openocd/src/target/etm.c

1892 lines
49 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include "etm.h"
#include "etb.h"
#include "armv4_5.h"
#include "arm7_9_common.h"
#include "arm_disassembler.h"
#include "arm_simulator.h"
#include "log.h"
#include "arm_jtag.h"
#include "types.h"
#include "binarybuffer.h"
#include "target.h"
#include "register.h"
#include "jtag.h"
#include "fileio.h"
#include <stdlib.h>
/* ETM register access functionality
*
*/
bitfield_desc_t etm_comms_ctrl_bitfield_desc[] =
{
{"R", 1},
{"W", 1},
{"reserved", 26},
{"version", 4}
};
int etm_reg_arch_info[] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
};
int etm_reg_arch_size_info[] =
{
32, 32, 17, 8, 3, 9, 32, 16,
17, 26, 25, 8, 17, 32, 32, 17,
32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32,
7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7,
32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32,
16, 16, 16, 16, 18, 18, 18, 18,
17, 17, 17, 17, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 2,
17, 17, 17, 17, 32, 32, 32, 32
};
char* etm_reg_list[] =
{
"ETM_CTRL",
"ETM_CONFIG",
"ETM_TRIG_EVENT",
"ETM_MMD_CTRL",
"ETM_STATUS",
"ETM_SYS_CONFIG",
"ETM_TRACE_RESOURCE_CTRL",
"ETM_TRACE_EN_CTRL2",
"ETM_TRACE_EN_EVENT",
"ETM_TRACE_EN_CTRL1",
"ETM_FIFOFULL_REGION",
"ETM_FIFOFULL_LEVEL",
"ETM_VIEWDATA_EVENT",
"ETM_VIEWDATA_CTRL1",
"ETM_VIEWDATA_CTRL2",
"ETM_VIEWDATA_CTRL3",
"ETM_ADDR_COMPARATOR_VALUE1",
"ETM_ADDR_COMPARATOR_VALUE2",
"ETM_ADDR_COMPARATOR_VALUE3",
"ETM_ADDR_COMPARATOR_VALUE4",
"ETM_ADDR_COMPARATOR_VALUE5",
"ETM_ADDR_COMPARATOR_VALUE6",
"ETM_ADDR_COMPARATOR_VALUE7",
"ETM_ADDR_COMPARATOR_VALUE8",
"ETM_ADDR_COMPARATOR_VALUE9",
"ETM_ADDR_COMPARATOR_VALUE10",
"ETM_ADDR_COMPARATOR_VALUE11",
"ETM_ADDR_COMPARATOR_VALUE12",
"ETM_ADDR_COMPARATOR_VALUE13",
"ETM_ADDR_COMPARATOR_VALUE14",
"ETM_ADDR_COMPARATOR_VALUE15",
"ETM_ADDR_COMPARATOR_VALUE16",
"ETM_ADDR_ACCESS_TYPE1",
"ETM_ADDR_ACCESS_TYPE2",
"ETM_ADDR_ACCESS_TYPE3",
"ETM_ADDR_ACCESS_TYPE4",
"ETM_ADDR_ACCESS_TYPE5",
"ETM_ADDR_ACCESS_TYPE6",
"ETM_ADDR_ACCESS_TYPE7",
"ETM_ADDR_ACCESS_TYPE8",
"ETM_ADDR_ACCESS_TYPE9",
"ETM_ADDR_ACCESS_TYPE10",
"ETM_ADDR_ACCESS_TYPE11",
"ETM_ADDR_ACCESS_TYPE12",
"ETM_ADDR_ACCESS_TYPE13",
"ETM_ADDR_ACCESS_TYPE14",
"ETM_ADDR_ACCESS_TYPE15",
"ETM_ADDR_ACCESS_TYPE16",
"ETM_DATA_COMPARATOR_VALUE1",
"ETM_DATA_COMPARATOR_VALUE2",
"ETM_DATA_COMPARATOR_VALUE3",
"ETM_DATA_COMPARATOR_VALUE4",
"ETM_DATA_COMPARATOR_VALUE5",
"ETM_DATA_COMPARATOR_VALUE6",
"ETM_DATA_COMPARATOR_VALUE7",
"ETM_DATA_COMPARATOR_VALUE8",
"ETM_DATA_COMPARATOR_VALUE9",
"ETM_DATA_COMPARATOR_VALUE10",
"ETM_DATA_COMPARATOR_VALUE11",
"ETM_DATA_COMPARATOR_VALUE12",
"ETM_DATA_COMPARATOR_VALUE13",
"ETM_DATA_COMPARATOR_VALUE14",
"ETM_DATA_COMPARATOR_VALUE15",
"ETM_DATA_COMPARATOR_VALUE16",
"ETM_DATA_COMPARATOR_MASK1",
"ETM_DATA_COMPARATOR_MASK2",
"ETM_DATA_COMPARATOR_MASK3",
"ETM_DATA_COMPARATOR_MASK4",
"ETM_DATA_COMPARATOR_MASK5",
"ETM_DATA_COMPARATOR_MASK6",
"ETM_DATA_COMPARATOR_MASK7",
"ETM_DATA_COMPARATOR_MASK8",
"ETM_DATA_COMPARATOR_MASK9",
"ETM_DATA_COMPARATOR_MASK10",
"ETM_DATA_COMPARATOR_MASK11",
"ETM_DATA_COMPARATOR_MASK12",
"ETM_DATA_COMPARATOR_MASK13",
"ETM_DATA_COMPARATOR_MASK14",
"ETM_DATA_COMPARATOR_MASK15",
"ETM_DATA_COMPARATOR_MASK16",
"ETM_COUNTER_INITAL_VALUE1",
"ETM_COUNTER_INITAL_VALUE2",
"ETM_COUNTER_INITAL_VALUE3",
"ETM_COUNTER_INITAL_VALUE4",
"ETM_COUNTER_ENABLE1",
"ETM_COUNTER_ENABLE2",
"ETM_COUNTER_ENABLE3",
"ETM_COUNTER_ENABLE4",
"ETM_COUNTER_RELOAD_VALUE1",
"ETM_COUNTER_RELOAD_VALUE2",
"ETM_COUNTER_RELOAD_VALUE3",
"ETM_COUNTER_RELOAD_VALUE4",
"ETM_COUNTER_VALUE1",
"ETM_COUNTER_VALUE2",
"ETM_COUNTER_VALUE3",
"ETM_COUNTER_VALUE4",
"ETM_SEQUENCER_CTRL1",
"ETM_SEQUENCER_CTRL2",
"ETM_SEQUENCER_CTRL3",
"ETM_SEQUENCER_CTRL4",
"ETM_SEQUENCER_CTRL5",
"ETM_SEQUENCER_CTRL6",
"ETM_SEQUENCER_STATE",
"ETM_EXTERNAL_OUTPUT1",
"ETM_EXTERNAL_OUTPUT2",
"ETM_EXTERNAL_OUTPUT3",
"ETM_EXTERNAL_OUTPUT4",
"ETM_CONTEXTID_COMPARATOR_VALUE1",
"ETM_CONTEXTID_COMPARATOR_VALUE2",
"ETM_CONTEXTID_COMPARATOR_VALUE3",
"ETM_CONTEXTID_COMPARATOR_MASK"
};
int etm_reg_arch_type = -1;
int etm_get_reg(reg_t *reg);
int etm_set_reg(reg_t *reg, u32 value);
int etm_set_reg_w_exec(reg_t *reg, u8 *buf);
int etm_write_reg(reg_t *reg, u32 value);
int etm_read_reg(reg_t *reg);
command_t *etm_cmd = NULL;
reg_cache_t* etm_build_reg_cache(target_t *target, arm_jtag_t *jtag_info, etm_context_t *etm_ctx)
{
reg_cache_t *reg_cache = malloc(sizeof(reg_cache_t));
reg_t *reg_list = NULL;
etm_reg_t *arch_info = NULL;
int num_regs = sizeof(etm_reg_arch_info)/sizeof(int);
int i;
/* register a register arch-type for etm registers only once */
if (etm_reg_arch_type == -1)
etm_reg_arch_type = register_reg_arch_type(etm_get_reg, etm_set_reg_w_exec);
/* the actual registers are kept in two arrays */
reg_list = calloc(num_regs, sizeof(reg_t));
arch_info = calloc(num_regs, sizeof(etm_reg_t));
/* fill in values for the reg cache */
reg_cache->name = "etm registers";
reg_cache->next = NULL;
reg_cache->reg_list = reg_list;
reg_cache->num_regs = num_regs;
/* set up registers */
for (i = 0; i < num_regs; i++)
{
reg_list[i].name = etm_reg_list[i];
reg_list[i].size = 32;
reg_list[i].dirty = 0;
reg_list[i].valid = 0;
