openocd/src/target/arm_adi_v5.c

1604 lines
42 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2009-2010 by David Brownell *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/**
* @file
* This file implements support for the ARM Debug Interface version 5 (ADIv5)
* debugging architecture. Compared with previous versions, this includes
* a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
* transport, and focusses on memory mapped resources as defined by the
* CoreSight architecture.
*
* A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
* basic components: a Debug Port (DP) transporting messages to and from a
* debugger, and an Access Port (AP) accessing resources. Three types of DP
* are defined. One uses only JTAG for communication, and is called JTAG-DP.
* One uses only SWD for communication, and is called SW-DP. The third can
* use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
* is used to access memory mapped resources and is called a MEM-AP. Also a
* JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
*
* This programming interface allows DAP pipelined operations through a
* transaction queue. This primarily affects AP operations (such as using
* a MEM-AP to access memory or registers). If the current transaction has
* not finished by the time the next one must begin, and the ORUNDETECT bit
* is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
* further AP operations will fail. There are two basic methods to avoid
* such overrun errors. One involves polling for status instead of using
* transaction piplining. The other involves adding delays to ensure the
* AP has enough time to complete one operation before starting the next
* one. (For JTAG these delays are controlled by memaccess_tck.)
*/
/*
* Relevant specifications from ARM include:
*
* ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
* CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
*
* CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
* Cortex-M3(tm) TRM, ARM DDI 0337G
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm.h"
#include "arm_adi_v5.h"
#include <helper/time_support.h>
/* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
/*
uint32_t tar_block_size(uint32_t address)
Return the largest block starting at address that does not cross a tar block size alignment boundary
*/
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
}
/***************************************************************************
* *
* DP and MEM-AP register access through APACC and DPACC *
* *
***************************************************************************/
/**
* Select one of the APs connected to the specified DAP. The
* selection is implicitly used with future AP transactions.
* This is a NOP if the specified AP is already selected.
*
* @param dap The DAP
* @param apsel Number of the AP to (implicitly) use with further
* transactions. This normally identifies a MEM-AP.
*/
void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
{
uint32_t select_apsel = (apsel << 24) & 0xFF000000;
if (select_apsel != dap->apsel)
{
dap->apsel = select_apsel;
/* Switching AP invalidates cached values.
* Values MUST BE UPDATED BEFORE AP ACCESS.
*/
dap->ap_bank_value = -1;
dap->ap_csw_value = -1;
dap->ap_tar_value = -1;
}
}
/**
* Queue transactions setting up transfer parameters for the
* currently selected MEM-AP.
*
* Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
* initiate data reads or writes using memory or peripheral addresses.
* If the CSW is configured for it, the TAR may be automatically
* incremented after each transfer.
*
* @todo Rename to reflect it being specifically a MEM-AP function.
*
* @param dap The DAP connected to the MEM-AP.
* @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
* matches the cached value, the register is not changed.
* @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
* matches the cached address, the register is not changed.
*
* @return ERROR_OK if the transaction was properly queued, else a fault code.
*/
int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
{
int retval;
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
if (csw != dap->ap_csw_value)
{
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
if (retval != ERROR_OK)
return retval;
dap->ap_csw_value = csw;
}
if (tar != dap->ap_tar_value)
{
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
if (retval != ERROR_OK)
return retval;
dap->ap_tar_value = tar;
}
/* Disable TAR cache when autoincrementing */
if (csw & CSW_ADDRINC_MASK)
dap->ap_tar_value = -1;
return ERROR_OK;
}
/**
* Asynchronous (queued) read of a word from memory or a system register.
*
* @param dap The DAP connected to the MEM-AP performing the read.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the word will be stored when the
* transaction queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t *value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when reading several consecutive addresses.
*/
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
}
/**
* Synchronous read of a word from memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param dap The DAP connected to the MEM-AP performing the read.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the result will be stored.
*
* @return ERROR_OK for success; *value holds the result.
* Otherwise a fault code.
*/
int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t *value)
{
int retval;
retval = mem_ap_read_u32(dap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
/**
* Asynchronous (queued) write of a word to memory or a system register.
*
* @param dap The DAP connected to the MEM-AP.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written to the address when transaction
* queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when writing several consecutive addresses.
*/
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
value);
}
/**
* Synchronous write of a word to memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param dap The DAP connected to the MEM-AP.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written.
*
* @return ERROR_OK for success; the data was written. Otherwise a fault code.
