openocd/src/flash/nor/stm32f1x.c
Andreas Fritiofson 92b14f8ca9 stm32f1x: use async algorithm in flash programming routine
Let the target algorithm be running in the background and buffer data
continuously through a FIFO. This reduces or removes the effect of latency
because only a very small number of queue executions needs to be done per
buffer fill. Previously, the many repeated target state changes, register
accesses (really inefficient) and algorithm uploads caused the flash
programming to be latency bound in many cases. Now it should scale better
with increased throughput.

Signed-off-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
2011-10-09 00:00:53 +02:00

1721 lines
44 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* stm32x register locations */
#define FLASH_REG_BASE_B0 0x40022000
#define FLASH_REG_BASE_B1 0x40022040
#define STM32_FLASH_ACR 0x00
#define STM32_FLASH_KEYR 0x04
#define STM32_FLASH_OPTKEYR 0x08
#define STM32_FLASH_SR 0x0C
#define STM32_FLASH_CR 0x10
#define STM32_FLASH_AR 0x14
#define STM32_FLASH_OBR 0x1C
#define STM32_FLASH_WRPR 0x20
/* TODO: Check if code using these really should be hard coded to bank 0.
* There are valid cases, on dual flash devices the protection of the
* second bank is done on the bank0 reg's. */
#define STM32_FLASH_ACR_B0 0x40022000
#define STM32_FLASH_KEYR_B0 0x40022004
#define STM32_FLASH_OPTKEYR_B0 0x40022008
#define STM32_FLASH_SR_B0 0x4002200C
#define STM32_FLASH_CR_B0 0x40022010
#define STM32_FLASH_AR_B0 0x40022014
#define STM32_FLASH_OBR_B0 0x4002201C
#define STM32_FLASH_WRPR_B0 0x40022020
/* option byte location */
#define STM32_OB_RDP 0x1FFFF800
#define STM32_OB_USER 0x1FFFF802
#define STM32_OB_DATA0 0x1FFFF804
#define STM32_OB_DATA1 0x1FFFF806
#define STM32_OB_WRP0 0x1FFFF808
#define STM32_OB_WRP1 0x1FFFF80A
#define STM32_OB_WRP2 0x1FFFF80C
#define STM32_OB_WRP3 0x1FFFF80E
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_OPTPG (1 << 4)
#define FLASH_OPTER (1 << 5)
#define FLASH_STRT (1 << 6)
#define FLASH_LOCK (1 << 7)
#define FLASH_OPTWRE (1 << 9)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0)
#define FLASH_PGERR (1 << 2)
#define FLASH_WRPRTERR (1 << 4)
#define FLASH_EOP (1 << 5)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
#define OPT_BFB2 5 /* dual flash bank only */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
struct stm32x_options
{
uint16_t RDP;
uint16_t user_options;
uint16_t protection[4];
};
struct stm32x_flash_bank
{
struct stm32x_options option_bytes;
struct working_area *write_algorithm;
int ppage_size;
int probed;
bool has_dual_banks;
/* used to access dual flash bank stm32xl */
uint32_t register_base;
};
static int stm32x_mass_erase(struct flash_bank *bank);
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
{
LOG_WARNING("incomplete flash_bank stm32x configuration");
return ERROR_FLASH_BANK_INVALID;
}
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->write_algorithm = NULL;
stm32x_info->probed = 0;
stm32x_info->has_dual_banks = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
return ERROR_OK;
}
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return reg + stm32x_info->register_base;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;)
{
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0)
{
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPRTERR)
{
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
if (status & FLASH_PGERR)
{
LOG_ERROR("stm32x device programming failed");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & (FLASH_WRPRTERR | FLASH_PGERR))
{
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
FLASH_WRPRTERR | FLASH_PGERR);
}
return retval;
}
int stm32x_check_operation_supported(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
/* if we have a dual flash bank device then
* we need to perform option byte stuff on bank0 only */
if (stm32x_info->register_base != FLASH_REG_BASE_B0)
{
LOG_ERROR("Option Byte Operation's must use bank0");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current option bytes */
int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
if (optiondata & (1 << OPT_READOUT))
LOG_INFO("Device Security Bit Set");
/* each bit refers to a 4bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
return ERROR_OK;
}
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current options */
stm32x_read_options(bank);
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* erase option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* clear readout protection and complementary option bytes
* this will also force a device unlock if set */
stm32x_info->option_bytes.RDP = 0x5AA5;
return ERROR_OK;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* program option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
/* write user option byte */
retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 1 */
retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 2 */
retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 3 */
retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 4 */
retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write readout protection bit */
retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t protection;
