
*/
if ((goi.argc == 2) || (goi.argc == 3)) {
Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
return JIM_ERR;
}
e = Jim_GetOpt_Wide(&goi, &a);
if (e != JIM_OK) {
return JIM_ERR;
}
if (goi.argc) {
e = Jim_GetOpt_Wide(&goi, &c);
if (e != JIM_OK) {
return JIM_ERR;
}
} else {
c = 1;
}
b = 1; /* shut up gcc */
switch (n->value) {
case TS_CMD_MDW:
b = 4;
break;
case TS_CMD_MDH:
b = 2;
break;
case TS_CMD_MDB:
b = 1;
break;
}
/* convert to "bytes" */
c = c * b;
/* count is now in 'BYTES' */
while (c > 0) {
y = c;
if (y > 16) {
y = 16;
}
e = target_read_memory(target, a, b, y / b, target_buf);
if (e != ERROR_OK) {
Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
return JIM_ERR;
}
Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
switch (b) {
case 4:
for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
}
for (; (x < 16) ; x += 4) {
Jim_fprintf(interp, interp->cookie_stdout, " ");
}
break;
case 2:
for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
}
for (; (x < 16) ; x += 2) {
Jim_fprintf(interp, interp->cookie_stdout, " ");
}
break;
case 1:
default:
for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
}
for (; (x < 16) ; x += 1) {
Jim_fprintf(interp, interp->cookie_stdout, " ");
}
break;
}
/* ascii-ify the bytes */
for (x = 0 ; x < y ; x++) {
if ((target_buf[x] >= 0x20) &&
(target_buf[x] <= 0x7e)) {
/* good */
} else {
/* smack it */
target_buf[x] = '.';
}
}
/* space pad */
while (x < 16) {
target_buf[x] = ' ';
x++;
}
/* terminate */
target_buf[16] = 0;
/* print - with a newline */
Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
/* NEXT... */
c -= 16;
a += 16;
}
return JIM_OK;
case TS_CMD_MEM2ARRAY:
return target_mem2array(goi.interp, target, goi.argc, goi.argv);
break;
case TS_CMD_ARRAY2MEM:
return target_array2mem(goi.interp, target, goi.argc, goi.argv);
break;
case TS_CMD_EXAMINE:
if (goi.argc) {
Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
return JIM_ERR;
}
if (!target->tap->enabled)
goto err_tap_disabled;
e = target->type->examine(target);
if (e != ERROR_OK) {
Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
return JIM_ERR;
}
return JIM_OK;
case TS_CMD_POLL:
if (goi.argc) {
Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
return JIM_ERR;
}
if (!target->tap->enabled)
goto err_tap_disabled;
if (!(target_was_examined(target))) {
e = ERROR_TARGET_NOT_EXAMINED;
} else {
e = target->type->poll(target);
}
if (e != ERROR_OK) {
Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
return JIM_ERR;
} else {
return JIM_OK;
}
break;
case TS_CMD_RESET:
if (goi.argc != 2) {
Jim_WrongNumArgs(interp, 2, argv, "t | f|assert | deassert BOOL");
return JIM_ERR;
}
e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
return e;
}
/* the halt or not param */
e = Jim_GetOpt_Wide(&goi, &a);
if (e != JIM_OK) {
return e;
}
if (!target->tap->enabled)
goto err_tap_disabled;
/* determine if we should halt or not. */
target->reset_halt = !!a;
/* When this happens - all workareas are invalid. */
target_free_all_working_areas_restore(target, 0);
/* do the assert */
if (n->value == NVP_ASSERT) {
target->type->assert_reset(target);
} else {
target->type->deassert_reset(target);
}
return JIM_OK;
case TS_CMD_HALT:
if (goi.argc) {
Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
return JIM_ERR;
}
if (!target->tap->enabled)
goto err_tap_disabled;
target->type->halt(target);
return JIM_OK;
case TS_CMD_WAITSTATE:
/* params: <name> statename timeoutmsecs */
if (goi.argc != 2) {
Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
return JIM_ERR;
}
e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
return e;
}
e = Jim_GetOpt_Wide(&goi, &a);
if (e != JIM_OK) {
return e;
}
if (!target->tap->enabled)
goto err_tap_disabled;
e = target_wait_state(target, n->value, a);
if (e != ERROR_OK) {
Jim_SetResult_sprintf(goi.interp,
"target: %s wait %s fails (%d) %s",
target->cmd_name,
n->name,
e, target_strerror_safe(e));
return JIM_ERR;
} else {
return JIM_OK;
}
case TS_CMD_EVENTLIST:
/* List for human, Events defined for this target.
