openocd/src/flash/nor/renesas_rpchf.c
Antonio Borneo c3d3487d61 openocd: src: fix incorrect SPDX tags
The SPDX tag is aimed at machine handling and it's thus expected
to be placed in the first line in specific format.

Move the SPDX tag to the first line and fix it where needed.

The SPDX tag on files *.c is incorrect, as it should use the C99
single line comment using '//'. But current checkpatch doesn't
allow C99 comments, so keep using standard C comments, by now.

Change-Id: Ie9a05f530009d482a4116eebd147fd7e1ee3d41e
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/7066
Tested-by: jenkins
2022-07-23 13:16:09 +00:00

648 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Renesas RCar Gen3 RPC Hyperflash driver
* Based on U-Boot RPC Hyperflash driver
*
* Copyright (C) 2016 Renesas Electronics Corporation
* Copyright (C) 2016 Cogent Embedded, Inc.
* Copyright (C) 2017-2019 Marek Vasut <marek.vasut@gmail.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "cfi.h"
#include "non_cfi.h"
#include <helper/binarybuffer.h>
#include <helper/bits.h>
#include <helper/time_support.h>
#define RPC_CMNCR 0x0000 /* R/W */
#define RPC_CMNCR_MD BIT(31)
#define RPC_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPC_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPC_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPC_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPC_CMNCR_MOIIO_HIZ (RPC_CMNCR_MOIIO0(3) | RPC_CMNCR_MOIIO1(3) | \
RPC_CMNCR_MOIIO2(3) | RPC_CMNCR_MOIIO3(3))
#define RPC_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPC_CMNCR_IO2FV(val) (((val) & 0x3) << 12)
#define RPC_CMNCR_IO3FV(val) (((val) & 0x3) << 14)
#define RPC_CMNCR_IOFV_HIZ (RPC_CMNCR_IO0FV(3) | RPC_CMNCR_IO2FV(3) | \
RPC_CMNCR_IO3FV(3))
#define RPC_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPC_SSLDR 0x0004 /* R/W */
#define RPC_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPC_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPC_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPC_DRCR 0x000C /* R/W */
#define RPC_DRCR_SSLN BIT(24)
#define RPC_DRCR_RBURST(v) (((v) & 0x1F) << 16)
#define RPC_DRCR_RCF BIT(9)
#define RPC_DRCR_RBE BIT(8)
#define RPC_DRCR_SSLE BIT(0)
#define RPC_DRCMR 0x0010 /* R/W */
#define RPC_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_DREAR 0x0014 /* R/W */
#define RPC_DREAR_EAV(v) (((v) & 0xFF) << 16)
#define RPC_DREAR_EAC(v) (((v) & 0x7) << 0)
#define RPC_DROPR 0x0018 /* R/W */
#define RPC_DROPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_DROPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_DROPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_DROPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_DRENR 0x001C /* R/W */
#define RPC_DRENR_CDB(o) (uint32_t)((((o) & 0x3) << 30))
#define RPC_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_DRENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_DRENR_DME BIT(15)
#define RPC_DRENR_CDE BIT(14)
#define RPC_DRENR_OCDE BIT(12)
#define RPC_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMCR 0x0020 /* R/W */
#define RPC_SMCR_SSLKP BIT(8)
#define RPC_SMCR_SPIRE BIT(2)
#define RPC_SMCR_SPIWE BIT(1)
#define RPC_SMCR_SPIE BIT(0)
#define RPC_SMCMR 0x0024 /* R/W */
#define RPC_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_SMADR 0x0028 /* R/W */
#define RPC_SMOPR 0x002C /* R/W */
#define RPC_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_SMENR 0x0030 /* R/W */
#define RPC_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPC_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_SMENR_DME BIT(15)
#define RPC_SMENR_CDE BIT(14)
#define RPC_SMENR_OCDE BIT(12)
#define RPC_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPC_SMRDR0 0x0038 /* R */
#define RPC_SMRDR1 0x003C /* R */
#define RPC_SMWDR0 0x0040 /* R/W */
#define RPC_SMWDR1 0x0044 /* R/W */
#define RPC_CMNSR 0x0048 /* R */
#define RPC_CMNSR_SSLF BIT(1)
#define RPC_CMNSR_TEND BIT(0)
#define RPC_DRDMCR 0x0058 /* R/W */