int i, s;
int num_bits;
int set;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
/* medium density - each protection bit is for 4 * 1K pages
* high density - each protection bit is for 2 * 2K pages */
num_bits = (bank->num_sectors / stm32x_info->ppage_size);
if (stm32x_info->ppage_size == 2)
{
/* high density flash/connectivity line protection */
set = 1;
if (protection & (1 << 31))
set = 0;
/* bit 31 controls sector 62 - 255 protection for high density
* bit 31 controls sector 62 - 127 protection for connectivity line */
for (s = 62; s < bank->num_sectors; s++)
{
bank->sectors[s].is_protected = set;
}
if (bank->num_sectors > 61)
num_bits = 31;
for (i = 0; i < num_bits; i++)
{
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
else
{
/* low/medium density flash protection */
for (i = 0; i < num_bits; i++)
{
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
{
return stm32x_mass_erase(bank);
}
/* unlock flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
for (i = first; i <= last; i++)
{
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
bank->base + bank->sectors[i].offset);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 100);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
int i, reg, bit;
int status;
uint32_t protection;
stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
if ((first % stm32x_info->ppage_size) != 0)
{
LOG_WARNING("aligned start protect sector to a %d sector boundary",
stm32x_info->ppage_size);
first = first - (first % stm32x_info->ppage_size);
}
if (((last + 1) % stm32x_info->ppage_size) != 0)
{
LOG_WARNING("aligned end protect sector to a %d sector boundary",
stm32x_info->ppage_size);
last++;
last = last - (last % stm32x_info->ppage_size);
last--;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
prot_reg[0] = (uint16_t)protection;
prot_reg[1] = (uint16_t)(protection >> 8);
prot_reg[2] = (uint16_t)(protection >> 16);
prot_reg[3] = (uint16_t)(protection >> 24);
if (stm32x_info->ppage_size == 2)
{
/* high density flash */
/* bit 7 controls sector 62 - 255 protection */
if (last > 61)
{
if (set)
prot_reg[3] &= ~(1 << 7);
else
prot_reg[3] |= (1 << 7);
}
if (first > 61)
first = 62;
if (last > 61)
last = 61;
for (i = first; i <= last; i++)
{
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
else
{
/* medium density flash */
for (i = first; i <= last; i++)
{
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
if ((status = stm32x_erase_options(bank)) != ERROR_OK)
return status;
stm32x_info->option_bytes.protection[0] = prot_reg[0];
stm32x_info->option_bytes.protection[1] = prot_reg[1];
stm32x_info->option_bytes.protection[2] = prot_reg[2];
stm32x_info->option_bytes.protection[3] = prot_reg[3];
return stm32x_write_options(bank);
}
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* see contrib/loaders/flash/stm32f1x.S for src */
static const uint8_t stm32x_flash_write_code[] = {
/* #define STM32_FLASH_CR_OFFSET 0x10 */
/* #define STM32_FLASH_SR_OFFSET 0x0C */
/* wait_fifo: */
0x16, 0x68, /* ldr r6, [r2, #0] */
0x00, 0x2e, /* cmp r6, #0 */
0x1a, 0xd0, /* beq exit */
0x55, 0x68, /* ldr r5, [r2, #4] */
0xb5, 0x42, /* cmp r5, r6 */
0xf9, 0xd0, /* beq wait_fifo */
0x01, 0x26, /* movs r6, #1 */
0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */
0x35, 0xf8, 0x02, 0x6b, /* ldrh r6, [r5], #2 */
0x24, 0xf8, 0x02, 0x6b, /* strh r6, [r4], #2 */
/* busy: */
0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
0x16, 0xf0, 0x01, 0x0f, /* tst r6, #1 */
0xfb, 0xd1, /* bne busy */
0x16, 0xf0, 0x14, 0x0f, /* tst r6, #0x14 */
0x07, 0xd1, /* bne error */
0x9d, 0x42, /* cmp r5, r3 */
0x28, 0xbf, /* it cs */
0x02, 0xf1, 0x08, 0x05, /* addcs r5, r2, #8 */
0x55, 0x60, /* str r5, [r2, #4] */
0x01, 0x39, /* subs r1, r1, #1 */
0x19, 0xb1, /* cbz r1, exit */
0xe4, 0xe7, /* b wait_fifo */
/* error: */
0x00, 0x20, /* movs r0, #0 */
0xc2, 0xf8, 0x02, 0x00, /* str r0, [r2, #2] */
/* exit: */
0x30, 0x46, /* mov r0, r6 */
0x00, 0xbe, /* bkpt #0 */
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&stm32x_info->write_algorithm) != ERROR_OK)
{
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
sizeof(stm32x_flash_write_code),
(uint8_t*)stm32x_flash_write_code)) != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
buffer_size &= ~3UL; // Make sure it's 4 byte aligned
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
if (stm32x_info->write_algorithm)
target_free_working_area(target, stm32x_info->write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
/* Set up working area. First word is write pointer, second word is read pointer,
* rest is fifo data area. */
uint32_t wp_addr = source->address;
uint32_t rp_addr = source->address + 4;
uint32_t fifo_start_addr = source->address + 8;
uint32_t fifo_end_addr = source->address + source->size;
uint32_t wp = fifo_start_addr;
uint32_t rp = fifo_start_addr;
retval = target_write_u32(target, wp_addr, wp);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, rp_addr, rp);
if (retval != ERROR_OK)
return retval;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
buf_set_u32(reg_params[1].value, 0, 32, count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