*/
int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t value)
{
int retval = mem_ap_write_u32(dap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
/*****************************************************************************
* *
* mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
* *
* Write a buffer in target order (little endian) *
* *
*****************************************************************************/
int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
{
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t* pBuffer = buffer;
count >>= 2;
wcount = count;
/* if we have an unaligned access - reorder data */
if (adr & 0x3u)
{
for (writecount = 0; writecount < count; writecount++)
{
int i;
uint32_t outvalue;
memcpy(&outvalue, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++)
{
*((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
outvalue >>= 8;
adr++;
}
pBuffer += sizeof(uint32_t);
}
}
while (wcount > 0)
{
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
for (writecount = 0; writecount < blocksize; writecount++)
{
retval = dap_queue_ap_write(dap, AP_REG_DRW,
*(uint32_t *) (buffer + 4 * writecount));
if (retval != ERROR_OK)
break;
}
if (dap_run(dap) == ERROR_OK)
{
wcount = wcount - blocksize;
address = address + 4 * blocksize;
buffer = buffer + 4 * blocksize;
}
else
{
errorcount++;
}
if (errorcount > 1)
{
LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
/* REVISIT return the *actual* fault code */
return ERROR_JTAG_DEVICE_ERROR;
}
}
return retval;
}
static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
wcount = count >> 1;
while (wcount > 0)
{
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
writecount = blocksize;
do
{
nbytes = MIN((writecount << 1), 4);
if (nbytes < 4)
{
if (mem_ap_write_buf_u16(dap, buffer,
nbytes, address) != ERROR_OK)
{
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
address += nbytes >> 1;
}
else
{
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
if (dap_run(dap) != ERROR_OK)
{
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
/* REVISIT return *actual* fault code */
return ERROR_JTAG_DEVICE_ERROR;
}
}
buffer += nbytes >> 1;
writecount -= nbytes >> 1;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
while (count > 0)
{
dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
uint16_t svalue;
memcpy(&svalue, buffer, sizeof(uint16_t));
uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count -= 2;
address += 2;
buffer += 2;
}
return retval;
}
static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
wcount = count;
while (wcount > 0)
{
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
writecount = blocksize;
do
{
nbytes = MIN(writecount, 4);
if (nbytes < 4)
{
if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
{
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
address += nbytes;
}
else
{
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
if (dap_run(dap) != ERROR_OK)
{
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
/* REVISIT return *actual* fault code */
return ERROR_JTAG_DEVICE_ERROR;
}
}
buffer += nbytes;
writecount -= nbytes;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
while (count > 0)
{
dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count--;
address++;
buffer++;
}
return retval;
}
/* FIXME don't import ... this is a temporary workaround for the
* mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
*/
extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
uint8_t instr, uint8_t reg_addr, uint8_t RnW,
uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
/**
* Synchronously read a block of 32-bit words into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the words will be stored (in host byte order).
* @param count How many words to read.
* @param address Memory address from which to read words; all the
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t* pBuffer = buffer;
count >>= 2;
wcount = count;
while (wcount > 0)
{
/* Adjust to read blocks within boundaries aligned to the
* TAR autoincrement size (at least 2^10). Autoincrement
* mode avoids an extra per-word roundtrip to update TAR.
*/
blocksize = max_tar_block_size(dap->tar_autoincr_block,
address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
address);
/* FIXME remove these three calls to adi_jtag_dp_scan(),
* so this routine becomes transport-neutral. Be careful
* not to cause performance problems with JTAG; would it
* suffice to loop over dap_queue_ap_read(), or would that
* be slower when JTAG is the chosen transport?
*/
/* Scan out first read */
retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
DPAP_READ, 0, NULL, NULL);
if (retval != ERROR_OK)
return retval;
for (readcount = 0; readcount < blocksize - 1; readcount++)
{
/* Scan out next read; scan in posted value for the
* previous one. Assumes read is acked "OK/FAULT",
* and CTRL_STAT says that meant "OK".
*/
retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
DPAP_READ, 0, buffer + 4 * readcount,
&dap->ack);
if (retval != ERROR_OK)
return retval;
}
/* Scan in last posted value; RDBUFF has no other effect,
* assuming ack is OK/FAULT and CTRL_STAT says "OK".
*/
retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
DPAP_READ, 0, buffer + 4 * readcount,
&dap->ack);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
{
errorcount++;
if (errorcount <= 1)
{
/* try again */
continue;
}
LOG_WARNING("Block read error address 0x%" PRIx32, address);
return retval;
}
wcount = wcount - blocksize;
address += 4 * blocksize;
buffer += 4 * blocksize;
}
/* if we have an unaligned access - reorder data */
if (adr & 0x3u)
{
for (readcount = 0; readcount < count; readcount++)
{
int i;
uint32_t data;
memcpy(&data, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++)
{
*((uint8_t*)pBuffer) =
(data >> 8 * (adr & 0x3));
pBuffer++;
adr++;
}
}
}
return retval;
}
static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count >> 1;
while (wcount > 0)
{
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
readcount = blocksize;
do
{
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (dap_run(dap) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
/* REVISIT return the *actual* fault code */
return ERROR_JTAG_DEVICE_ERROR;
}
nbytes = MIN((readcount << 1), 4);
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= (nbytes >> 1);
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of 16-bit halfwords into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the halfwords will be stored (in host byte order).