reg_list[i].bitfield_desc = NULL;
reg_list[i].num_bitfields = 0;
reg_list[i].value = calloc(1, 4);
reg_list[i].arch_info = &arch_info[i];
reg_list[i].arch_type = etm_reg_arch_type;
reg_list[i].size = etm_reg_arch_size_info[i];
arch_info[i].addr = etm_reg_arch_info[i];
arch_info[i].jtag_info = jtag_info;
}
/* the ETM might have an ETB connected */
if (strcmp(etm_ctx->capture_driver->name, "etb") == 0)
{
etb_t *etb = etm_ctx->capture_driver_priv;
if (!etb)
{
LOG_ERROR("etb selected as etm capture driver, but no ETB configured");
return ERROR_OK;
}
reg_cache->next = etb_build_reg_cache(etb);
etb->reg_cache = reg_cache->next;
}
return reg_cache;
}
int etm_setup(target_t *target)
{
int retval;
u32 etm_ctrl_value;
armv4_5_common_t *armv4_5 = target->arch_info;
arm7_9_common_t *arm7_9 = armv4_5->arch_info;
etm_context_t *etm_ctx = arm7_9->etm_ctx;
reg_t *etm_ctrl_reg = &arm7_9->etm_ctx->reg_cache->reg_list[ETM_CTRL];
/* initialize some ETM control register settings */
etm_get_reg(etm_ctrl_reg);
etm_ctrl_value = buf_get_u32(etm_ctrl_reg->value, 0, etm_ctrl_reg->size);
/* clear the ETM powerdown bit (0) */
etm_ctrl_value &= ~0x1;
/* configure port width (6:4), mode (17:16) and clocking (13) */
etm_ctrl_value = (etm_ctrl_value &
~ETM_PORT_WIDTH_MASK & ~ETM_PORT_MODE_MASK & ~ETM_PORT_CLOCK_MASK)
| etm_ctx->portmode;
buf_set_u32(etm_ctrl_reg->value, 0, etm_ctrl_reg->size, etm_ctrl_value);
etm_store_reg(etm_ctrl_reg);
if ((retval=jtag_execute_queue())!=ERROR_OK)
return retval;
if ((retval=etm_ctx->capture_driver->init(etm_ctx)) != ERROR_OK)
{
LOG_ERROR("ETM capture driver initialization failed");
return retval;
}
return ERROR_OK;
}
int etm_get_reg(reg_t *reg)
{
int retval;
if ((retval = etm_read_reg(reg)) != ERROR_OK)
{
LOG_ERROR("BUG: error scheduling etm register read");
return retval;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("register read failed");
return retval;
}
return ERROR_OK;
}
int etm_read_reg_w_check(reg_t *reg, u8* check_value, u8* check_mask)
{
etm_reg_t *etm_reg = reg->arch_info;
u8 reg_addr = etm_reg->addr & 0x7f;
scan_field_t fields[3];
LOG_DEBUG("%i", etm_reg->addr);
jtag_add_end_state(TAP_RTI);
arm_jtag_scann(etm_reg->jtag_info, 0x6);
arm_jtag_set_instr(etm_reg->jtag_info, etm_reg->jtag_info->intest_instr, NULL);
fields[0].tap = etm_reg->jtag_info->tap;
fields[0].num_bits = 32;
fields[0].out_value = reg->value;
fields[0].out_mask = NULL;
fields[0].in_value = NULL;
fields[0].in_check_value = NULL;
fields[0].in_check_mask = NULL;
fields[0].in_handler = NULL;
fields[0].in_handler_priv = NULL;
fields[1].tap = etm_reg->jtag_info->tap;
fields[1].num_bits = 7;
fields[1].out_value = malloc(1);
buf_set_u32(fields[1].out_value, 0, 7, reg_addr);
fields[1].out_mask = NULL;
fields[1].in_value = NULL;
fields[1].in_check_value = NULL;
fields[1].in_check_mask = NULL;
fields[1].in_handler = NULL;
fields[1].in_handler_priv = NULL;
fields[2].tap = etm_reg->jtag_info->tap;
fields[2].num_bits = 1;
fields[2].out_value = malloc(1);
buf_set_u32(fields[2].out_value, 0, 1, 0);
fields[2].out_mask = NULL;
fields[2].in_value = NULL;
fields[2].in_check_value = NULL;
fields[2].in_check_mask = NULL;
fields[2].in_handler = NULL;
fields[2].in_handler_priv = NULL;
jtag_add_dr_scan(3, fields, -1);
fields[0].in_value = reg->value;
jtag_set_check_value(fields+0, check_value, check_mask, NULL);
jtag_add_dr_scan(3, fields, -1);
free(fields[1].out_value);
free(fields[2].out_value);
return ERROR_OK;
}
int etm_read_reg(reg_t *reg)
{
return etm_read_reg_w_check(reg, NULL, NULL);
}
int etm_set_reg(reg_t *reg, u32 value)
{
int retval;
if ((retval = etm_write_reg(reg, value)) != ERROR_OK)
{
LOG_ERROR("BUG: error scheduling etm register write");
return retval;
}
buf_set_u32(reg->value, 0, reg->size, value);
reg->valid = 1;
reg->dirty = 0;
return ERROR_OK;
}
int etm_set_reg_w_exec(reg_t *reg, u8 *buf)
{
int retval;
etm_set_reg(reg, buf_get_u32(buf, 0, reg->size));
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("register write failed");
return retval;
}
return ERROR_OK;
}
int etm_write_reg(reg_t *reg, u32 value)
{
etm_reg_t *etm_reg = reg->arch_info;
u8 reg_addr = etm_reg->addr & 0x7f;
scan_field_t fields[3];
LOG_DEBUG("%i: 0x%8.8x", etm_reg->addr, value);
jtag_add_end_state(TAP_RTI);
arm_jtag_scann(etm_reg->jtag_info, 0x6);
arm_jtag_set_instr(etm_reg->jtag_info, etm_reg->jtag_info->intest_instr, NULL);
fields[0].tap = etm_reg->jtag_info->tap;
fields[0].num_bits = 32;
fields[0].out_value = malloc(4);
buf_set_u32(fields[0].out_value, 0, 32, value);
fields[0].out_mask = NULL;
fields[0].in_value = NULL;
fields[0].in_check_value = NULL;
fields[0].in_check_mask = NULL;
fields[0].in_handler = NULL;
fields[0].in_handler_priv = NULL;
fields[1].tap = etm_reg->jtag_info->tap;
fields[1].num_bits = 7;
fields[1].out_value = malloc(1);
buf_set_u32(fields[1].out_value, 0, 7, reg_addr);
fields[1].out_mask = NULL;
fields[1].in_value = NULL;
fields[1].in_check_value = NULL;
fields[1].in_check_mask = NULL;
fields[1].in_handler = NULL;
fields[1].in_handler_priv = NULL;
fields[2].tap = etm_reg->jtag_info->tap;
fields[2].num_bits = 1;
fields[2].out_value = malloc(1);
buf_set_u32(fields[2].out_value, 0, 1, 1);
fields[2].out_mask = NULL;
fields[2].in_value = NULL;
