openocd/src/flash/nand.c
Zachary T Welch ccae9ae020 nand: use register_commands()
Eliminates 'nand_cmd' global variable.
2009-11-24 21:37:34 -08:00

1794 lines
45 KiB
C

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Partially based on drivers/mtd/nand_ids.c from Linux. *
* Copyright (C) 2002 Thomas Gleixner <tglx@linutronix.de> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "nand.h"
#include "common.h"
#include "time_support.h"
#include "fileio.h"
static int nand_read_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size);
//static int nand_read_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size);
static int nand_write_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size);
/* NAND flash controller
*/
extern struct nand_flash_controller davinci_nand_controller;
extern struct nand_flash_controller lpc3180_nand_controller;
extern struct nand_flash_controller orion_nand_controller;
extern struct nand_flash_controller s3c2410_nand_controller;
extern struct nand_flash_controller s3c2412_nand_controller;
extern struct nand_flash_controller s3c2440_nand_controller;
extern struct nand_flash_controller s3c2443_nand_controller;
extern struct nand_flash_controller imx31_nand_flash_controller;
/* extern struct nand_flash_controller boundary_scan_nand_controller; */
static struct nand_flash_controller *nand_flash_controllers[] =
{
&davinci_nand_controller,
&lpc3180_nand_controller,
&orion_nand_controller,
&s3c2410_nand_controller,
&s3c2412_nand_controller,
&s3c2440_nand_controller,
&s3c2443_nand_controller,
&imx31_nand_flash_controller,
/* &boundary_scan_nand_controller, */
NULL
};
/* configured NAND devices and NAND Flash command handler */
static struct nand_device *nand_devices = NULL;
/* Chip ID list
*
* Name, ID code, pagesize, chipsize in MegaByte, eraseblock size,
* options
*
* Pagesize; 0, 256, 512
* 0 get this information from the extended chip ID
* 256 256 Byte page size
* 512 512 Byte page size
*/
static struct nand_info nand_flash_ids[] =
{
/* start "museum" IDs */
{"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
{"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0},
{"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0},
{"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0},
{"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0},
{"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
{"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
{"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
{"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
{"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
{"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
/* end "museum" IDs */
{"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
{"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
{"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
{"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
{"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
{"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
{"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
{"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
{"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0},
{"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
{"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS},
{"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS},
{"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16},
{"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16},
{"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS},
{"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS},
{"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16},
{"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16},
{"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS},
{"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS},
{"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16},
{"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16},
{"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS},
{"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS},
{"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16},
{"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16},
{"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS},
{"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS},
{"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16},
{"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16},
{"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS},
{"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS},
{"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16},
{"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16},
{NULL, 0, 0, 0, 0, 0 }
};
/* Manufacturer ID list
*/
static struct nand_manufacturer nand_manuf_ids[] =
{
{0x0, "unknown"},
{NAND_MFR_TOSHIBA, "Toshiba"},
{NAND_MFR_SAMSUNG, "Samsung"},
{NAND_MFR_FUJITSU, "Fujitsu"},
{NAND_MFR_NATIONAL, "National"},
{NAND_MFR_RENESAS, "Renesas"},