/* Start up algorithm on target and let it idle while writing the first chunk */
if ((retval = target_start_algorithm(target, 0, NULL, 5, reg_params,
stm32x_info->write_algorithm->address,
0,
&armv7m_info)) != ERROR_OK)
{
LOG_ERROR("error starting stm32x flash write algorithm");
goto cleanup;
}
while (count > 0)
{
retval = target_read_u32(target, rp_addr, &rp);
if (retval != ERROR_OK)
{
LOG_ERROR("failed to get read pointer");
break;
}
LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp);
if (rp == 0)
{
LOG_ERROR("flash write algorithm aborted by target");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr)
{
LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp);
break;
}
/* Count the number of bytes available in the fifo without
* crossing the wrap around. Make sure to not fill it completely,
* because that would make wp == rp and that's the empty condition. */
uint32_t thisrun_bytes;
if (rp > wp)
thisrun_bytes = rp - wp - 2;
else if (rp > fifo_start_addr)
thisrun_bytes = fifo_end_addr - wp;
else
thisrun_bytes = fifo_end_addr - wp - 2;
if (thisrun_bytes == 0)
{
/* Throttle polling a bit if transfer is (much) faster than flash
* programming. The exact delay shouldn't matter as long as it's
* less than buffer size / flash speed. This is very unlikely to
* run when using high latency connections such as USB. */
alive_sleep(10);
continue;
}
/* Limit to the amount of data we actually want to write */
if (thisrun_bytes > count * 2)
thisrun_bytes = count * 2;
/* Write data to fifo */
retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
if (retval != ERROR_OK)
break;
/* Update counters and wrap write pointer */
buffer += thisrun_bytes;
count -= thisrun_bytes / 2;
wp += thisrun_bytes;
if (wp >= fifo_end_addr)
wp = fifo_start_addr;
/* Store updated write pointer to target */
retval = target_write_u32(target, wp_addr, wp);
if (retval != ERROR_OK)
break;
}
if (retval != ERROR_OK)
{
/* abort flash write algorithm on target */
target_write_u32(target, wp_addr, 0);
}
int retval2;
if ((retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params,
0,
10000,
&armv7m_info)) != ERROR_OK)
{
LOG_ERROR("error waiting for stm32x flash write algorithm");
retval = retval2;
}
if (retval == ERROR_FLASH_OPERATION_FAILED)
{
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR)
{
LOG_ERROR("flash memory not erased before writing");
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR);
}
if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR)
{
LOG_ERROR("flash memory write protected");
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR);
}
}
cleanup:
target_free_working_area(target, source);
target_free_working_area(target, stm32x_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* unlock flash registers */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0)
{
/* try using a block write */
if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
}
else
{
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
return retval;
while (words_remaining > 0)
{
uint16_t value;
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining)
{
uint16_t value = 0xffff;
memcpy(&value, buffer + bytes_written, bytes_remaining);
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
}
return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
int i;
uint16_t num_pages;
uint32_t device_id;
int page_size;
uint32_t base_address = 0x08000000;
stm32x_info->probed = 0;
stm32x_info->register_base = FLASH_REG_BASE_B0;
/* read stm32 device id register */
int retval = target_read_u32(target, 0xE0042000, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* get flash size from target. */
retval = target_read_u16(target, 0x1FFFF7E0, &num_pages);
if (retval != ERROR_OK)
{
LOG_WARNING("failed reading flash size, default to max target family");
/* failed reading flash size, default to max target family */
num_pages = 0xffff;
}
if ((device_id & 0x7ff) == 0x410)
{
/* medium density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
num_pages = 128;
}
}
else if ((device_id & 0x7ff) == 0x412)
{
/* low density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
num_pages = 32;
}
}
else if ((device_id & 0x7ff) == 0x414)
{
/* high density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revZ */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
num_pages = 512;
}
}
else if ((device_id & 0x7ff) == 0x418)
{
/* connectivity line density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revZ */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
num_pages = 256;
}
}
else if ((device_id & 0x7ff) == 0x420)
{
/* value line density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors may be incorrrect on early silicon */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
num_pages = 128;
}
}
else if ((device_id & 0x7ff) == 0x428)
{
/* value line density - we have 1k pages
* 4 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors may be incorrrect on early silicon */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
num_pages = 128;
}
}
else if ((device_id & 0x7ff) == 0x430)
{
/* xl line density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
stm32x_info->has_dual_banks = true;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors may be incorrrect on early silicon */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
