openocd/src/jtag/drivers/ftdi.c
Antonio Borneo 9e7b31479b helper/jim-nvp: comply with coding style [2/2]
With the API fixed to comply with OpenOCD coding style, fix all
the references in the code.

Patch generated automatically with the script below.
The list is in reverse order to replace a common prefix after the
replacement of the symbols with the same prefix.

%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---
(cat << EOF
Jim_SetResult_NvpUnknown         jim_set_result_nvp_unknown
Jim_Nvp_value2name_simple        jim_nvp_value2name_simple
Jim_Nvp_value2name_obj           jim_nvp_value2name_obj
Jim_Nvp_value2name               jim_nvp_value2name
Jim_Nvp_name2value_simple        jim_nvp_name2value_simple
Jim_Nvp_name2value_obj_nocase    jim_nvp_name2value_obj_nocase
Jim_Nvp_name2value_obj           jim_nvp_name2value_obj
Jim_Nvp_name2value_nocase_simple jim_nvp_name2value_nocase_simple
Jim_Nvp_name2value_nocase        jim_nvp_name2value_nocase
Jim_Nvp_name2value               jim_nvp_name2value
Jim_Nvp                        struct jim_nvp
Jim_GetOpt_Wide                  jim_getopt_wide
Jim_GetOpt_String                jim_getopt_string
Jim_GetOpt_Setup                 jim_getopt_setup
Jim_GetOpt_Obj                   jim_getopt_obj
Jim_GetOpt_NvpUnknown            jim_getopt_nvp_unknown
Jim_GetOpt_Nvp                   jim_getopt_nvp
Jim_GetOpt_Enum                  jim_getopt_enum
Jim_GetOpt_Double                jim_getopt_double
Jim_GetOpt_Debug                 jim_getopt_debug
Jim_GetOptInfo                 struct jim_getopt_info
Jim_GetNvp                       jim_get_nvp
Jim_Debug_ArgvString             jim_debug_argv_string
EOF
) | while read a b; do
    sed -i "s/$a/$b/g" $(find src -type f ! -name jim-nvp.\? )
done
%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---%<---

Change-Id: I10a12bd64bb8b17575fd9150482c989c92b298a2
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6184
Reviewed-by: Marc Schink <dev@zapb.de>
Tested-by: jenkins
2021-06-04 17:40:48 +01:00

1273 lines
34 KiB
C

/**************************************************************************
* Copyright (C) 2012 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
/**
* @file
* JTAG adapters based on the FT2232 full and high speed USB parts are
* popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
* are discrete, but development boards may integrate them as alternatives
* to more capable (and expensive) third party JTAG pods.
*
* JTAG uses only one of the two communications channels ("MPSSE engines")
* on these devices. Adapters based on FT4232 parts have four ports/channels
* (A/B/C/D), instead of just two (A/B).
*
* Especially on development boards integrating one of these chips (as
* opposed to discrete pods/dongles), the additional channels can be used
* for a variety of purposes, but OpenOCD only uses one channel at a time.
*
* - As a USB-to-serial adapter for the target's console UART ...
* which may be able to support ROM boot loaders that load initial
* firmware images to flash (or SRAM).
*
* - On systems which support ARM's SWD in addition to JTAG, or instead
* of it, that second port can be used for reading SWV/SWO trace data.
*
* - Additional JTAG links, e.g. to a CPLD or * FPGA.
*
* FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
* request/response interactions involve round trips over the USB link.
* A "smart" JTAG adapter has intelligence close to the scan chain, so it
* can for example poll quickly for a status change (usually taking on the
* order of microseconds not milliseconds) before beginning a queued
* transaction which require the previous one to have completed.
*
* There are dozens of adapters of this type, differing in details which
* this driver needs to understand. Those "layout" details are required
* as part of FT2232 driver configuration.
*
* This code uses information contained in the MPSSE specification which was
* found here:
* https://www.ftdichip.com/Support/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
* Hereafter this is called the "MPSSE Spec".