fields[2].in_check_value = NULL;
fields[2].in_check_mask = NULL;
fields[2].in_handler = NULL;
fields[2].in_handler_priv = NULL;
jtag_add_dr_scan(3, fields, -1);
free(fields[0].out_value);
free(fields[1].out_value);
free(fields[2].out_value);
return ERROR_OK;
}
int etm_store_reg(reg_t *reg)
{
return etm_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
}
/* ETM trace analysis functionality
*
*/
extern etm_capture_driver_t etb_capture_driver;
extern etm_capture_driver_t etm_dummy_capture_driver;
#if BUILD_OOCD_TRACE == 1
extern etm_capture_driver_t oocd_trace_capture_driver;
#endif
etm_capture_driver_t *etm_capture_drivers[] =
{
&etb_capture_driver,
&etm_dummy_capture_driver,
#if BUILD_OOCD_TRACE == 1
&oocd_trace_capture_driver,
#endif
NULL
};
char *etmv1v1_branch_reason_strings[] =
{
"normal PC change",
"tracing enabled",
"trace restarted after overflow",
"exit from debug",
"periodic synchronization",
"reserved",
"reserved",
"reserved",
};
int etm_read_instruction(etm_context_t *ctx, arm_instruction_t *instruction)
{
int i;
int section = -1;
u32 size_read;
u32 opcode;
int retval;
if (!ctx->image)
return ERROR_TRACE_IMAGE_UNAVAILABLE;
/* search for the section the current instruction belongs to */
for (i = 0; i < ctx->image->num_sections; i++)
{
if ((ctx->image->sections[i].base_address <= ctx->current_pc) &&
(ctx->image->sections[i].base_address + ctx->image->sections[i].size > ctx->current_pc))
{
section = i;
break;
}
}
if (section == -1)
{
/* current instruction couldn't be found in the image */
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
if (ctx->core_state == ARMV4_5_STATE_ARM)
{
u8 buf[4];
if ((retval = image_read_section(ctx->image, section,
ctx->current_pc - ctx->image->sections[section].base_address,
4, buf, &size_read)) != ERROR_OK)
{
LOG_ERROR("error while reading instruction: %i", retval);
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
opcode = target_buffer_get_u32(ctx->target, buf);
arm_evaluate_opcode(opcode, ctx->current_pc, instruction);
}
else if (ctx->core_state == ARMV4_5_STATE_THUMB)
{
u8 buf[2];
if ((retval = image_read_section(ctx->image, section,
ctx->current_pc - ctx->image->sections[section].base_address,
2, buf, &size_read)) != ERROR_OK)
{
LOG_ERROR("error while reading instruction: %i", retval);
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
opcode = target_buffer_get_u16(ctx->target, buf);
thumb_evaluate_opcode(opcode, ctx->current_pc, instruction);
}
else if (ctx->core_state == ARMV4_5_STATE_JAZELLE)
{
LOG_ERROR("BUG: tracing of jazelle code not supported");
exit(-1);
}
else
{
LOG_ERROR("BUG: unknown core state encountered");
exit(-1);
}
return ERROR_OK;
}
int etmv1_next_packet(etm_context_t *ctx, u8 *packet, int apo)
{
while (ctx->data_index < ctx->trace_depth)
{
/* if the caller specified an address packet offset, skip until the
* we reach the n-th cycle marked with tracesync */
if (apo > 0)
{
if (ctx->trace_data[ctx->data_index].flags & ETMV1_TRACESYNC_CYCLE)
apo--;
if (apo > 0)
{
ctx->data_index++;
ctx->data_half = 0;
}
continue;
}
/* no tracedata output during a TD cycle
* or in a trigger cycle */
if ((ctx->trace_data[ctx->data_index].pipestat == STAT_TD)
|| (ctx->trace_data[ctx->data_index].flags & ETMV1_TRIGGER_CYCLE))
{
ctx->data_index++;
ctx->data_half = 0;
continue;
}
if ((ctx->portmode & ETM_PORT_WIDTH_MASK) == ETM_PORT_16BIT)
{
if (ctx->data_half == 0)
{
*packet = ctx->trace_data[ctx->data_index].packet & 0xff;
ctx->data_half = 1;
}
else
{
*packet = (ctx->trace_data[ctx->data_index].packet & 0xff00) >> 8;
ctx->data_half = 0;
ctx->data_index++;
}
}
else if ((ctx->portmode & ETM_PORT_WIDTH_MASK) == ETM_PORT_8BIT)
{
*packet = ctx->trace_data[ctx->data_index].packet & 0xff;
ctx->data_index++;
}
else
{
/* on a 4-bit port, a packet will be output during two consecutive cycles */
if (ctx->data_index > (ctx->trace_depth - 2))
return -1;
*packet = ctx->trace_data[ctx->data_index].packet & 0xf;
*packet |= (ctx->trace_data[ctx->data_index + 1].packet & 0xf) << 4;
ctx->data_index += 2;
}
return 0;
}
return -1;
}
int etmv1_branch_address(etm_context_t *ctx)
{
int retval;
u8 packet;
int shift = 0;
int apo;
int i;
/* quit analysis if less than two cycles are left in the trace
* because we can't extract the APO */
if (ctx->data_index > (ctx->trace_depth - 2))
return -1;
/* a BE could be output during an APO cycle, skip the current
* and continue with the new one */
if (ctx->trace_data[ctx->pipe_index + 1].pipestat & 0x4)
return 1;
if (ctx->trace_data[ctx->pipe_index + 2].pipestat & 0x4)
return 2;
/* address packet offset encoded in the next two cycles' pipestat bits */
apo = ctx->trace_data[ctx->pipe_index + 1].pipestat & 0x3;
apo |= (ctx->trace_data[ctx->pipe_index + 2].pipestat & 0x3) << 2;
/* count number of tracesync cycles between current pipe_index and data_index
* i.e. the number of tracesyncs that data_index already passed by
* to subtract them from the APO */
for (i = ctx->pipe_index; i < ctx->data_index; i++)
{
if (ctx->trace_data[ctx->pipe_index + 1].pipestat & ETMV1_TRACESYNC_CYCLE)
apo--;
}
/* extract up to four 7-bit packets */
do {
if ((retval = etmv1_next_packet(ctx, &packet, (shift == 0) ? apo + 1 : 0)) != 0)
return -1;