* @param count How many halfwords to read.
* @param address Memory address from which to read words; all the
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
uint32_t invalue, i;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
while (count > 0)
{
dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
if (address & 0x1)
{
for (i = 0; i < 2; i++)
{
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
}
else
{
uint16_t svalue = (invalue >> 8 * (address & 0x3));
memcpy(buffer, &svalue, sizeof(uint16_t));
address += 2;
buffer += 2;
}
count -= 2;
}
return retval;
}
/* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
* roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
*
* The solution is to arrange for a large out/in scan in this loop and
* and convert data afterwards.
*/
static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count;
while (wcount > 0)
{
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
readcount = blocksize;
do
{
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (dap_run(dap) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
/* REVISIT return the *actual* fault code */
return ERROR_JTAG_DEVICE_ERROR;
}
nbytes = MIN(readcount, 4);
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= nbytes;
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of bytes into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the bytes will be stored.
* @param count How many bytes to read.
* @param address Memory address from which to read data; all the
* data must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
while (count > 0)
{
dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
count--;
address++;
buffer++;
}
return retval;
}
/*--------------------------------------------------------------------------*/
/* FIXME don't import ... just initialize as
* part of DAP transport setup
*/
extern const struct dap_ops jtag_dp_ops;
/*--------------------------------------------------------------------------*/
/**
* Initialize a DAP. This sets up the power domains, prepares the DP
* for further use, and arranges to use AP #0 for all AP operations
* until dap_ap-select() changes that policy.
*
* @param dap The DAP being initialized.
*
* @todo Rename this. We also need an initialization scheme which account
* for SWD transports not just JTAG; that will need to address differences
* in layering. (JTAG is useful without any debug target; but not SWD.)
* And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
*/
int ahbap_debugport_init(struct adiv5_dap *dap)
{
uint32_t idreg, romaddr, dummy;
uint32_t ctrlstat;
int cnt = 0;
int retval;
LOG_DEBUG(" ");
/* JTAG-DP or SWJ-DP, in JTAG mode */
dap->ops = &jtag_dp_ops;
/* Default MEM-AP setup.
*
* REVISIT AP #0 may be an inappropriate default for this.
* Should we probe, or take a hint from the caller?
* Presumably we can ignore the possibility of multiple APs.
*/
dap->apsel = !0;
dap_ap_select(dap, 0);
/* DP initialization */
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
if (retval != ERROR_OK)
return retval;
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
if ((retval = dap_run(dap)) != ERROR_OK)
return retval;
/* Check that we have debug power domains activated */
while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
{
LOG_DEBUG("DAP: wait CDBGPWRUPACK");
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
if ((retval = dap_run(dap)) != ERROR_OK)
return retval;
alive_sleep(10);
}
while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
{
LOG_DEBUG("DAP: wait CSYSPWRUPACK");
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
if ((retval = dap_run(dap)) != ERROR_OK)
return retval;
alive_sleep(10);
}
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
if (retval != ERROR_OK)
return retval;
/* With debug power on we can activate OVERRUN checking */
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
if (retval != ERROR_OK)
return retval;
/*
* REVISIT this isn't actually *initializing* anything in an AP,
* and doesn't care if it's a MEM-AP at all (much less AHB-AP).
* Should it? If the ROM address is valid, is this the right
* place to scan the table and do any topology detection?
*/
retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
if ((retval = dap_run(dap)) != ERROR_OK)
return retval;
LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
", Debug ROM Address 0x%" PRIx32,
dap->apsel, idreg, romaddr);
return ERROR_OK;
}
/* CID interpretation -- see ARM IHI 0029B section 3
* and ARM IHI 0031A table 13-3.