*
* The datasheet for the ftdichip.com's FT2232H part is here:
* https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
*
* Also note the issue with code 0x4b (clock data to TMS) noted in
* http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
* which can affect longer JTAG state paths.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* project specific includes */
#include <jtag/drivers/jtag_usb_common.h>
#include <jtag/interface.h>
#include <jtag/swd.h>
#include <transport/transport.h>
#include <helper/time_support.h>
#include <helper/log.h>
#if IS_CYGWIN == 1
#include <windows.h>
#endif
#include <assert.h>
/* FTDI access library includes */
#include "mpsse.h"
#define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
#define JTAG_MODE_ALT (LSB_FIRST | NEG_EDGE_IN | NEG_EDGE_OUT)
#define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
static char *ftdi_device_desc;
static char *ftdi_serial;
static uint8_t ftdi_channel;
static uint8_t ftdi_jtag_mode = JTAG_MODE;
static bool swd_mode;
#define MAX_USB_IDS 8
/* vid = pid = 0 marks the end of the list */
static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
static struct mpsse_ctx *mpsse_ctx;
struct signal {
const char *name;
uint16_t data_mask;
uint16_t input_mask;
uint16_t oe_mask;
bool invert_data;
bool invert_input;
bool invert_oe;
struct signal *next;
};
static struct signal *signals;
/* FIXME: Where to store per-instance data? We need an SWD context. */
static struct swd_cmd_queue_entry {
uint8_t cmd;
uint32_t *dst;
uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
} *swd_cmd_queue;
static size_t swd_cmd_queue_length;
static size_t swd_cmd_queue_alloced;
static int queued_retval;
static int freq;
static uint16_t output;
static uint16_t direction;
static uint16_t jtag_output_init;
static uint16_t jtag_direction_init;
static int ftdi_swd_switch_seq(enum swd_special_seq seq);
static struct signal *find_signal_by_name(const char *name)
{
for (struct signal *sig = signals; sig; sig = sig->next) {
if (strcmp(name, sig->name) == 0)
return sig;
}
return NULL;
}
static struct signal *create_signal(const char *name)
{
struct signal **psig = &signals;
while (*psig)
psig = &(*psig)->next;
*psig = calloc(1, sizeof(**psig));
if (*psig == NULL)
return NULL;
(*psig)->name = strdup(name);
if ((*psig)->name == NULL) {
free(*psig);
*psig = NULL;
}
return *psig;
}
static int ftdi_set_signal(const struct signal *s, char value)
{
bool data;
bool oe;
if (s->data_mask == 0 && s->oe_mask == 0) {
LOG_ERROR("interface doesn't provide signal '%s'", s->name);
return ERROR_FAIL;
}
switch (value) {
case '0':
data = s->invert_data;
oe = !s->invert_oe;
break;
case '1':
if (s->data_mask == 0) {
LOG_ERROR("interface can't drive '%s' high", s->name);
return ERROR_FAIL;
}
data = !s->invert_data;
oe = !s->invert_oe;
break;
case 'z':
case 'Z':
if (s->oe_mask == 0) {
LOG_ERROR("interface can't tri-state '%s'", s->name);
return ERROR_FAIL;
}
data = s->invert_data;
oe = s->invert_oe;
break;
default:
assert(0 && "invalid signal level specifier");
return ERROR_FAIL;
}
uint16_t old_output = output;
uint16_t old_direction = direction;
output = data ? output | s->data_mask : output & ~s->data_mask;
if (s->oe_mask == s->data_mask)
direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
else
output = oe ? output | s->oe_mask : output & ~s->oe_mask;
if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
return ERROR_OK;
}
static int ftdi_get_signal(const struct signal *s, uint16_t *value_out)
{
uint8_t data_low = 0;
uint8_t data_high = 0;
if (s->input_mask == 0) {
LOG_ERROR("interface doesn't provide signal '%s'", s->name);
return ERROR_FAIL;
}
if (s->input_mask & 0xff)
mpsse_read_data_bits_low_byte(mpsse_ctx, &data_low);
if (s->input_mask >> 8)
mpsse_read_data_bits_high_byte(mpsse_ctx, &data_high);
mpsse_flush(mpsse_ctx);
*value_out = (((uint16_t)data_high) << 8) | data_low;
if (s->invert_input)
*value_out = ~(*value_out);
*value_out &= s->input_mask;
return ERROR_OK;
}
/**
* Function move_to_state
* moves the TAP controller from the current state to a
* \a goal_state through a path given by tap_get_tms_path(). State transition
* logging is performed by delegation to clock_tms().
*
* @param goal_state is the destination state for the move.