#define RPC_DRDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_DRDRENR 0x005C /* R/W */
#define RPC_DRDRENR_HYPE (0x5 << 12)
#define RPC_DRDRENR_ADDRE BIT(8)
#define RPC_DRDRENR_OPDRE BIT(4)
#define RPC_DRDRENR_DRDRE BIT(0)
#define RPC_SMDMCR 0x0060 /* R/W */
#define RPC_SMDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_SMDRENR 0x0064 /* R/W */
#define RPC_SMDRENR_HYPE (0x5 << 12)
#define RPC_SMDRENR_ADDRE BIT(8)
#define RPC_SMDRENR_OPDRE BIT(4)
#define RPC_SMDRENR_SPIDRE BIT(0)
#define RPC_PHYCNT 0x007C /* R/W */
#define RPC_PHYCNT_CAL BIT(31)
#define PRC_PHYCNT_OCTA_AA BIT(22)
#define PRC_PHYCNT_OCTA_SA BIT(23)
#define PRC_PHYCNT_EXDS BIT(21)
#define RPC_PHYCNT_OCT BIT(20)
#define RPC_PHYCNT_WBUF2 BIT(4)
#define RPC_PHYCNT_WBUF BIT(2)
#define RPC_PHYCNT_MEM(v) (((v) & 0x3) << 0)
#define RPC_PHYINT 0x0088 /* R/W */
#define RPC_PHYINT_RSTEN BIT(18)
#define RPC_PHYINT_WPEN BIT(17)
#define RPC_PHYINT_INTEN BIT(16)
#define RPC_PHYINT_RST BIT(2)
#define RPC_PHYINT_WP BIT(1)
#define RPC_PHYINT_INT BIT(0)
#define RPC_WBUF 0x8000 /* R/W size=4/8/16/32/64Bytes */
#define RPC_WBUF_SIZE 0x100
static uint32_t rpc_base = 0xee200000;
static uint32_t mem_base = 0x08000000;
enum rpc_hf_size {
RPC_HF_SIZE_16BIT = RPC_SMENR_SPIDE(0x8),
RPC_HF_SIZE_32BIT = RPC_SMENR_SPIDE(0xC),
RPC_HF_SIZE_64BIT = RPC_SMENR_SPIDE(0xF),
};
static int rpc_hf_wait_tend(struct target *target)
{
uint32_t reg = rpc_base + RPC_CMNSR;
uint32_t val;
unsigned long timeout = 1000;
long long endtime;
int ret;
endtime = timeval_ms() + timeout;
do {
ret = target_read_u32(target, reg, &val);
if (ret != ERROR_OK)
return ERROR_FAIL;
if (val & RPC_CMNSR_TEND)
return ERROR_OK;
alive_sleep(1);
} while (timeval_ms() < endtime);
LOG_ERROR("timeout");
return ERROR_TIMEOUT_REACHED;
}
static int clrsetbits_u32(struct target *target, uint32_t reg,
uint32_t clr, uint32_t set)
{
uint32_t val;
int ret;
ret = target_read_u32(target, reg, &val);
if (ret != ERROR_OK)
return ret;
val &= ~clr;
val |= set;
return target_write_u32(target, reg, val);
}
static int rpc_hf_mode(struct target *target, bool manual)
{
uint32_t val;
int ret;
ret = rpc_hf_wait_tend(target);
if (ret != ERROR_OK) {
LOG_ERROR("Mode TEND timeout");
return ret;
}
ret = clrsetbits_u32(target, rpc_base + RPC_PHYCNT,
RPC_PHYCNT_WBUF | RPC_PHYCNT_WBUF2 |
RPC_PHYCNT_CAL | RPC_PHYCNT_MEM(3),
RPC_PHYCNT_CAL | RPC_PHYCNT_MEM(3));
if (ret != ERROR_OK)
return ret;
ret = clrsetbits_u32(target, rpc_base + RPC_CMNCR,
RPC_CMNCR_MD | RPC_CMNCR_BSZ(3),
RPC_CMNCR_MOIIO_HIZ | RPC_CMNCR_IOFV_HIZ |
(manual ? RPC_CMNCR_MD : 0) | RPC_CMNCR_BSZ(1));
if (ret != ERROR_OK)
return ret;
if (manual)
return ERROR_OK;
ret = target_write_u32(target, rpc_base + RPC_DRCR,
RPC_DRCR_RBURST(0x1F) | RPC_DRCR_RCF |
RPC_DRCR_RBE);
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_DRCMR,
RPC_DRCMR_CMD(0xA0));
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_DRENR,
RPC_DRENR_CDB(2) | RPC_DRENR_OCDB(2) |
RPC_DRENR_ADB(2) | RPC_DRENR_SPIDB(2) |
RPC_DRENR_CDE | RPC_DRENR_OCDE |
RPC_DRENR_ADE(4));
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_DRDMCR,
RPC_DRDMCR_DMCYC(0xE));
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_DRDRENR,
RPC_DRDRENR_HYPE | RPC_DRDRENR_ADDRE |
RPC_DRDRENR_DRDRE);
if (ret != ERROR_OK)
return ret;
/* Dummy read */
return target_read_u32(target, rpc_base + RPC_DRCR, &val);
}
static int rpc_hf_xfer(struct target *target, target_addr_t addr,
uint32_t wdata, uint32_t *rdata, enum rpc_hf_size size,
bool write, const uint8_t *wbuf, unsigned int wbuf_size)
{
int ret;
uint32_t val;
if (wbuf_size != 0) {
ret = rpc_hf_wait_tend(target);
if (ret != ERROR_OK) {
LOG_ERROR("Xfer TEND timeout");
return ret;
}
/* Write calibration magic */
ret = target_write_u32(target, rpc_base + RPC_DRCR, 0x01FF0301);
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_PHYCNT, 0x80030277);
if (ret != ERROR_OK)
return ret;
ret = target_write_memory(target, rpc_base | RPC_WBUF, 4,