num_pages = 1024;
}
/* split reported size into matching bank */
if (bank->base != 0x08080000)
{
/* bank 0 will be fixed 512k */
num_pages = 512;
}
else
{
num_pages -= 512;
/* bank1 also uses a register offset */
stm32x_info->register_base = FLASH_REG_BASE_B1;
base_address = 0x08080000;
}
}
else
{
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
LOG_INFO("flash size = %dkbytes", num_pages);
/* calculate numbers of pages */
num_pages /= (page_size / 1024);
if (bank->sectors)
{
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (i = 0; i < num_pages; i++)
{
bank->sectors[i].offset = i * page_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
uint32_t device_id;
int printed;
/* read stm32 device id register */
int retval = target_read_u32(target, 0xE0042000, &device_id);
if (retval != ERROR_OK)
return retval;
if ((device_id & 0x7ff) == 0x410)
{
printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x0000:
snprintf(buf, buf_size, "A");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
case 0x2001:
snprintf(buf, buf_size, "Z");
break;
case 0x2003:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x412)
{
printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x414)
{
printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x418)
{
printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x420)
{
printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x428)
{
printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x430)
{
printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else
{
snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x lock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x locked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x unlock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to unlock device");
return ERROR_OK;
}
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x options_read <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1))
command_print(CMD_CTX, "Option Byte Complement Error");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1))
command_print(CMD_CTX, "Readout Protection On");
else
command_print(CMD_CTX, "Readout Protection Off");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1))
command_print(CMD_CTX, "Software Watchdog");
else
command_print(CMD_CTX, "Hardware Watchdog");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1))
command_print(CMD_CTX, "Stop: No reset generated");
else
command_print(CMD_CTX, "Stop: Reset generated");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1))
command_print(CMD_CTX, "Standby: No reset generated");
else
command_print(CMD_CTX, "Standby: Reset generated");
if (stm32x_info->has_dual_banks)
{
if (buf_get_u32((uint8_t*)&optionbyte, OPT_BFB2, 1))
command_print(CMD_CTX, "Boot: Bank 0");
else
command_print(CMD_CTX, "Boot: Bank 1");
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint16_t optionbyte = 0xF8;
if (CMD_ARGC < 4)
{
command_print(CMD_CTX, "stm32x options_write <bank> <SWWDG | HWWDG> "
"<RSTSTNDBY | NORSTSTNDBY> <RSTSTOP | NORSTSTOP> <BOOT0 | BOOT1>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
/* REVISIT: ignores some options which we will display...
* and doesn't insist on the specified syntax.
*/
/* OPT_RDWDGSW */
if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
{
optionbyte |= (1 << 0);
}
else /* REVISIT must be "HWWDG" then ... */
{
optionbyte &= ~(1 << 0);
}
/* OPT_RDRSTSTOP */
if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
{
optionbyte |= (1 << 1);
}
else /* REVISIT must be "RSTSTNDBY" then ... */
{
optionbyte &= ~(1 << 1);
}
/* OPT_RDRSTSTDBY */
if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
{
optionbyte |= (1 << 2);
}
else /* REVISIT must be "RSTSTOP" then ... */
{
optionbyte &= ~(1 << 2);
}
if (CMD_ARGC > 4 && stm32x_info->has_dual_banks)
{
/* OPT_BFB2 */
if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
{
optionbyte |= (1 << 3);
}
else
{
optionbyte &= ~(1 << 3);
}
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
stm32x_info->option_bytes.user_options = optionbyte;
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to write options");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x write options complete.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 100);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x mass_erase <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK)
{
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
{
bank->sectors[i].is_erased = 1;
}
command_print(CMD_CTX, "stm32x mass erase complete");
}
else
{
command_print(CMD_CTX, "stm32x mass erase failed");
}
return retval;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option byte.",
},
{
.name = "options_write",
.handler = stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP')",
.help = "Replace bits in device option byte.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32f1x",
.mode = COMMAND_ANY,
.help = "stm32f1x flash command group",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32f1x_flash = {
.name = "stm32f1x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_mem_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
};