*/
static void move_to_state(tap_state_t goal_state)
{
tap_state_t start_state = tap_get_state();
/* goal_state is 1/2 of a tuple/pair of states which allow convenient
lookup of the required TMS pattern to move to this state from the
start state.
*/
/* do the 2 lookups */
uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
int tms_count = tap_get_tms_path_len(start_state, goal_state);
assert(tms_count <= 8);
LOG_DEBUG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
/* Track state transitions step by step */
for (int i = 0; i < tms_count; i++)
tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
mpsse_clock_tms_cs_out(mpsse_ctx,
&tms_bits,
0,
tms_count,
false,
ftdi_jtag_mode);
}
static int ftdi_speed(int speed)
{
int retval;
retval = mpsse_set_frequency(mpsse_ctx, speed);
if (retval < 0) {
LOG_ERROR("couldn't set FTDI TCK speed");
return retval;
}
if (!swd_mode && speed >= 10000000 && ftdi_jtag_mode != JTAG_MODE_ALT)
LOG_INFO("ftdi: if you experience problems at higher adapter clocks, try "
"the command \"ftdi_tdo_sample_edge falling\"");
return ERROR_OK;
}
static int ftdi_speed_div(int speed, int *khz)
{
*khz = speed / 1000;
return ERROR_OK;
}
static int ftdi_khz(int khz, int *jtag_speed)
{
if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
LOG_DEBUG("RCLK not supported");
return ERROR_FAIL;
}
*jtag_speed = khz * 1000;
return ERROR_OK;
}
static void ftdi_end_state(tap_state_t state)
{
if (tap_is_state_stable(state))
tap_set_end_state(state);
else {
LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
exit(-1);
}
}
static void ftdi_execute_runtest(struct jtag_command *cmd)
{
int i;
uint8_t zero = 0;
LOG_DEBUG_IO("runtest %i cycles, end in %s",
cmd->cmd.runtest->num_cycles,
tap_state_name(cmd->cmd.runtest->end_state));
if (tap_get_state() != TAP_IDLE)
move_to_state(TAP_IDLE);
/* TODO: Reuse ftdi_execute_stableclocks */
i = cmd->cmd.runtest->num_cycles;
while (i > 0) {
/* there are no state transitions in this code, so omit state tracking */
unsigned this_len = i > 7 ? 7 : i;
mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, ftdi_jtag_mode);
i -= this_len;
}
ftdi_end_state(cmd->cmd.runtest->end_state);
if (tap_get_state() != tap_get_end_state())
move_to_state(tap_get_end_state());
LOG_DEBUG_IO("runtest: %i, end in %s",
cmd->cmd.runtest->num_cycles,
tap_state_name(tap_get_end_state()));
}
static void ftdi_execute_statemove(struct jtag_command *cmd)
{
LOG_DEBUG_IO("statemove end in %s",
tap_state_name(cmd->cmd.statemove->end_state));
ftdi_end_state(cmd->cmd.statemove->end_state);
/* shortest-path move to desired end state */
if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
move_to_state(tap_get_end_state());
}
/**
* Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
* (or SWD) state machine. REVISIT: Not the best method, perhaps.