{NAND_MFR_STMICRO, "ST Micro"},
{NAND_MFR_HYNIX, "Hynix"},
{NAND_MFR_MICRON, "Micron"},
{0x0, NULL},
};
/*
* Define default oob placement schemes for large and small page devices
*/
#if 0
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2}}
};
#endif
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = {
{.offset = 8,
. length = 8}}
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 24,
.eccpos = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 2,
.length = 38}}
};
COMMAND_HANDLER(handle_nand_list_drivers)
{
command_print(CMD_CTX, "Available NAND flash controller drivers:");
for (unsigned i = 0; nand_flash_controllers[i]; i++)
command_print(CMD_CTX, " %s", nand_flash_controllers[i]->name);
return ERROR_OK;
}
static COMMAND_HELPER(create_nand_device, const char *bank_name,
struct nand_flash_controller *controller)
{
int retval = controller->register_commands(CMD_CTX);
if (ERROR_OK != retval)
{
LOG_ERROR("couldn't register '%s' commands", controller->name);
return retval;
}
struct nand_device *c = malloc(sizeof(struct nand_device));
c->name = strdup(bank_name);
c->controller = controller;
c->controller_priv = NULL;
c->manufacturer = NULL;
c->device = NULL;
c->bus_width = 0;
c->address_cycles = 0;
c->page_size = 0;
c->use_raw = 0;
c->next = NULL;
retval = CALL_COMMAND_HANDLER(controller->nand_device_command, c);
if (ERROR_OK != retval)
{
LOG_ERROR("'%s' driver rejected nand flash", controller->name);
free(c);
return ERROR_OK;
}
if (nand_devices) {
struct nand_device *p = nand_devices;
while (p && p->next) p = p->next;
p->next = c;
} else
nand_devices = c;
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_device_command)
{
if (CMD_ARGC < 1)
{
LOG_ERROR("incomplete nand device configuration");
return ERROR_FLASH_BANK_INVALID;
}
// save name and increment (for compatibility) with drivers
const char *bank_name = *CMD_ARGV++;
CMD_ARGC--;
const char *driver_name = CMD_ARGV[0];
for (unsigned i = 0; nand_flash_controllers[i]; i++)
{
struct nand_flash_controller *controller = nand_flash_controllers[i];
if (strcmp(driver_name, controller->name) != 0)
continue;
return CALL_COMMAND_HANDLER(create_nand_device,
bank_name, controller);
}
LOG_ERROR("No valid NAND flash driver found (%s)", driver_name);
return CALL_COMMAND_HANDLER(handle_nand_list_drivers);
}
static const struct command_registration nand_config_command_handlers[] = {
{
.name = "device",
.handler = &handle_nand_device_command,
.mode = COMMAND_CONFIG,
.help = "defines a new NAND bank",
},
{
.name = "drivers",
.handler = &handle_nand_list_drivers,
.mode = COMMAND_ANY,
.help = "lists available NAND drivers",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration nand_command_handlers[] = {
{
.name = "nand",
.mode = COMMAND_ANY,
.help = "NAND flash command group",
.chain = nand_config_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
int nand_register_commands(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, NULL, nand_command_handlers);
}
struct nand_device *get_nand_device_by_name(const char *name)
{
unsigned requested = get_flash_name_index(name);
unsigned found = 0;
struct nand_device *nand;
for (nand = nand_devices; NULL != nand; nand = nand->next)
{
if (strcmp(nand->name, name) == 0)
return nand;
if (!flash_driver_name_matches(nand->controller->name, name))
continue;
if (++found < requested)
continue;
return nand;
}
return NULL;
}
struct nand_device *get_nand_device_by_num(int num)
{
struct nand_device *p;
int i = 0;
for (p = nand_devices; p; p = p->next)
{
if (i++ == num)
{
return p;
}
}
return NULL;
}
COMMAND_HELPER(nand_command_get_device, unsigned name_index,
struct nand_device **nand)
{
const char *str = CMD_ARGV[name_index];
*nand = get_nand_device_by_name(str);
if (*nand)
return ERROR_OK;
unsigned num;
COMMAND_PARSE_NUMBER(uint, str, num);
*nand = get_nand_device_by_num(num);
if (!*nand) {
command_print(CMD_CTX, "NAND flash device '%s' not found", str);
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
static int nand_build_bbt(struct nand_device *nand, int first, int last)
{
uint32_t page = 0x0;
int i;
uint8_t oob[6];
if ((first < 0) || (first >= nand->num_blocks))
first = 0;
if ((last >= nand->num_blocks) || (last == -1))
last = nand->num_blocks - 1;
for (i = first; i < last; i++)
{
nand_read_page(nand, page, NULL, 0, oob, 6);
if (((nand->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff))
|| (((nand->page_size == 512) && (oob[5] != 0xff)) ||
((nand->page_size == 2048) && (oob[0] != 0xff))))
{
LOG_WARNING("bad block: %i", i);
nand->blocks[i].is_bad = 1;
}
else
{
nand->blocks[i].is_bad = 0;
}
page += (nand->erase_size / nand->page_size);
}
return ERROR_OK;
}
int nand_read_status(struct nand_device *nand, uint8_t *status)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
/* Send read status command */
nand->controller->command(nand, NAND_CMD_STATUS);
alive_sleep(1);
/* read status */
if (nand->device->options & NAND_BUSWIDTH_16)
{
uint16_t data;