ctx->last_branch &= ~(0x7f << shift);
ctx->last_branch |= (packet & 0x7f) << shift;
shift += 7;
} while ((packet & 0x80) && (shift < 28));
/* one last packet holding 4 bits of the address, plus the branch reason code */
if ((shift == 28) && (packet & 0x80))
{
if ((retval = etmv1_next_packet(ctx, &packet, 0)) != 0)
return -1;
ctx->last_branch &= 0x0fffffff;
ctx->last_branch |= (packet & 0x0f) << 28;
ctx->last_branch_reason = (packet & 0x70) >> 4;
shift += 4;
}
else
{
ctx->last_branch_reason = 0;
}
if (shift == 32)
{
ctx->pc_ok = 1;
}
/* if a full address was output, we might have branched into Jazelle state */
if ((shift == 32) && (packet & 0x80))
{
ctx->core_state = ARMV4_5_STATE_JAZELLE;
}
else
{
/* if we didn't branch into Jazelle state, the current processor state is
* encoded in bit 0 of the branch target address */
if (ctx->last_branch & 0x1)
{
ctx->core_state = ARMV4_5_STATE_THUMB;
ctx->last_branch &= ~0x1;
}
else
{
ctx->core_state = ARMV4_5_STATE_ARM;
ctx->last_branch &= ~0x3;
}
}
return 0;
}
int etmv1_data(etm_context_t *ctx, int size, u32 *data)
{
int j;
u8 buf[4];
int retval;
for (j = 0; j < size; j++)
{
if ((retval = etmv1_next_packet(ctx, &buf[j], 0)) != 0)
return -1;
}
if (size == 8)
{
LOG_ERROR("TODO: add support for 64-bit values");
return -1;
}
else if (size == 4)
*data = target_buffer_get_u32(ctx->target, buf);
else if (size == 2)
*data = target_buffer_get_u16(ctx->target, buf);
else if (size == 1)
*data = buf[0];
else
return -1;
return 0;
}
int etmv1_analyze_trace(etm_context_t *ctx, struct command_context_s *cmd_ctx)
{
int retval;
arm_instruction_t instruction;
/* read the trace data if it wasn't read already */
if (ctx->trace_depth == 0)
ctx->capture_driver->read_trace(ctx);
/* start at the beginning of the captured trace */
ctx->pipe_index = 0;
ctx->data_index = 0;
ctx->data_half = 0;
/* neither the PC nor the data pointer are valid */
ctx->pc_ok = 0;
ctx->ptr_ok = 0;
while (ctx->pipe_index < ctx->trace_depth)
{
u8 pipestat = ctx->trace_data[ctx->pipe_index].pipestat;
u32 next_pc = ctx->current_pc;
u32 old_data_index = ctx->data_index;
u32 old_data_half = ctx->data_half;
u32 old_index = ctx->pipe_index;
u32 last_instruction = ctx->last_instruction;
u32 cycles = 0;
int current_pc_ok = ctx->pc_ok;
if (ctx->trace_data[ctx->pipe_index].flags & ETMV1_TRIGGER_CYCLE)
{
command_print(cmd_ctx, "--- trigger ---");
}
/* instructions execute in IE/D or BE/D cycles */
if ((pipestat == STAT_IE) || (pipestat == STAT_ID))
ctx->last_instruction = ctx->pipe_index;
/* if we don't have a valid pc skip until we reach an indirect branch */
if ((!ctx->pc_ok) && (pipestat != STAT_BE))
{
ctx->pipe_index++;
continue;
}
/* any indirect branch could have interrupted instruction flow
* - the branch reason code could indicate a trace discontinuity
* - a branch to the exception vectors indicates an exception
*/
if ((pipestat == STAT_BE) || (pipestat == STAT_BD))
{
/* backup current data index, to be able to consume the branch address
* before examining data address and values
*/
old_data_index = ctx->data_index;
old_data_half = ctx->data_half;
ctx->last_instruction = ctx->pipe_index;
if ((retval = etmv1_branch_address(ctx)) != 0)
{
/* negative return value from etmv1_branch_address means we ran out of packets,
* quit analysing the trace */
if (retval < 0)
break;
/* a positive return values means the current branch was abandoned,
* and a new branch was encountered in cycle ctx->pipe_index + retval;
*/
LOG_WARNING("abandoned branch encountered, correctnes of analysis uncertain");
ctx->pipe_index += retval;
continue;
}
/* skip over APO cycles */
ctx->pipe_index += 2;
switch (ctx->last_branch_reason)
{
case 0x0: /* normal PC change */
next_pc = ctx->last_branch;
break;
case 0x1: /* tracing enabled */
command_print(cmd_ctx, "--- tracing enabled at 0x%8.8x ---", ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
break;
case 0x2: /* trace restarted after FIFO overflow */
command_print(cmd_ctx, "--- trace restarted after FIFO overflow at 0x%8.8x ---", ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
break;
case 0x3: /* exit from debug state */
command_print(cmd_ctx, "--- exit from debug state at 0x%8.8x ---", ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
break;
case 0x4: /* periodic synchronization point */
next_pc = ctx->last_branch;
/* if we had no valid PC prior to this synchronization point,
* we have to move on with the next trace cycle
*/
if (!current_pc_ok)
{
command_print(cmd_ctx, "--- periodic synchronization point at 0x%8.8x ---", next_pc);
ctx->current_pc = next_pc;
ctx->pipe_index++;
continue;
}
break;
default: /* reserved */
LOG_ERROR("BUG: branch reason code 0x%x is reserved", ctx->last_branch_reason);
exit(-1);
break;
}
/* if we got here the branch was a normal PC change
* (or a periodic synchronization point, which means the same for that matter)
* if we didn't accquire a complete PC continue with the next cycle
*/
if (!ctx->pc_ok)
continue;
/* indirect branch to the exception vector means an exception occured */
if (((ctx->last_branch >= 0x0) && (ctx->last_branch <= 0x20))
|| ((ctx->last_branch >= 0xffff0000) && (ctx->last_branch <= 0xffff0020)))
{
if ((ctx->last_branch & 0xff) == 0x10)
{