*/
static void ftdi_execute_tms(struct jtag_command *cmd)
{
LOG_DEBUG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
/* TODO: Missing tap state tracking, also missing from ft2232.c! */
mpsse_clock_tms_cs_out(mpsse_ctx,
cmd->cmd.tms->bits,
0,
cmd->cmd.tms->num_bits,
false,
ftdi_jtag_mode);
}
static void ftdi_execute_pathmove(struct jtag_command *cmd)
{
tap_state_t *path = cmd->cmd.pathmove->path;
int num_states = cmd->cmd.pathmove->num_states;
LOG_DEBUG_IO("pathmove: %i states, current: %s end: %s", num_states,
tap_state_name(tap_get_state()),
tap_state_name(path[num_states-1]));
int state_count = 0;
unsigned bit_count = 0;
uint8_t tms_byte = 0;
LOG_DEBUG_IO("-");
/* this loop verifies that the path is legal and logs each state in the path */
while (num_states--) {
/* either TMS=0 or TMS=1 must work ... */
if (tap_state_transition(tap_get_state(), false)
== path[state_count])
buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
else if (tap_state_transition(tap_get_state(), true)
== path[state_count]) {
buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
/* ... or else the caller goofed BADLY */
} else {
LOG_ERROR("BUG: %s -> %s isn't a valid "
"TAP state transition",
tap_state_name(tap_get_state()),
tap_state_name(path[state_count]));
exit(-1);
}
tap_set_state(path[state_count]);
state_count++;
if (bit_count == 7 || num_states == 0) {
mpsse_clock_tms_cs_out(mpsse_ctx,
&tms_byte,
0,
bit_count,
false,
ftdi_jtag_mode);
bit_count = 0;
}
}
tap_set_end_state(tap_get_state());
}
static void ftdi_execute_scan(struct jtag_command *cmd)
{
LOG_DEBUG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
jtag_scan_type(cmd->cmd.scan));
/* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
while (cmd->cmd.scan->num_fields > 0
&& cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
cmd->cmd.scan->num_fields--;
LOG_DEBUG_IO("discarding trailing empty field");
}
if (cmd->cmd.scan->num_fields == 0) {
LOG_DEBUG_IO("empty scan, doing nothing");
return;
}
if (cmd->cmd.scan->ir_scan) {
if (tap_get_state() != TAP_IRSHIFT)
move_to_state(TAP_IRSHIFT);
} else {
if (tap_get_state() != TAP_DRSHIFT)
move_to_state(TAP_DRSHIFT);
}
ftdi_end_state(cmd->cmd.scan->end_state);
struct scan_field *field = cmd->cmd.scan->fields;
unsigned scan_size = 0;
for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
scan_size += field->num_bits;
LOG_DEBUG_IO("%s%s field %d/%d %d bits",
field->in_value ? "in" : "",
field->out_value ? "out" : "",
i,
cmd->cmd.scan->num_fields,
field->num_bits);
if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
/* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
* movement. This last field can't have length zero, it was checked above. */
mpsse_clock_data(mpsse_ctx,
field->out_value,
0,
field->in_value,
0,
field->num_bits - 1,
ftdi_jtag_mode);
uint8_t last_bit = 0;
if (field->out_value)
bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
/* If endstate is TAP_IDLE, clock out 1-1-0 (->EXIT1 ->UPDATE ->IDLE)
* Otherwise, clock out 1-0 (->EXIT1 ->PAUSE)
*/
uint8_t tms_bits = 0x03;
mpsse_clock_tms_cs(mpsse_ctx,
&tms_bits,
0,
field->in_value,
field->num_bits - 1,
1,
last_bit,
ftdi_jtag_mode);
tap_set_state(tap_state_transition(tap_get_state(), 1));
if (tap_get_end_state() == TAP_IDLE) {
mpsse_clock_tms_cs_out(mpsse_ctx,
&tms_bits,
1,
2,
last_bit,
ftdi_jtag_mode);
tap_set_state(tap_state_transition(tap_get_state(), 1));
tap_set_state(tap_state_transition(tap_get_state(), 0));
} else {
mpsse_clock_tms_cs_out(mpsse_ctx,
&tms_bits,
2,
1,
last_bit,
ftdi_jtag_mode);
tap_set_state(tap_state_transition(tap_get_state(), 0));
}
} else
mpsse_clock_data(mpsse_ctx,
field->out_value,
0,
field->in_value,
0,
field->num_bits,
ftdi_jtag_mode);
}
if (tap_get_state() != tap_get_end_state())
move_to_state(tap_get_end_state());
LOG_DEBUG_IO("%s scan, %i bits, end in %s",
(cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
tap_state_name(tap_get_end_state()));
}
static int ftdi_reset(int trst, int srst)
{
struct signal *sig_ntrst = find_signal_by_name("nTRST");