* scripts/programs should use 'name cget -event NAME'
*/
{
target_event_action_t *teap;
teap = target->event_action;
command_print(cmd_ctx, "Event actions for target (%d) %s\n",
target->target_number,
target->cmd_name);
command_print(cmd_ctx, "%-25s | Body", "Event");
command_print(cmd_ctx, "------------------------- | ----------------------------------------");
while (teap) {
command_print(cmd_ctx,
"%-25s | %s",
Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
Jim_GetString(teap->body, NULL));
teap = teap->next;
}
command_print(cmd_ctx, "***END***");
return JIM_OK;
}
case TS_CMD_CURSTATE:
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
return JIM_ERR;
}
Jim_SetResultString(goi.interp,
target_state_name( target ),
-1);
return JIM_OK;
case TS_CMD_INVOKE_EVENT:
if (goi.argc != 1) {
Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
return JIM_ERR;
}
e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
if (e != JIM_OK) {
Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
return e;
}
target_handle_event(target, n->value);
return JIM_OK;
}
return JIM_ERR;
err_tap_disabled:
Jim_SetResult_sprintf(interp, "[TAP is disabled]");
return JIM_ERR;
}
static int target_create(Jim_GetOptInfo *goi)
{
Jim_Obj *new_cmd;
Jim_Cmd *cmd;
const char *cp;
char *cp2;
int e;
int x;
target_t *target;
struct command_context_s *cmd_ctx;
cmd_ctx = Jim_GetAssocData(goi->interp, "context");
if (goi->argc < 3) {
Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
return JIM_ERR;
}
/* COMMAND */
Jim_GetOpt_Obj(goi, &new_cmd);
/* does this command exist? */
cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
if (cmd) {
cp = Jim_GetString(new_cmd, NULL);
Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
return JIM_ERR;
}
/* TYPE */
e = Jim_GetOpt_String(goi, &cp2, NULL);
cp = cp2;
/* now does target type exist */
for (x = 0 ; target_types[x] ; x++) {
if (0 == strcmp(cp, target_types[x]->name)) {
/* found */
break;
}
}
if (target_types[x] == NULL) {
Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
for (x = 0 ; target_types[x] ; x++) {
if (target_types[x + 1]) {
Jim_AppendStrings(goi->interp,
Jim_GetResult(goi->interp),
target_types[x]->name,
", ", NULL);
} else {
Jim_AppendStrings(goi->interp,
Jim_GetResult(goi->interp),
" or ",
target_types[x]->name,NULL);
}
}
return JIM_ERR;
}
/* Create it */
target = calloc(1,sizeof(target_t));
/* set target number */
target->target_number = new_target_number();
/* allocate memory for each unique target type */
target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
memcpy(target->type, target_types[x], sizeof(target_type_t));
/* will be set by "-endian" */
target->endianness = TARGET_ENDIAN_UNKNOWN;
target->working_area = 0x0;
target->working_area_size = 0x0;
target->working_areas = NULL;
target->backup_working_area = 0;
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
target->reg_cache = NULL;
target->breakpoints = NULL;
target->watchpoints = NULL;
target->next = NULL;
target->arch_info = NULL;
target->display = 1;
/* initialize trace information */
target->trace_info = malloc(sizeof(trace_t));
target->trace_info->num_trace_points = 0;
target->trace_info->trace_points_size = 0;
target->trace_info->trace_points = NULL;
target->trace_info->trace_history_size = 0;
target->trace_info->trace_history = NULL;
target->trace_info->trace_history_pos = 0;
target->trace_info->trace_history_overflowed = 0;
target->dbgmsg = NULL;
target->dbg_msg_enabled = 0;
target->endianness = TARGET_ENDIAN_UNKNOWN;
/* Do the rest as "configure" options */
goi->isconfigure = 1;
e = target_configure(goi, target);
if (target->tap == NULL)
{
Jim_SetResultString(interp, "-chain-position required when creating target", -1);
e = JIM_ERR;
}
if (e != JIM_OK) {
free(target->type);
free(target);
return e;
}
if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
/* default endian to little if not specified */
target->endianness = TARGET_LITTLE_ENDIAN;
}
/* incase variant is not set */
if (!target->variant)
target->variant = strdup("");
/* create the target specific commands */
if (target->type->register_commands) {
(*(target->type->register_commands))(cmd_ctx);
}
if (target->type->target_create) {
(*(target->type->target_create))(target, goi->interp);
}
/* append to end of list */
{
target_t **tpp;
tpp = &(all_targets);
while (*tpp) {
tpp = &((*tpp)->next);
}
*tpp = target;
}
cp = Jim_GetString(new_cmd, NULL);
target->cmd_name = strdup(cp);
/* now - create the new target name command */
e = Jim_CreateCommand(goi->interp,
/* name */
cp,
tcl_target_func, /* C function */
target, /* private data */
NULL); /* no del proc */
return e;
}
static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
int x,r,e;
jim_wide w;
struct command_context_s *cmd_ctx;
target_t *target;
Jim_GetOptInfo goi;
enum tcmd {
/* TG = target generic */
TG_CMD_CREATE,
TG_CMD_TYPES,
TG_CMD_NAMES,
TG_CMD_CURRENT,
TG_CMD_NUMBER,
TG_CMD_COUNT,
};
const char *target_cmds[] = {
"create", "types", "names", "current", "number",
"count",
NULL /* terminate */
};
LOG_DEBUG("Target command params:");
LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
cmd_ctx = Jim_GetAssocData(interp, "context");
Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