command_print(cmd_ctx, "data abort");
}
else
{
command_print(cmd_ctx, "exception vector 0x%2.2x", ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
}
}
}
/* an instruction was executed (or not, depending on the condition flags)
* retrieve it from the image for displaying */
if (ctx->pc_ok && (pipestat != STAT_WT) && (pipestat != STAT_TD) &&
!(((pipestat == STAT_BE) || (pipestat == STAT_BD)) &&
((ctx->last_branch_reason != 0x0) && (ctx->last_branch_reason != 0x4))))
{
if ((retval = etm_read_instruction(ctx, &instruction)) != ERROR_OK)
{
/* can't continue tracing with no image available */
if (retval == ERROR_TRACE_IMAGE_UNAVAILABLE)
{
return retval;
}
else if (retval == ERROR_TRACE_INSTRUCTION_UNAVAILABLE)
{
/* TODO: handle incomplete images
* for now we just quit the analsysis*/
return retval;
}
}
cycles = old_index - last_instruction;
}
if ((pipestat == STAT_ID) || (pipestat == STAT_BD))
{
u32 new_data_index = ctx->data_index;
u32 new_data_half = ctx->data_half;
/* in case of a branch with data, the branch target address was consumed before
* we temporarily go back to the saved data index */
if (pipestat == STAT_BD)
{
ctx->data_index = old_data_index;
ctx->data_half = old_data_half;
}
if (ctx->tracemode & ETMV1_TRACE_ADDR)
{
u8 packet;
int shift = 0;
do {
if ((retval = etmv1_next_packet(ctx, &packet, 0)) != 0)
return ERROR_ETM_ANALYSIS_FAILED;
ctx->last_ptr &= ~(0x7f << shift);
ctx->last_ptr |= (packet & 0x7f) << shift;
shift += 7;
} while ((packet & 0x80) && (shift < 32));
if (shift >= 32)
ctx->ptr_ok = 1;
if (ctx->ptr_ok)
{
command_print(cmd_ctx, "address: 0x%8.8x", ctx->last_ptr);
}
}
if (ctx->tracemode & ETMV1_TRACE_DATA)
{
if ((instruction.type == ARM_LDM) || (instruction.type == ARM_STM))
{
int i;
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
u32 data;
if (etmv1_data(ctx, 4, &data) != 0)
return ERROR_ETM_ANALYSIS_FAILED;
command_print(cmd_ctx, "data: 0x%8.8x", data);
}
}
}
else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_STRH))
{
u32 data;
if (etmv1_data(ctx, arm_access_size(&instruction), &data) != 0)
return ERROR_ETM_ANALYSIS_FAILED;
command_print(cmd_ctx, "data: 0x%8.8x", data);
}
}
/* restore data index after consuming BD address and data */
if (pipestat == STAT_BD)
{
ctx->data_index = new_data_index;
ctx->data_half = new_data_half;
}
}
/* adjust PC */
if ((pipestat == STAT_IE) || (pipestat == STAT_ID))
{
if (((instruction.type == ARM_B) ||
(instruction.type == ARM_BL) ||
(instruction.type == ARM_BLX)) &&
(instruction.info.b_bl_bx_blx.target_address != -1))
{
next_pc = instruction.info.b_bl_bx_blx.target_address;
}
else
{
next_pc += (ctx->core_state == ARMV4_5_STATE_ARM) ? 4 : 2;
}
}
else if (pipestat == STAT_IN)
{
next_pc += (ctx->core_state == ARMV4_5_STATE_ARM) ? 4 : 2;
}
if ((pipestat != STAT_TD) && (pipestat != STAT_WT))
{
char cycles_text[32] = "";
/* if the trace was captured with cycle accurate tracing enabled,
* output the number of cycles since the last executed instruction
*/
if (ctx->tracemode & ETMV1_CYCLE_ACCURATE)
{
snprintf(cycles_text, 32, " (%i %s)",
cycles,
(cycles == 1) ? "cycle" : "cycles");
}
command_print(cmd_ctx, "%s%s%s",
instruction.text,
(pipestat == STAT_IN) ? " (not executed)" : "",
cycles_text);
ctx->current_pc = next_pc;
/* packets for an instruction don't start on or before the preceding
* functional pipestat (i.e. other than WT or TD)
*/
if (ctx->data_index <= ctx->pipe_index)
{
ctx->data_index = ctx->pipe_index + 1;
ctx->data_half = 0;
}
}
ctx->pipe_index += 1;
}
return ERROR_OK;
}
int handle_etm_tracemode_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etmv1_tracemode_t tracemode;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!arm7_9->etm_ctx)
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
tracemode = arm7_9->etm_ctx->tracemode;
if (argc == 4)
{
if (strcmp(args[0], "none") == 0)
{
tracemode = ETMV1_TRACE_NONE;
}
else if (strcmp(args[0], "data") == 0)
{
tracemode = ETMV1_TRACE_DATA;
}
else if (strcmp(args[0], "address") == 0)
{
tracemode = ETMV1_TRACE_ADDR;
}
else if (strcmp(args[0], "all") == 0)
{
tracemode = ETMV1_TRACE_DATA | ETMV1_TRACE_ADDR;
}
else
{
command_print(cmd_ctx, "invalid option '%s'", args[0]);
return ERROR_OK;
}
switch (strtol(args[1], NULL, 0))
{
case 0:
tracemode |= ETMV1_CONTEXTID_NONE;
break;
case 8:
tracemode |= ETMV1_CONTEXTID_8;
break;
case 16:
tracemode |= ETMV1_CONTEXTID_16;
break;
case 32:
tracemode |= ETMV1_CONTEXTID_32;
break;
default:
command_print(cmd_ctx, "invalid option '%s'", args[1]);
return ERROR_OK;
}
if (strcmp(args[2], "enable") == 0)
{
tracemode |= ETMV1_CYCLE_ACCURATE;
}
else if (strcmp(args[2], "disable") == 0)
{
tracemode |= 0;
}
else
{
command_print(cmd_ctx, "invalid option '%s'", args[2]);
return ERROR_OK;
}
if (strcmp(args[3], "enable") == 0)
{
tracemode |= ETMV1_BRANCH_OUTPUT;
}
else if (strcmp(args[3], "disable") == 0)
{
tracemode |= 0;
}
else
{
command_print(cmd_ctx, "invalid option '%s'", args[2]);
return ERROR_OK;
}
}
else if (argc != 0)
{
command_print(cmd_ctx, "usage: configure trace mode <none|data|address|all> <context id bits> <cycle accurate> <branch output>");
return ERROR_OK;
}
command_print(cmd_ctx, "current tracemode configuration:");
switch (tracemode & ETMV1_TRACE_MASK)
{