*/
static const char *class_description[16] ={
"Reserved", "ROM table", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
"Reserved", "OptimoDE DESS",
"Generic IP component", "PrimeCell or System component"
};
static bool
is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
{
return cid3 == 0xb1 && cid2 == 0x05
&& ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
}
static int dap_info_command(struct command_context *cmd_ctx,
struct adiv5_dap *dap, int apsel)
{
int retval;
uint32_t dbgbase, apid;
int romtable_present = 0;
uint8_t mem_ap;
uint32_t apselold;
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_INVALID_ARGUMENTS;
apselold = dap->apsel;
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
if (apid)
{
switch (apid&0x0F)
{
case 0:
command_print(cmd_ctx, "\tType is JTAG-AP");
break;
case 1:
command_print(cmd_ctx, "\tType is MEM-AP AHB");
break;
case 2:
command_print(cmd_ctx, "\tType is MEM-AP APB");
break;
default:
command_print(cmd_ctx, "\tUnknown AP type");
break;
}
/* NOTE: a MEM-AP may have a single CoreSight component that's
* not a ROM table ... or have no such components at all.
*/
if (mem_ap)
command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
dbgbase);
}
else
{
command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
}
romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
if (romtable_present)
{
uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
uint16_t entry_offset;
/* bit 16 of apid indicates a memory access port */
if (dbgbase & 0x02)
command_print(cmd_ctx, "\tValid ROM table present");
else
command_print(cmd_ctx, "\tROM table in legacy format");
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\tCID3 0x%2.2x"
", CID2 0x%2.2x"
", CID1 0x%2.2x"
", CID0 0x%2.2x",
(unsigned) cid3, (unsigned)cid2,
(unsigned) cid1, (unsigned) cid0);
if (memtype & 0x01)
command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
else
command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
"Dedicated debug bus.");
/* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
entry_offset = 0;
do
{
mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
if (romentry&0x01)
{
uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
uint32_t component_base;
unsigned part_num;
char *type, *full;
component_base = (dbgbase & 0xFFFFF000)
+ (romentry & 0xFFFFF000);
/* IDs are in last 4K section */
mem_ap_read_atomic_u32(dap,
component_base + 0xFE0, &c_pid0);
c_pid0 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFE4, &c_pid1);
c_pid1 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFE8, &c_pid2);
c_pid2 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFEC, &c_pid3);
c_pid3 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFD0, &c_pid4);
c_pid4 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFF0, &c_cid0);
c_cid0 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFF4, &c_cid1);
c_cid1 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFF8, &c_cid2);
c_cid2 &= 0xff;
mem_ap_read_atomic_u32(dap,
component_base + 0xFFC, &c_cid3);
c_cid3 &= 0xff;
command_print(cmd_ctx,
"\t\tComponent base address 0x%" PRIx32
", start address 0x%" PRIx32,
component_base,
/* component may take multiple 4K pages */
component_base - 0x1000*(c_pid4 >> 4));
command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
(int) (c_cid1 >> 4) & 0xf,
/* See ARM IHI 0029B Table 3-3 */
class_description[(c_cid1 >> 4) & 0xf]);
/* CoreSight component? */
if (((c_cid1 >> 4) & 0x0f) == 9) {
uint32_t devtype;
unsigned minor;
char *major = "Reserved", *subtype = "Reserved";
mem_ap_read_atomic_u32(dap,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
minor = (devtype >> 4) & 0x0f;
switch (devtype & 0x0f) {
case 0:
major = "Miscellaneous";
switch (minor) {
case 0:
subtype = "other";
break;
case 4:
subtype = "Validation component";
break;
}
break;
case 1:
major = "Trace Sink";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Port";
break;
case 2:
subtype = "Buffer";
break;
}
break;
case 2:
major = "Trace Link";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Funnel, router";
break;
case 2:
subtype = "Filter";
break;
case 3:
subtype = "FIFO, buffer";
break;
}
break;
case 3:
major = "Trace Source";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
}
break;
case 4:
major = "Debug Control";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Trigger Matrix";
break;
case 2:
subtype = "Debug Auth";
break;
}
break;
case 5:
major = "Debug Logic";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
}
break;
}
command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
(unsigned) (devtype & 0xff),
major, subtype);
/* REVISIT also show 0xfc8 DevId */
}
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx,
"\t\tCID3 0%2.2x"
", CID2 0%2.2x"
", CID1 0%2.2x"
", CID0 0%2.2x",
(int) c_cid3,
(int) c_cid2,
(int)c_cid1,
(int)c_cid0);
command_print(cmd_ctx,
"\t\tPeripheral ID[4..0] = hex "
"%2.2x %2.2x %2.2x %2.2x %2.2x",
(int) c_pid4, (int) c_pid3, (int) c_pid2,
(int) c_pid1, (int) c_pid0);
/* Part number interpretations are from Cortex
* core specs, the CoreSight components TRM
* (ARM DDI 0314H), and ETM specs; also from
* chip observation (e.g. TI SDTI).