struct signal *sig_nsrst = find_signal_by_name("nSRST");
LOG_DEBUG_IO("reset trst: %i srst %i", trst, srst);
if (!swd_mode) {
if (trst == 1) {
if (sig_ntrst)
ftdi_set_signal(sig_ntrst, '0');
else
LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
} else if (sig_ntrst && jtag_get_reset_config() & RESET_HAS_TRST &&
trst == 0) {
if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
ftdi_set_signal(sig_ntrst, 'z');
else
ftdi_set_signal(sig_ntrst, '1');
}
}
if (srst == 1) {
if (sig_nsrst)
ftdi_set_signal(sig_nsrst, '0');
else
LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
} else if (sig_nsrst && jtag_get_reset_config() & RESET_HAS_SRST &&
srst == 0) {
if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
ftdi_set_signal(sig_nsrst, '1');
else
ftdi_set_signal(sig_nsrst, 'z');
}
return mpsse_flush(mpsse_ctx);
}
static void ftdi_execute_sleep(struct jtag_command *cmd)
{
LOG_DEBUG_IO("sleep %" PRIu32, cmd->cmd.sleep->us);
mpsse_flush(mpsse_ctx);
jtag_sleep(cmd->cmd.sleep->us);
LOG_DEBUG_IO("sleep %" PRIu32 " usec while in %s",
cmd->cmd.sleep->us,
tap_state_name(tap_get_state()));
}
static void ftdi_execute_stableclocks(struct jtag_command *cmd)
{
/* this is only allowed while in a stable state. A check for a stable
* state was done in jtag_add_clocks()
*/
int num_cycles = cmd->cmd.stableclocks->num_cycles;
/* 7 bits of either ones or zeros. */
uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
/* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
* the correct level and remain there during the scan */
while (num_cycles > 0) {
/* there are no state transitions in this code, so omit state tracking */
unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, ftdi_jtag_mode);
num_cycles -= this_len;
}
LOG_DEBUG_IO("clocks %i while in %s",
cmd->cmd.stableclocks->num_cycles,
tap_state_name(tap_get_state()));
}
static void ftdi_execute_command(struct jtag_command *cmd)
{
switch (cmd->type) {
case JTAG_RUNTEST:
ftdi_execute_runtest(cmd);
break;
case JTAG_TLR_RESET:
ftdi_execute_statemove(cmd);
break;
case JTAG_PATHMOVE:
ftdi_execute_pathmove(cmd);
break;
case JTAG_SCAN:
ftdi_execute_scan(cmd);
break;
case JTAG_SLEEP:
ftdi_execute_sleep(cmd);
break;
case JTAG_STABLECLOCKS:
ftdi_execute_stableclocks(cmd);
break;
case JTAG_TMS:
ftdi_execute_tms(cmd);
break;
default:
LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
break;
}
}
static int ftdi_execute_queue(void)
{
/* blink, if the current layout has that feature */
struct signal *led = find_signal_by_name("LED");
if (led)
ftdi_set_signal(led, '1');
for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
/* fill the write buffer with the desired command */
ftdi_execute_command(cmd);
}
if (led)
ftdi_set_signal(led, '0');
int retval = mpsse_flush(mpsse_ctx);
if (retval != ERROR_OK)
LOG_ERROR("error while flushing MPSSE queue: %d", retval);
return retval;
}
static int ftdi_initialize(void)
{
if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
else
LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
if (!ftdi_vid[0] && !ftdi_pid[0]) {
LOG_ERROR("Please specify ftdi_vid_pid");
return ERROR_JTAG_INIT_FAILED;
}
for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
ftdi_serial, jtag_usb_get_location(), ftdi_channel);
if (mpsse_ctx)
break;
}
if (!mpsse_ctx)
return ERROR_JTAG_INIT_FAILED;
output = jtag_output_init;
direction = jtag_direction_init;
if (swd_mode) {
struct signal *sig = find_signal_by_name("SWD_EN");
if (!sig) {
LOG_ERROR("SWD mode is active but SWD_EN signal is not defined");
return ERROR_JTAG_INIT_FAILED;
}
/* A dummy SWD_EN would have zero mask */
if (sig->data_mask)
ftdi_set_signal(sig, '1');
}
mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
mpsse_loopback_config(mpsse_ctx, false);
freq = mpsse_set_frequency(mpsse_ctx, jtag_get_speed_khz() * 1000);
return mpsse_flush(mpsse_ctx);
}
static int ftdi_quit(void)
{
mpsse_close(mpsse_ctx);
struct signal *sig = signals;
while (sig) {
struct signal *next = sig->next;
free((void *)sig->name);
free(sig);
sig = next;
}
free(ftdi_device_desc);