case ETMV1_TRACE_NONE:
command_print(cmd_ctx, "data tracing: none");
break;
case ETMV1_TRACE_DATA:
command_print(cmd_ctx, "data tracing: data only");
break;
case ETMV1_TRACE_ADDR:
command_print(cmd_ctx, "data tracing: address only");
break;
case ETMV1_TRACE_DATA | ETMV1_TRACE_ADDR:
command_print(cmd_ctx, "data tracing: address and data");
break;
}
switch (tracemode & ETMV1_CONTEXTID_MASK)
{
case ETMV1_CONTEXTID_NONE:
command_print(cmd_ctx, "contextid tracing: none");
break;
case ETMV1_CONTEXTID_8:
command_print(cmd_ctx, "contextid tracing: 8 bit");
break;
case ETMV1_CONTEXTID_16:
command_print(cmd_ctx, "contextid tracing: 16 bit");
break;
case ETMV1_CONTEXTID_32:
command_print(cmd_ctx, "contextid tracing: 32 bit");
break;
}
if (tracemode & ETMV1_CYCLE_ACCURATE)
{
command_print(cmd_ctx, "cycle-accurate tracing enabled");
}
else
{
command_print(cmd_ctx, "cycle-accurate tracing disabled");
}
if (tracemode & ETMV1_BRANCH_OUTPUT)
{
command_print(cmd_ctx, "full branch address output enabled");
}
else
{
command_print(cmd_ctx, "full branch address output disabled");
}
/* only update ETM_CTRL register if tracemode changed */
if (arm7_9->etm_ctx->tracemode != tracemode)
{
reg_t *etm_ctrl_reg = &arm7_9->etm_ctx->reg_cache->reg_list[ETM_CTRL];
etm_get_reg(etm_ctrl_reg);
buf_set_u32(etm_ctrl_reg->value, 2, 2, tracemode & ETMV1_TRACE_MASK);
buf_set_u32(etm_ctrl_reg->value, 14, 2, (tracemode & ETMV1_CONTEXTID_MASK) >> 4);
buf_set_u32(etm_ctrl_reg->value, 12, 1, (tracemode & ETMV1_CYCLE_ACCURATE) >> 8);
buf_set_u32(etm_ctrl_reg->value, 8, 1, (tracemode & ETMV1_BRANCH_OUTPUT) >> 9);
etm_store_reg(etm_ctrl_reg);
arm7_9->etm_ctx->tracemode = tracemode;
/* invalidate old trace data */
arm7_9->etm_ctx->capture_status = TRACE_IDLE;
if (arm7_9->etm_ctx->trace_depth > 0)
{
free(arm7_9->etm_ctx->trace_data);
arm7_9->etm_ctx->trace_data = NULL;
}
arm7_9->etm_ctx->trace_depth = 0;
}
return ERROR_OK;
}
int handle_etm_config_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_portmode_t portmode = 0x0;
etm_context_t *etm_ctx = malloc(sizeof(etm_context_t));
int i;
if (argc != 5)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target = get_target_by_num(strtoul(args[0], NULL, 0));
if (!target)
{
LOG_ERROR("target number '%s' not defined", args[0]);
return ERROR_FAIL;
}
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_FAIL;
}
switch (strtoul(args[1], NULL, 0))
{
case 4:
portmode |= ETM_PORT_4BIT;
break;
case 8:
portmode |= ETM_PORT_8BIT;
break;
case 16:
portmode |= ETM_PORT_16BIT;
break;
default:
command_print(cmd_ctx, "unsupported ETM port width '%s', must be 4, 8 or 16", args[1]);
return ERROR_FAIL;
}
if (strcmp("normal", args[2]) == 0)
{
portmode |= ETM_PORT_NORMAL;
}
else if (strcmp("multiplexed", args[2]) == 0)
{
portmode |= ETM_PORT_MUXED;
}
else if (strcmp("demultiplexed", args[2]) == 0)
{
portmode |= ETM_PORT_DEMUXED;
}
else
{
command_print(cmd_ctx, "unsupported ETM port mode '%s', must be 'normal', 'multiplexed' or 'demultiplexed'", args[2]);
return ERROR_FAIL;
}
if (strcmp("half", args[3]) == 0)
{
portmode |= ETM_PORT_HALF_CLOCK;
}
else if (strcmp("full", args[3]) == 0)
{
portmode |= ETM_PORT_FULL_CLOCK;
}
else
{
command_print(cmd_ctx, "unsupported ETM port clocking '%s', must be 'full' or 'half'", args[3]);
return ERROR_FAIL;
}
for (i=0; etm_capture_drivers[i]; i++)
{
if (strcmp(args[4], etm_capture_drivers[i]->name) == 0)
{
int retval;
if ((retval=etm_capture_drivers[i]->register_commands(cmd_ctx)) != ERROR_OK)
{
free(etm_ctx);
return retval;
}
etm_ctx->capture_driver = etm_capture_drivers[i];
break;
}
}
if (!etm_capture_drivers[i])
{
/* no supported capture driver found, don't register an ETM */
free(etm_ctx);
LOG_ERROR("trace capture driver '%s' not found", args[4]);
return ERROR_FAIL;
}
etm_ctx->target = target;
etm_ctx->trigger_percent = 50;
etm_ctx->trace_data = NULL;
etm_ctx->trace_depth = 0;
etm_ctx->portmode = portmode;
etm_ctx->tracemode = 0x0;
etm_ctx->core_state = ARMV4_5_STATE_ARM;
etm_ctx->image = NULL;
etm_ctx->pipe_index = 0;
etm_ctx->data_index = 0;
etm_ctx->current_pc = 0x0;
etm_ctx->pc_ok = 0;
etm_ctx->last_branch = 0x0;
etm_ctx->last_branch_reason = 0x0;
etm_ctx->last_ptr = 0x0;
etm_ctx->ptr_ok = 0x0;
etm_ctx->context_id = 0x0;
etm_ctx->last_instruction = 0;
arm7_9->etm_ctx = etm_ctx;
return etm_register_user_commands(cmd_ctx);
}
int handle_etm_info_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
reg_t *etm_config_reg;
reg_t *etm_sys_config_reg;
int max_port_size;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!arm7_9->etm_ctx)
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
etm_config_reg = &arm7_9->etm_ctx->reg_cache->reg_list[ETM_CONFIG];
etm_sys_config_reg = &arm7_9->etm_ctx->reg_cache->reg_list[ETM_SYS_CONFIG];
etm_get_reg(etm_config_reg);
command_print(cmd_ctx, "pairs of address comparators: %i", buf_get_u32(etm_config_reg->value, 0, 4));
command_print(cmd_ctx, "pairs of data comparators: %i", buf_get_u32(etm_config_reg->value, 4, 4));
command_print(cmd_ctx, "memory map decoders: %i", buf_get_u32(etm_config_reg->value, 8, 5));
command_print(cmd_ctx, "number of counters: %i", buf_get_u32(etm_config_reg->value, 13, 3));
command_print(cmd_ctx, "sequencer %spresent",