wbuf_size / 4, wbuf);
if (ret != ERROR_OK)
return ret;
ret = clrsetbits_u32(target, rpc_base + RPC_CMNCR,
RPC_CMNCR_MD | RPC_CMNCR_BSZ(3),
RPC_CMNCR_MOIIO_HIZ | RPC_CMNCR_IOFV_HIZ |
RPC_CMNCR_MD | RPC_CMNCR_BSZ(1));
if (ret != ERROR_OK)
return ret;
} else {
ret = rpc_hf_mode(target, 1);
if (ret != ERROR_OK)
return ret;
}
/* Submit HF address, SMCMR CMD[7] ~= CA Bit# 47 (R/nW) */
ret = target_write_u32(target, rpc_base + RPC_SMCMR,
write ? 0 : RPC_SMCMR_CMD(0x80));
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_SMADR,
addr >> 1);
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_SMOPR, 0x0);
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_SMDRENR,
RPC_SMDRENR_HYPE | RPC_SMDRENR_ADDRE |
RPC_SMDRENR_SPIDRE);
if (ret != ERROR_OK)
return ret;
val = RPC_SMENR_CDB(2) | RPC_SMENR_OCDB(2) |
RPC_SMENR_ADB(2) | RPC_SMENR_SPIDB(2) |
(wbuf_size ? RPC_SMENR_OPDB(2) : 0) |
RPC_SMENR_CDE | RPC_SMENR_OCDE | RPC_SMENR_ADE(4) | size;
if (write) {
ret = target_write_u32(target, rpc_base + RPC_SMENR, val);
if (ret != ERROR_OK)
return ret;
if (wbuf_size == 0) {
buf_bswap32((uint8_t *)&wdata, (uint8_t *)&wdata, 4);
ret = target_write_u32(target, rpc_base + RPC_SMWDR0,
wdata);
if (ret != ERROR_OK)
return ret;
}
ret = target_write_u32(target, rpc_base + RPC_SMCR,
RPC_SMCR_SPIWE | RPC_SMCR_SPIE);
if (ret != ERROR_OK)
return ret;
} else {
val |= RPC_SMENR_DME;
ret = target_write_u32(target, rpc_base + RPC_SMDMCR,
RPC_SMDMCR_DMCYC(0xE));
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_SMENR, val);
if (ret != ERROR_OK)
return ret;
ret = target_write_u32(target, rpc_base + RPC_SMCR,
RPC_SMCR_SPIRE | RPC_SMCR_SPIE);
if (ret != ERROR_OK)
return ret;
ret = rpc_hf_wait_tend(target);
if (ret != ERROR_OK)
return ret;
uint32_t val32;
ret = target_read_u32(target, rpc_base + RPC_SMRDR0, &val32);
if (ret != ERROR_OK)
return ret;
buf_bswap32((uint8_t *)&val32, (uint8_t *)&val32, 4);
*rdata = val32;
}
ret = rpc_hf_mode(target, 0);
if (ret != ERROR_OK)
LOG_ERROR("Xfer done TEND timeout");
return ret;
}
static int rpchf_target_write_memory(struct flash_bank *bank, target_addr_t addr,
uint32_t count, const uint8_t *buffer)
{
struct target *target = bank->target;
uint32_t wdata;
if (count != 2)
return ERROR_FAIL;
wdata = buffer[0] | (buffer[1] << 8);
return rpc_hf_xfer(target, addr, wdata, NULL, RPC_HF_SIZE_16BIT,
true, NULL, 0);
}
static int rpchf_target_read_memory(struct flash_bank *bank, target_addr_t addr,
uint32_t count, uint8_t *buffer)
{
struct target *target = bank->target;
uint32_t i, rdata;
int ret;
for (i = 0; i < count; i++) {
ret = rpc_hf_xfer(target, addr + (2 * i), 0, &rdata,
RPC_HF_SIZE_16BIT, false, NULL, 0);
if (ret != ERROR_OK)
return ret;
buffer[(2 * i) + 0] = rdata & 0xff;
buffer[(2 * i) + 1] = (rdata >> 8) & 0xff;
}
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(rpchf_flash_bank_command)
{
struct cfi_flash_bank *cfi_info;
int ret;
ret = cfi_flash_bank_cmd(bank, CMD_ARGC, CMD_ARGV);
if (ret != ERROR_OK)
return ret;
cfi_info = bank->driver_priv;
cfi_info->read_mem = rpchf_target_read_memory;
cfi_info->write_mem = rpchf_target_write_memory;
return ERROR_OK;
}
static int rpchf_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
uint32_t wordcount, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
/* Calculate buffer size and boundary mask
* buffersize is (buffer size per chip) * (number of chips)
* bufferwsize is buffersize in words */
uint32_t buffersize = RPC_WBUF_SIZE;
uint32_t buffermask = buffersize - 1;
uint32_t bufferwsize = buffersize / 2;
/* Check for valid range */
if (address & buffermask) {
LOG_ERROR("Write address at base " TARGET_ADDR_FMT
", address 0x%" PRIx32 " not aligned to 2^%d boundary",
bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check for valid size */
if (wordcount > bufferwsize) {
LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %"
PRIu32, wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Unlock */
retval = cfi_spansion_unlock_seq(bank);