if (goi.argc == 0) {
Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
return JIM_ERR;
}
/* Jim_GetOpt_Debug(&goi); */
r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
if (r != JIM_OK) {
return r;
}
switch (x) {
default:
Jim_Panic(goi.interp,"Why am I here?");
return JIM_ERR;
case TG_CMD_CURRENT:
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
return JIM_ERR;
}
Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
return JIM_OK;
case TG_CMD_TYPES:
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
return JIM_ERR;
}
Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
for (x = 0 ; target_types[x] ; x++) {
Jim_ListAppendElement(goi.interp,
Jim_GetResult(goi.interp),
Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
}
return JIM_OK;
case TG_CMD_NAMES:
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
return JIM_ERR;
}
Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
target = all_targets;
while (target) {
Jim_ListAppendElement(goi.interp,
Jim_GetResult(goi.interp),
Jim_NewStringObj(goi.interp, target->cmd_name, -1));
target = target->next;
}
return JIM_OK;
case TG_CMD_CREATE:
if (goi.argc < 3) {
Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name ... config options ...");
return JIM_ERR;
}
return target_create(&goi);
break;
case TG_CMD_NUMBER:
if (goi.argc != 1) {
Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
return JIM_ERR;
}
e = Jim_GetOpt_Wide(&goi, &w);
if (e != JIM_OK) {
return JIM_ERR;
}
{
target_t *t;
t = get_target_by_num(w);
if (t == NULL) {
Jim_SetResult_sprintf(goi.interp,"Target: number %d does not exist", (int)(w));
return JIM_ERR;
}
Jim_SetResultString(goi.interp, t->cmd_name, -1);
return JIM_OK;
}
case TG_CMD_COUNT:
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
return JIM_ERR;
}
Jim_SetResult(goi.interp,
Jim_NewIntObj(goi.interp, max_target_number()));
return JIM_OK;
}
return JIM_ERR;
}
struct FastLoad
{
uint32_t address;
uint8_t *data;
int length;
};
static int fastload_num;
static struct FastLoad *fastload;
static void free_fastload(void)
{
if (fastload != NULL)
{
int i;
for (i = 0; i < fastload_num; i++)
{
if (fastload[i].data)
free(fastload[i].data);
}
free(fastload);
fastload = NULL;
}
}
static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
uint8_t *buffer;
uint32_t buf_cnt;
uint32_t image_size;
uint32_t min_address = 0;
uint32_t max_address = 0xffffffff;
int i;
image_t image;
duration_t duration;
char *duration_text;
int retval = parse_load_image_command_args(args, argc,
&image, &min_address, &max_address);
if (ERROR_OK != retval)
return retval;
duration_start_measure(&duration);
if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
{
return ERROR_OK;
}
image_size = 0x0;
retval = ERROR_OK;
fastload_num = image.num_sections;
fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
if (fastload == NULL)
{
image_close(&image);
return ERROR_FAIL;
}
memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
for (i = 0; i < image.num_sections; i++)
{
buffer = malloc(image.sections[i].size);
if (buffer == NULL)
{
command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
(int)(image.sections[i].size));
break;
}
if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
{
free(buffer);
break;
}
uint32_t offset = 0;
uint32_t length = buf_cnt;
/* DANGER!!! beware of unsigned comparision here!!! */
if ((image.sections[i].base_address + buf_cnt >= min_address)&&
(image.sections[i].base_address < max_address))
{
if (image.sections[i].base_address < min_address)
{
/* clip addresses below */
offset += min_address-image.sections[i].base_address;
length -= offset;
}
if (image.sections[i].base_address + buf_cnt > max_address)
{
length -= (image.sections[i].base_address + buf_cnt)-max_address;
}
fastload[i].address = image.sections[i].base_address + offset;
fastload[i].data = malloc(length);
if (fastload[i].data == NULL)
{
free(buffer);
break;
}
memcpy(fastload[i].data, buffer + offset, length);
fastload[i].length = length;
image_size += length;
command_print(cmd_ctx, "%u byte written at address 0x%8.8x",
(unsigned int)length,
((unsigned int)(image.sections[i].base_address + offset)));
}
free(buffer);
}
duration_stop_measure(&duration, &duration_text);
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "Loaded %u bytes in %s", (unsigned int)image_size, duration_text);
command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
}
free(duration_text);
image_close(&image);
if (retval != ERROR_OK)
{
free_fastload();
}
return retval;
}
static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (fastload == NULL)
{
LOG_ERROR("No image in memory");
return ERROR_FAIL;
}
int i;
int ms = timeval_ms();
int size = 0;
int retval = ERROR_OK;
for (i = 0; i < fastload_num;i++)
{
target_t *target = get_current_target(cmd_ctx);
command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
(unsigned int)(fastload[i].address),
(unsigned int)(fastload[i].length));
if (retval == ERROR_OK)
{
retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
}
size += fastload[i].length;
}
int after = timeval_ms();
command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
return retval;
}
/*
* Local Variables:
* c-basic-offset: 4
* tab-width: 4
* End:
*/