(buf_get_u32(etm_config_reg->value, 16, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "number of ext. inputs: %i", buf_get_u32(etm_config_reg->value, 17, 3));
command_print(cmd_ctx, "number of ext. outputs: %i", buf_get_u32(etm_config_reg->value, 20, 3));
command_print(cmd_ctx, "FIFO full %spresent",
(buf_get_u32(etm_config_reg->value, 23, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "protocol version: %i", buf_get_u32(etm_config_reg->value, 28, 3));
etm_get_reg(etm_sys_config_reg);
switch (buf_get_u32(etm_sys_config_reg->value, 0, 3))
{
case 0:
max_port_size = 4;
break;
case 1:
max_port_size = 8;
break;
case 2:
max_port_size = 16;
break;
default:
LOG_ERROR("Illegal max_port_size");
exit(-1);
}
command_print(cmd_ctx, "max. port size: %i", max_port_size);
command_print(cmd_ctx, "half-rate clocking %ssupported",
(buf_get_u32(etm_sys_config_reg->value, 3, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "full-rate clocking %ssupported",
(buf_get_u32(etm_sys_config_reg->value, 4, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "normal trace format %ssupported",
(buf_get_u32(etm_sys_config_reg->value, 5, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "multiplex trace format %ssupported",
(buf_get_u32(etm_sys_config_reg->value, 6, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "demultiplex trace format %ssupported",
(buf_get_u32(etm_sys_config_reg->value, 7, 1) == 1) ? "" : "not ");
command_print(cmd_ctx, "FIFO full %ssupported",
(buf_get_u32(etm_sys_config_reg->value, 8, 1) == 1) ? "" : "not ");
return ERROR_OK;
}
int handle_etm_status_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
trace_status_t trace_status;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!arm7_9->etm_ctx)
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
trace_status = arm7_9->etm_ctx->capture_driver->status(arm7_9->etm_ctx);
if (trace_status == TRACE_IDLE)
{
command_print(cmd_ctx, "tracing is idle");
}
else
{
static char *completed = " completed";
static char *running = " is running";
static char *overflowed = ", trace overflowed";
static char *triggered = ", trace triggered";
command_print(cmd_ctx, "trace collection%s%s%s",
(trace_status & TRACE_RUNNING) ? running : completed,
(trace_status & TRACE_OVERFLOWED) ? overflowed : "",
(trace_status & TRACE_TRIGGERED) ? triggered : "");
if (arm7_9->etm_ctx->trace_depth > 0)
{
command_print(cmd_ctx, "%i frames of trace data read", arm7_9->etm_ctx->trace_depth);
}
}
return ERROR_OK;
}
int handle_etm_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
if (argc < 1)
{
command_print(cmd_ctx, "usage: etm image <file> [base address] [type]");
return ERROR_OK;
}
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
if (etm_ctx->image)
{
image_close(etm_ctx->image);
free(etm_ctx->image);
command_print(cmd_ctx, "previously loaded image found and closed");
}
etm_ctx->image = malloc(sizeof(image_t));
etm_ctx->image->base_address_set = 0;
etm_ctx->image->start_address_set = 0;
/* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
if (argc >= 2)
{
etm_ctx->image->base_address_set = 1;
etm_ctx->image->base_address = strtoul(args[1], NULL, 0);
}
else
{
etm_ctx->image->base_address_set = 0;
}
if (image_open(etm_ctx->image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
{
free(etm_ctx->image);
etm_ctx->image = NULL;
return ERROR_OK;
}
return ERROR_OK;
}
int handle_etm_dump_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
fileio_t file;
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
int i;
if (argc != 1)
{
command_print(cmd_ctx, "usage: etm dump <file>");
return ERROR_OK;
}
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
if (etm_ctx->capture_driver->status == TRACE_IDLE)
{
command_print(cmd_ctx, "trace capture wasn't enabled, no trace data captured");
return ERROR_OK;
}
if (etm_ctx->capture_driver->status(etm_ctx) & TRACE_RUNNING)
{
/* TODO: if on-the-fly capture is to be supported, this needs to be changed */
command_print(cmd_ctx, "trace capture not completed");
return ERROR_OK;
}
/* read the trace data if it wasn't read already */
if (etm_ctx->trace_depth == 0)
etm_ctx->capture_driver->read_trace(etm_ctx);
if (fileio_open(&file, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
fileio_write_u32(&file, etm_ctx->capture_status);
fileio_write_u32(&file, etm_ctx->portmode);
fileio_write_u32(&file, etm_ctx->tracemode);
fileio_write_u32(&file, etm_ctx->trace_depth);
for (i = 0; i < etm_ctx->trace_depth; i++)
{
fileio_write_u32(&file, etm_ctx->trace_data[i].pipestat);
fileio_write_u32(&file, etm_ctx->trace_data[i].packet);
fileio_write_u32(&file, etm_ctx->trace_data[i].flags);
}
fileio_close(&file);
return ERROR_OK;
}
int handle_etm_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
fileio_t file;
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
int i;
if (argc != 1)
{
command_print(cmd_ctx, "usage: etm load <file>");
return ERROR_OK;
}
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
if (etm_ctx->capture_driver->status(etm_ctx) & TRACE_RUNNING)
{
command_print(cmd_ctx, "trace capture running, stop first");
return ERROR_OK;
}
if (fileio_open(&file, args[0], FILEIO_READ, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
if (file.size % 4)