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0xa0, cfi_flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = rpc_hf_xfer(bank->target, address, 0, NULL, RPC_HF_SIZE_64BIT, true, word, wordcount * 2);
if (retval != ERROR_OK)
return retval;
if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
bufferwsize);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int rpchf_write_words(struct flash_bank *bank, const uint8_t *word,
uint32_t wordcount, uint32_t address)
{
return rpchf_spansion_write_words(bank, word, wordcount, address);
}
static int rpchf_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
uint32_t address = bank->base + offset; /* address of first byte to be programmed */
uint32_t write_p;
int align; /* number of unaligned bytes */
uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
*programmed */
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
/* start at the first byte of the first word (bus_width size) */
write_p = address & ~(bank->bus_width - 1);
align = address - write_p;
if (align != 0) {
LOG_INFO("Fixup %d unaligned head bytes", align);
/* read a complete word from flash */
retval = cfi_target_read_memory(bank, write_p, 1, current_word);
if (retval != ERROR_OK)
return retval;
/* replace only bytes that must be written */
for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--) {
if (cfi_info->data_swap)
/* data bytes are swapped (reverse endianness) */
current_word[bank->bus_width - i] = *buffer++;
else
current_word[i] = *buffer++;
}
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
}
/* Calculate buffer size and boundary mask
* buffersize is (buffer size per chip) * (number of chips)
* bufferwsize is buffersize in words */
uint32_t buffersize = RPC_WBUF_SIZE;
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* fall back to memory writes */
while (count >= (uint32_t)bank->bus_width) {
bool fallback;
if ((write_p & 0xff) == 0) {
LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
PRIx32 " bytes remaining", write_p, count);
}
fallback = true;
if ((bufferwsize > 0) && (count >= buffersize) &&
!(write_p & buffermask)) {
retval = rpchf_write_words(bank, buffer, bufferwsize, write_p);
if (retval == ERROR_OK) {
buffer += buffersize;
write_p += buffersize;
count -= buffersize;
fallback = false;
} else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
return retval;
}
/* try the slow way? */
if (fallback) {
for (unsigned int i = 0; i < bank->bus_width; i++)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
count -= bank->bus_width;
}
}
/* return to read array mode, so we can read from flash again for padding */
retval = cfi_reset(bank);
if (retval != ERROR_OK)
return retval;
/* handle unaligned tail bytes */
if (count > 0) {
LOG_INFO("Fixup %" PRIu32 " unaligned tail bytes", count);
/* read a complete word from flash */
retval = cfi_target_read_memory(bank, write_p, 1, current_word);
if (retval != ERROR_OK)
return retval;
/* replace only bytes that must be written */
for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
if (cfi_info->data_swap)
/* data bytes are swapped (reverse endianness) */
current_word[bank->bus_width - i] = *buffer++;
else
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
}
/* return to read array mode */
return cfi_reset(bank);
}
static int rpchf_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
LOG_DEBUG("reading buffer of %" PRIu32 " byte at 0x%8.8" PRIx32,
count, offset);
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
return target_read_memory(target, offset | mem_base,
4, count / 4, buffer);
}
const struct flash_driver renesas_rpchf_flash = {
.name = "rpchf",
.flash_bank_command = rpchf_flash_bank_command,
.erase = cfi_erase,
.protect = cfi_protect,
.write = rpchf_write,
.read = rpchf_read,
.probe = cfi_probe,
.auto_probe = cfi_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = cfi_protect_check,
.info = cfi_get_info,
.free_driver_priv = default_flash_free_driver_priv,
};