nand->controller->read_data(nand, &data);
*status = data & 0xff;
}
else
{
nand->controller->read_data(nand, status);
}
return ERROR_OK;
}
static int nand_poll_ready(struct nand_device *nand, int timeout)
{
uint8_t status;
nand->controller->command(nand, NAND_CMD_STATUS);
do {
if (nand->device->options & NAND_BUSWIDTH_16) {
uint16_t data;
nand->controller->read_data(nand, &data);
status = data & 0xff;
} else {
nand->controller->read_data(nand, &status);
}
if (status & NAND_STATUS_READY)
break;
alive_sleep(1);
} while (timeout--);
return (status & NAND_STATUS_READY) != 0;
}
int nand_probe(struct nand_device *nand)
{
uint8_t manufacturer_id, device_id;
uint8_t id_buff[6];
int retval;
int i;
/* clear device data */
nand->device = NULL;
nand->manufacturer = NULL;
/* clear device parameters */
nand->bus_width = 0;
nand->address_cycles = 0;
nand->page_size = 0;
nand->erase_size = 0;
/* initialize controller (device parameters are zero, use controller default) */
if ((retval = nand->controller->init(nand) != ERROR_OK))
{
switch (retval)
{
case ERROR_NAND_OPERATION_FAILED:
LOG_DEBUG("controller initialization failed");
return ERROR_NAND_OPERATION_FAILED;
case ERROR_NAND_OPERATION_NOT_SUPPORTED:
LOG_ERROR("BUG: controller reported that it doesn't support default parameters");
return ERROR_NAND_OPERATION_FAILED;
default:
LOG_ERROR("BUG: unknown controller initialization failure");
return ERROR_NAND_OPERATION_FAILED;
}
}
nand->controller->command(nand, NAND_CMD_RESET);
nand->controller->reset(nand);
nand->controller->command(nand, NAND_CMD_READID);
nand->controller->address(nand, 0x0);
if (nand->bus_width == 8)
{
nand->controller->read_data(nand, &manufacturer_id);
nand->controller->read_data(nand, &device_id);
}
else
{
uint16_t data_buf;
nand->controller->read_data(nand, &data_buf);
manufacturer_id = data_buf & 0xff;
nand->controller->read_data(nand, &data_buf);
device_id = data_buf & 0xff;
}
for (i = 0; nand_flash_ids[i].name; i++)
{
if (nand_flash_ids[i].id == device_id)
{
nand->device = &nand_flash_ids[i];
break;
}
}
for (i = 0; nand_manuf_ids[i].name; i++)
{
if (nand_manuf_ids[i].id == manufacturer_id)
{
nand->manufacturer = &nand_manuf_ids[i];
break;
}
}
if (!nand->manufacturer)
{
nand->manufacturer = &nand_manuf_ids[0];
nand->manufacturer->id = manufacturer_id;
}
if (!nand->device)
{
LOG_ERROR("unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x",
manufacturer_id, device_id);
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("found %s (%s)", nand->device->name, nand->manufacturer->name);
/* initialize device parameters */
/* bus width */
if (nand->device->options & NAND_BUSWIDTH_16)
nand->bus_width = 16;
else
nand->bus_width = 8;
/* Do we need extended device probe information? */
if (nand->device->page_size == 0 ||
nand->device->erase_size == 0)
{
if (nand->bus_width == 8)
{
nand->controller->read_data(nand, id_buff + 3);
nand->controller->read_data(nand, id_buff + 4);
nand->controller->read_data(nand, id_buff + 5);
}
else
{
uint16_t data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[3] = data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[4] = data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[5] = data_buf >> 8;
}
}
/* page size */
if (nand->device->page_size == 0)
{
nand->page_size = 1 << (10 + (id_buff[4] & 3));
}
else if (nand->device->page_size == 256)
{
LOG_ERROR("NAND flashes with 256 byte pagesize are not supported");
return ERROR_NAND_OPERATION_FAILED;
}
else
{
nand->page_size = nand->device->page_size;
}
/* number of address cycles */
if (nand->page_size <= 512)
{
/* small page devices */
if (nand->device->chip_size <= 32)
nand->address_cycles = 3;
else if (nand->device->chip_size <= 8*1024)
nand->address_cycles = 4;
else
{
LOG_ERROR("BUG: small page NAND device with more than 8 GiB encountered");
nand->address_cycles = 5;
}
}
else
{
/* large page devices */
if (nand->device->chip_size <= 128)
nand->address_cycles = 4;
else if (nand->device->chip_size <= 32*1024)
nand->address_cycles = 5;
else
{
LOG_ERROR("BUG: large page NAND device with more than 32 GiB encountered");
nand->address_cycles = 6;
}
}
/* erase size */
if (nand->device->erase_size == 0)
{
switch ((id_buff[4] >> 4) & 3) {
case 0:
nand->erase_size = 64 << 10;
break;
case 1:
nand->erase_size = 128 << 10;
break;
case 2:
nand->erase_size = 256 << 10;
break;
case 3:
nand->erase_size =512 << 10;
break;
}
}
else
{
nand->erase_size = nand->device->erase_size;
}
/* initialize controller, but leave parameters at the controllers default */
if ((retval = nand->controller->init(nand) != ERROR_OK))
{
switch (retval)
{
case ERROR_NAND_OPERATION_FAILED:
LOG_DEBUG("controller initialization failed");
return ERROR_NAND_OPERATION_FAILED;
case ERROR_NAND_OPERATION_NOT_SUPPORTED:
LOG_ERROR("controller doesn't support requested parameters (buswidth: %i, address cycles: %i, page size: %i)",
nand->bus_width, nand->address_cycles, nand->page_size);
return ERROR_NAND_OPERATION_FAILED;