{
command_print(cmd_ctx, "size isn't a multiple of 4, no valid trace data");
fileio_close(&file);
return ERROR_OK;
}
if (etm_ctx->trace_depth > 0)
{
free(etm_ctx->trace_data);
etm_ctx->trace_data = NULL;
}
fileio_read_u32(&file, &etm_ctx->capture_status);
fileio_read_u32(&file, &etm_ctx->portmode);
fileio_read_u32(&file, &etm_ctx->tracemode);
fileio_read_u32(&file, &etm_ctx->trace_depth);
etm_ctx->trace_data = malloc(sizeof(etmv1_trace_data_t) * etm_ctx->trace_depth);
if(etm_ctx->trace_data == NULL)
{
command_print(cmd_ctx, "not enough memory to perform operation");
fileio_close(&file);
return ERROR_OK;
}
for (i = 0; i < etm_ctx->trace_depth; i++)
{
u32 pipestat, packet, flags;
fileio_read_u32(&file, &pipestat);
fileio_read_u32(&file, &packet);
fileio_read_u32(&file, &flags);
etm_ctx->trace_data[i].pipestat = pipestat & 0xff;
etm_ctx->trace_data[i].packet = packet & 0xffff;
etm_ctx->trace_data[i].flags = flags;
}
fileio_close(&file);
return ERROR_OK;
}
int handle_etm_trigger_percent_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
if (argc > 0)
{
u32 new_value = strtoul(args[0], NULL, 0);
if ((new_value < 2) || (new_value > 100))
{
command_print(cmd_ctx, "valid settings are 2% to 100%");
}
else
{
etm_ctx->trigger_percent = new_value;
}
}
command_print(cmd_ctx, "%i percent of the tracebuffer reserved for after the trigger", etm_ctx->trigger_percent);
return ERROR_OK;
}
int handle_etm_start_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
reg_t *etm_ctrl_reg;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
/* invalidate old tracing data */
arm7_9->etm_ctx->capture_status = TRACE_IDLE;
if (arm7_9->etm_ctx->trace_depth > 0)
{
free(arm7_9->etm_ctx->trace_data);
arm7_9->etm_ctx->trace_data = NULL;
}
arm7_9->etm_ctx->trace_depth = 0;
etm_ctrl_reg = &arm7_9->etm_ctx->reg_cache->reg_list[ETM_CTRL];
etm_get_reg(etm_ctrl_reg);
/* Clear programming bit (10), set port selection bit (11) */
buf_set_u32(etm_ctrl_reg->value, 10, 2, 0x2);
etm_store_reg(etm_ctrl_reg);
jtag_execute_queue();
etm_ctx->capture_driver->start_capture(etm_ctx);
return ERROR_OK;
}
int handle_etm_stop_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
reg_t *etm_ctrl_reg;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
etm_ctrl_reg = &arm7_9->etm_ctx->reg_cache->reg_list[ETM_CTRL];
etm_get_reg(etm_ctrl_reg);
/* Set programming bit (10), clear port selection bit (11) */
buf_set_u32(etm_ctrl_reg->value, 10, 2, 0x1);
etm_store_reg(etm_ctrl_reg);
jtag_execute_queue();
etm_ctx->capture_driver->stop_capture(etm_ctx);
return ERROR_OK;
}
int handle_etm_analyze_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
etm_context_t *etm_ctx;
int retval;
target = get_current_target(cmd_ctx);
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
if (!(etm_ctx = arm7_9->etm_ctx))
{
command_print(cmd_ctx, "current target doesn't have an ETM configured");
return ERROR_OK;
}
if ((retval = etmv1_analyze_trace(etm_ctx, cmd_ctx)) != ERROR_OK)
{
switch(retval)
{
case ERROR_ETM_ANALYSIS_FAILED:
command_print(cmd_ctx, "further analysis failed (corrupted trace data or just end of data");
break;
case ERROR_TRACE_INSTRUCTION_UNAVAILABLE:
command_print(cmd_ctx, "no instruction for current address available, analysis aborted");
break;
case ERROR_TRACE_IMAGE_UNAVAILABLE:
command_print(cmd_ctx, "no image available for trace analysis");
break;
default:
command_print(cmd_ctx, "unknown error: %i", retval);
}
}
return ERROR_OK;
}
int etm_register_commands(struct command_context_s *cmd_ctx)
{
etm_cmd = register_command(cmd_ctx, NULL, "etm", NULL, COMMAND_ANY, "Embedded Trace Macrocell");
register_command(cmd_ctx, etm_cmd, "config", handle_etm_config_command, COMMAND_CONFIG, "etm config <target> <port_width> <port_mode> <clocking> <capture_driver>");
return ERROR_OK;
}
int etm_register_user_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, etm_cmd, "tracemode", handle_etm_tracemode_command,
COMMAND_EXEC, "configure trace mode <none|data|address|all> <context id bits> <cycle accurate> <branch output");
register_command(cmd_ctx, etm_cmd, "info", handle_etm_info_command,
COMMAND_EXEC, "display info about the current target's ETM");
register_command(cmd_ctx, etm_cmd, "trigger_percent <percent>", handle_etm_trigger_percent_command,
COMMAND_EXEC, "amount (<percent>) of trace buffer to be filled after the trigger occured");
register_command(cmd_ctx, etm_cmd, "status", handle_etm_status_command,
COMMAND_EXEC, "display current target's ETM status");
register_command(cmd_ctx, etm_cmd, "start", handle_etm_start_command,
COMMAND_EXEC, "start ETM trace collection");
register_command(cmd_ctx, etm_cmd, "stop", handle_etm_stop_command,
COMMAND_EXEC, "stop ETM trace collection");
register_command(cmd_ctx, etm_cmd, "analyze", handle_etm_analyze_command,
COMMAND_EXEC, "anaylze collected ETM trace");
register_command(cmd_ctx, etm_cmd, "image", handle_etm_image_command,
COMMAND_EXEC, "load image from <file> [base address]");
register_command(cmd_ctx, etm_cmd, "dump", handle_etm_dump_command,
COMMAND_EXEC, "dump captured trace data <file>");
register_command(cmd_ctx, etm_cmd, "load", handle_etm_load_command,
COMMAND_EXEC, "load trace data for analysis <file>");
return ERROR_OK;
}