free(ftdi_serial);
free(swd_cmd_queue);
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_device_desc_command)
{
if (CMD_ARGC == 1) {
free(ftdi_device_desc);
ftdi_device_desc = strdup(CMD_ARGV[0]);
} else {
LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
}
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_serial_command)
{
if (CMD_ARGC == 1) {
free(ftdi_serial);
ftdi_serial = strdup(CMD_ARGV[0]);
} else {
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_channel_command)
{
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_layout_init_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_layout_signal_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
bool invert_data = false;
uint16_t data_mask = 0;
bool invert_input = false;
uint16_t input_mask = 0;
bool invert_oe = false;
uint16_t oe_mask = 0;
for (unsigned i = 1; i < CMD_ARGC; i += 2) {
if (strcmp("-data", CMD_ARGV[i]) == 0) {
invert_data = false;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
} else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
invert_data = true;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
} else if (strcmp("-input", CMD_ARGV[i]) == 0) {
invert_input = false;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
} else if (strcmp("-ninput", CMD_ARGV[i]) == 0) {
invert_input = true;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
} else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
invert_oe = false;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
} else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
invert_oe = true;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
} else if (!strcmp("-alias", CMD_ARGV[i]) ||
!strcmp("-nalias", CMD_ARGV[i])) {
if (!strcmp("-nalias", CMD_ARGV[i])) {
invert_data = true;
invert_input = true;
}
struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
if (!sig) {
LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
return ERROR_FAIL;
}
data_mask = sig->data_mask;
input_mask = sig->input_mask;
oe_mask = sig->oe_mask;
invert_input ^= sig->invert_input;
invert_oe = sig->invert_oe;
invert_data ^= sig->invert_data;
} else {
LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
struct signal *sig;
sig = find_signal_by_name(CMD_ARGV[0]);
if (!sig)
sig = create_signal(CMD_ARGV[0]);
if (!sig) {
LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
return ERROR_FAIL;
}
sig->invert_data = invert_data;
sig->data_mask = data_mask;
sig->invert_input = invert_input;
sig->input_mask = input_mask;
sig->invert_oe = invert_oe;
sig->oe_mask = oe_mask;
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_set_signal_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct signal *sig;
sig = find_signal_by_name(CMD_ARGV[0]);
if (!sig) {
LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
return ERROR_FAIL;
}
switch (*CMD_ARGV[1]) {
case '0':
case '1':
case 'z':
case 'Z':
/* single character level specifier only */
if (CMD_ARGV[1][1] == '\0') {
ftdi_set_signal(sig, *CMD_ARGV[1]);
break;
}
/* fallthrough */
default:
LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
return mpsse_flush(mpsse_ctx);
}
COMMAND_HANDLER(ftdi_handle_get_signal_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct signal *sig;
uint16_t sig_data = 0;
sig = find_signal_by_name(CMD_ARGV[0]);
if (!sig) {
LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
return ERROR_FAIL;
}
int ret = ftdi_get_signal(sig, &sig_data);
if (ret != ERROR_OK)
return ret;
LOG_USER("Signal %s = %#06x", sig->name, sig_data);
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_vid_pid_command)
{
if (CMD_ARGC > MAX_USB_IDS * 2) {
LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
"(maximum is %d pairs)", MAX_USB_IDS);
CMD_ARGC = MAX_USB_IDS * 2;
}
if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
/* remove the incomplete trailing id */
CMD_ARGC -= 1;
}
unsigned i;
for (i = 0; i < CMD_ARGC; i += 2) {
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
}
/*
* Explicitly terminate, in case there are multiples instances of
* ftdi_vid_pid.