*/
part_num = (c_pid0 & 0xff);
part_num |= (c_pid1 & 0x0f) << 8;
switch (part_num) {
case 0x000:
type = "Cortex-M3 NVIC";
full = "(Interrupt Controller)";
break;
case 0x001:
type = "Cortex-M3 ITM";
full = "(Instrumentation Trace Module)";
break;
case 0x002:
type = "Cortex-M3 DWT";
full = "(Data Watchpoint and Trace)";
break;
case 0x003:
type = "Cortex-M3 FBP";
full = "(Flash Patch and Breakpoint)";
break;
case 0x00d:
type = "CoreSight ETM11";
full = "(Embedded Trace)";
break;
// case 0x113: what?
case 0x120: /* from OMAP3 memmap */
type = "TI SDTI";
full = "(System Debug Trace Interface)";
break;
case 0x343: /* from OMAP3 memmap */
type = "TI DAPCTL";
full = "";
break;
case 0x906:
type = "Coresight CTI";
full = "(Cross Trigger)";
break;
case 0x907:
type = "Coresight ETB";
full = "(Trace Buffer)";
break;
case 0x908:
type = "Coresight CSTF";
full = "(Trace Funnel)";
break;
case 0x910:
type = "CoreSight ETM9";
full = "(Embedded Trace)";
break;
case 0x912:
type = "Coresight TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x921:
type = "Cortex-A8 ETM";
full = "(Embedded Trace)";
break;
case 0x922:
type = "Cortex-A8 CTI";
full = "(Cross Trigger)";
break;
case 0x923:
type = "Cortex-M3 TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x924:
type = "Cortex-M3 ETM";
full = "(Embedded Trace)";
break;
case 0xc08:
type = "Cortex-A8 Debug";
full = "(Debug Unit)";
break;
default:
type = "-*- unrecognized -*-";
full = "";
break;
}
command_print(cmd_ctx, "\t\tPart is %s %s",
type, full);
}
else
{
if (romentry)
command_print(cmd_ctx, "\t\tComponent not present");
else
command_print(cmd_ctx, "\t\tEnd of ROM table");
}
entry_offset += 4;
} while (romentry > 0);
}
else
{
command_print(cmd_ctx, "\tNo ROM table present");
}
dap_ap_select(dap, apselold);
return ERROR_OK;
}
COMMAND_HANDLER(handle_dap_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return dap_info_command(CMD_CTX, dap, apsel);
}
COMMAND_HANDLER(dap_baseaddr_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apselsave, baseaddr;
int retval;
apselsave = dap->apsel;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_INVALID_ARGUMENTS;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (apselsave != apsel)
dap_ap_select(dap, apsel);
/* NOTE: assumes we're talking to a MEM-AP, which
* has a base address. There are other kinds of AP,
* though they're not common for now. This should
* use the ID register to verify it's a MEM-AP.
*/
retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
if (apselsave != apsel)
dap_ap_select(dap, apselsave);
return retval;
}
COMMAND_HANDLER(dap_memaccess_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t memaccess_tck;
switch (CMD_ARGC) {
case 0:
memaccess_tck = dap->memaccess_tck;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->memaccess_tck = memaccess_tck;
command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
dap->memaccess_tck);
return ERROR_OK;
}
COMMAND_HANDLER(dap_apsel_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = 0;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_INVALID_ARGUMENTS;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
apsel, apid);
return retval;
}
COMMAND_HANDLER(dap_apid_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apselsave, apid;
int retval;
apselsave = dap->apsel;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_INVALID_ARGUMENTS;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (apselsave != apsel)
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
if (apselsave != apsel)
dap_ap_select(dap, apselsave);
return retval;
}
static const struct command_registration dap_commands[] = {
{
.name = "info",
.handler = handle_dap_info_command,
.mode = COMMAND_EXEC,
.help = "display ROM table for MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "apsel",
.handler = dap_apsel_command,
.mode = COMMAND_EXEC,
.help = "Set the currently selected AP (default 0) "
"and display the result",
.usage = "[ap_num]",
},
{
.name = "apid",
.handler = dap_apid_command,
.mode = COMMAND_EXEC,
.help = "return ID register from AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "baseaddr",
.handler = dap_baseaddr_command,
.mode = COMMAND_EXEC,
.help = "return debug base address from MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "memaccess",
.handler = dap_memaccess_command,
.mode = COMMAND_EXEC,
.help = "set/get number of extra tck for MEM-AP memory "
"bus access [0-255]",
.usage = "[cycles]",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration dap_command_handlers[] = {
{
.name = "dap",
.mode = COMMAND_EXEC,
.help = "DAP command group",
.chain = dap_commands,
},
COMMAND_REGISTRATION_DONE
};