*/
ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_tdo_sample_edge_command)
{
struct jim_nvp *n;
static const struct jim_nvp nvp_ftdi_jtag_modes[] = {
{ .name = "rising", .value = JTAG_MODE },
{ .name = "falling", .value = JTAG_MODE_ALT },
{ .name = NULL, .value = -1 },
};
if (CMD_ARGC > 0) {
n = jim_nvp_name2value_simple(nvp_ftdi_jtag_modes, CMD_ARGV[0]);
if (n->name == NULL)
return ERROR_COMMAND_SYNTAX_ERROR;
ftdi_jtag_mode = n->value;
}
n = jim_nvp_value2name_simple(nvp_ftdi_jtag_modes, ftdi_jtag_mode);
command_print(CMD, "ftdi samples TDO on %s edge of TCK", n->name);
return ERROR_OK;
}
static const struct command_registration ftdi_command_handlers[] = {
{
.name = "ftdi_device_desc",
.handler = &ftdi_handle_device_desc_command,
.mode = COMMAND_CONFIG,
.help = "set the USB device description of the FTDI device",
.usage = "description_string",
},
{
.name = "ftdi_serial",
.handler = &ftdi_handle_serial_command,
.mode = COMMAND_CONFIG,
.help = "set the serial number of the FTDI device",
.usage = "serial_string",
},
{
.name = "ftdi_channel",
.handler = &ftdi_handle_channel_command,
.mode = COMMAND_CONFIG,
.help = "set the channel of the FTDI device that is used as JTAG",
.usage = "(0-3)",
},
{
.name = "ftdi_layout_init",
.handler = &ftdi_handle_layout_init_command,
.mode = COMMAND_CONFIG,
.help = "initialize the FTDI GPIO signals used "
"to control output-enables and reset signals",
.usage = "data direction",
},
{
.name = "ftdi_layout_signal",
.handler = &ftdi_handle_layout_signal_command,
.mode = COMMAND_ANY,
.help = "define a signal controlled by one or more FTDI GPIO as data "
"and/or output enable",
.usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
},
{
.name = "ftdi_set_signal",
.handler = &ftdi_handle_set_signal_command,
.mode = COMMAND_EXEC,
.help = "control a layout-specific signal",
.usage = "name (1|0|z)",
},
{
.name = "ftdi_get_signal",
.handler = &ftdi_handle_get_signal_command,
.mode = COMMAND_EXEC,
.help = "read the value of a layout-specific signal",
.usage = "name",
},
{
.name = "ftdi_vid_pid",
.handler = &ftdi_handle_vid_pid_command,
.mode = COMMAND_CONFIG,
.help = "the vendor ID and product ID of the FTDI device",
.usage = "(vid pid)*",
},
{
.name = "ftdi_tdo_sample_edge",
.handler = &ftdi_handle_tdo_sample_edge_command,
.mode = COMMAND_ANY,
.help = "set which TCK clock edge is used for sampling TDO "
"- default is rising-edge (Setting to falling-edge may "
"allow signalling speed increase)",
.usage = "(rising|falling)",
},
COMMAND_REGISTRATION_DONE
};
static int create_default_signal(const char *name, uint16_t data_mask)
{
struct signal *sig = create_signal(name);
if (!sig) {
LOG_ERROR("failed to create signal %s", name);
return ERROR_FAIL;
}
sig->invert_data = false;
sig->data_mask = data_mask;
sig->invert_oe = false;
sig->oe_mask = 0;
return ERROR_OK;
}
static int create_signals(void)
{
if (create_default_signal("TCK", 0x01) != ERROR_OK)
return ERROR_FAIL;
if (create_default_signal("TDI", 0x02) != ERROR_OK)
return ERROR_FAIL;
if (create_default_signal("TDO", 0x04) != ERROR_OK)
return ERROR_FAIL;
if (create_default_signal("TMS", 0x08) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int ftdi_swd_init(void)
{
LOG_INFO("FTDI SWD mode enabled");
swd_mode = true;
if (create_signals() != ERROR_OK)
return ERROR_FAIL;
swd_cmd_queue_alloced = 10;
swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
return swd_cmd_queue != NULL ? ERROR_OK : ERROR_FAIL;
}
static void ftdi_swd_swdio_en(bool enable)
{
struct signal *oe = find_signal_by_name("SWDIO_OE");
if (oe) {
if (oe->data_mask)
ftdi_set_signal(oe, enable ? '1' : '0');
else {
/* Sets TDI/DO pin to input during rx when both pins are connected
to SWDIO */
if (enable)
direction |= jtag_direction_init & 0x0002U;
else
direction &= ~0x0002U;
mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
}
}
}
/**
* Flush the MPSSE queue and process the SWD transaction queue
* @return
*/
static int ftdi_swd_run_queue(void)
{
LOG_DEBUG_IO("Executing %zu queued transactions", swd_cmd_queue_length);
int retval;
struct signal *led = find_signal_by_name("LED");
if (queued_retval != ERROR_OK) {
LOG_DEBUG_IO("Skipping due to previous errors: %d", queued_retval);
goto skip;
}
/* A transaction must be followed by another transaction or at least 8 idle cycles to
* ensure that data is clocked through the AP. */
mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
/* Terminate the "blink", if the current layout has that feature */
if (led)
ftdi_set_signal(led, '0');
queued_retval = mpsse_flush(mpsse_ctx);
if (queued_retval != ERROR_OK) {
LOG_ERROR("MPSSE failed");
goto skip;
}
for (size_t i = 0; i < swd_cmd_queue_length; i++) {
int ack = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
LOG_DEBUG_IO("%s %s %s reg %X = %08"PRIx32,
ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
swd_cmd_queue[i].cmd & SWD_CMD_APnDP ? "AP" : "DP",
swd_cmd_queue[i].cmd & SWD_CMD_RnW ? "read" : "write",
(swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RnW ? 0 : 1), 32));
if (ack != SWD_ACK_OK) {
queued_retval = ack == SWD_ACK_WAIT ? ERROR_WAIT : ERROR_FAIL;
goto skip;
} else if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
if (parity != parity_u32(data)) {
LOG_ERROR("SWD Read data parity mismatch");
queued_retval = ERROR_FAIL;
goto skip;
}
if (swd_cmd_queue[i].dst != NULL)
*swd_cmd_queue[i].dst = data;
}
}
skip:
swd_cmd_queue_length = 0;
retval = queued_retval;
queued_retval = ERROR_OK;
/* Queue a new "blink" */
if (led && retval == ERROR_OK)
ftdi_set_signal(led, '1');
return retval;
}
static void ftdi_swd_queue_cmd(uint8_t cmd, uint32_t *dst, uint32_t data, uint32_t ap_delay_clk)
{
if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
/* Not enough room in the queue. Run the queue and increase its size for next time.
* Note that it's not possible to avoid running the queue here, because mpsse contains
* pointers into the queue which may be invalid after the realloc. */
queued_retval = ftdi_swd_run_queue();
struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
if (q != NULL) {
swd_cmd_queue = q;
swd_cmd_queue_alloced *= 2;
LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
}
}
if (queued_retval != ERROR_OK)
return;
size_t i = swd_cmd_queue_length++;
swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
/* Queue a read transaction */
swd_cmd_queue[i].dst = dst;
ftdi_swd_swdio_en(false);
mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
ftdi_swd_swdio_en(true);
} else {
/* Queue a write transaction */
ftdi_swd_swdio_en(false);
mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
0, 1 + 3 + 1, SWD_MODE);
ftdi_swd_swdio_en(true);
buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1 + 3 + 1, 32 + 1, SWD_MODE);
}
/* Insert idle cycles after AP accesses to avoid WAIT */
if (cmd & SWD_CMD_APnDP)
mpsse_clock_data_out(mpsse_ctx, NULL, 0, ap_delay_clk, SWD_MODE);
}
static void ftdi_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk)
{
assert(cmd & SWD_CMD_RnW);
ftdi_swd_queue_cmd(cmd, value, 0, ap_delay_clk);
}
static void ftdi_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk)
{
assert(!(cmd & SWD_CMD_RnW));
ftdi_swd_queue_cmd(cmd, NULL, value, ap_delay_clk);
}
static int ftdi_swd_switch_seq(enum swd_special_seq seq)
{
switch (seq) {
case LINE_RESET:
LOG_DEBUG("SWD line reset");
ftdi_swd_swdio_en(true);
mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
break;
case JTAG_TO_SWD:
LOG_DEBUG("JTAG-to-SWD");
ftdi_swd_swdio_en(true);
mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
break;
case SWD_TO_JTAG:
LOG_DEBUG("SWD-to-JTAG");
ftdi_swd_swdio_en(true);
mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
break;
default:
LOG_ERROR("Sequence %d not supported", seq);
return ERROR_FAIL;
}
return ERROR_OK;
}
static const struct swd_driver ftdi_swd = {
.init = ftdi_swd_init,
.switch_seq = ftdi_swd_switch_seq,
.read_reg = ftdi_swd_read_reg,
.write_reg = ftdi_swd_write_reg,
.run = ftdi_swd_run_queue,
};
static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
static struct jtag_interface ftdi_interface = {
.supported = DEBUG_CAP_TMS_SEQ,
.execute_queue = ftdi_execute_queue,
};
struct adapter_driver ftdi_adapter_driver = {
.name = "ftdi",
.transports = ftdi_transports,
.commands = ftdi_command_handlers,
.init = ftdi_initialize,
.quit = ftdi_quit,
.reset = ftdi_reset,
.speed = ftdi_speed,
.khz = ftdi_khz,
.speed_div = ftdi_speed_div,
.jtag_ops = &ftdi_interface,
.swd_ops = &ftdi_swd,
};