default:
LOG_ERROR("BUG: unknown controller initialization failure");
return ERROR_NAND_OPERATION_FAILED;
}
}
nand->num_blocks = (nand->device->chip_size * 1024) / (nand->erase_size / 1024);
nand->blocks = malloc(sizeof(struct nand_block) * nand->num_blocks);
for (i = 0; i < nand->num_blocks; i++)
{
nand->blocks[i].size = nand->erase_size;
nand->blocks[i].offset = i * nand->erase_size;
nand->blocks[i].is_erased = -1;
nand->blocks[i].is_bad = -1;
}
return ERROR_OK;
}
static int nand_erase(struct nand_device *nand, int first_block, int last_block)
{
int i;
uint32_t page;
uint8_t status;
int retval;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if ((first_block < 0) || (last_block > nand->num_blocks))
return ERROR_INVALID_ARGUMENTS;
/* make sure we know if a block is bad before erasing it */
for (i = first_block; i <= last_block; i++)
{
if (nand->blocks[i].is_bad == -1)
{
nand_build_bbt(nand, i, last_block);
break;
}
}
for (i = first_block; i <= last_block; i++)
{
/* Send erase setup command */
nand->controller->command(nand, NAND_CMD_ERASE1);
page = i * (nand->erase_size / nand->page_size);
/* Send page address */
if (nand->page_size <= 512)
{
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 3rd cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 4th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
}
else
{
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 3rd cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
}
/* Send erase confirm command */
nand->controller->command(nand, NAND_CMD_ERASE2);
retval = nand->controller->nand_ready ?
nand->controller->nand_ready(nand, 1000) :
nand_poll_ready(nand, 1000);
if (!retval) {
LOG_ERROR("timeout waiting for NAND flash block erase to complete");
return ERROR_NAND_OPERATION_TIMEOUT;
}
if ((retval = nand_read_status(nand, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 0x1)
{
LOG_ERROR("didn't erase %sblock %d; status: 0x%2.2x",
(nand->blocks[i].is_bad == 1)
? "bad " : "",
i, status);
/* continue; other blocks might still be erasable */
}
nand->blocks[i].is_erased = 1;
}
return ERROR_OK;
}
#if 0
static int nand_read_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size)
{
uint8_t *page;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (address % nand->page_size)
{
LOG_ERROR("reads need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
page = malloc(nand->page_size);
while (data_size > 0)
{
uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size;
uint32_t page_address;
page_address = address / nand->page_size;
nand_read_page(nand, page_address, page, nand->page_size, NULL, 0);
memcpy(data, page, thisrun_size);
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
free(page);
return ERROR_OK;
}
static int nand_write_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size)
{
uint8_t *page;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (address % nand->page_size)
{
LOG_ERROR("writes need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
page = malloc(nand->page_size);
while (data_size > 0)
{
uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size;
uint32_t page_address;
memset(page, 0xff, nand->page_size);
memcpy(page, data, thisrun_size);
page_address = address / nand->page_size;
nand_write_page(nand, page_address, page, nand->page_size, NULL, 0);
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
free(page);
return ERROR_OK;
}
#endif
int nand_write_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
uint32_t block;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
block = page / (nand->erase_size / nand->page_size);
if (nand->blocks[block].is_erased == 1)
nand->blocks[block].is_erased = 0;
if (nand->use_raw || nand->controller->write_page == NULL)
return nand_write_page_raw(nand, page, data, data_size, oob, oob_size);
else
return nand->controller->write_page(nand, page, data, data_size, oob, oob_size);
}
static int nand_read_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (nand->use_raw || nand->controller->read_page == NULL)
return nand_read_page_raw(nand, page, data, data_size, oob, oob_size);
else
return nand->controller->read_page(nand, page, data, data_size, oob, oob_size);
}
int nand_read_page_raw(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
uint32_t i;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (nand->page_size <= 512)
{
/* small page device */
if (data)
nand->controller->command(nand, NAND_CMD_READ0);
else
nand->controller->command(nand, NAND_CMD_READOOB);
/* column (always 0, we start at the beginning of a page/OOB area) */
nand->controller->address(nand, 0x0);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 4th cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 5th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
}
else
{
/* large page device */
nand->controller->command(nand, NAND_CMD_READ0);
/* column (0 when we start at the beginning of a page,
* or 2048 for the beginning of OOB area)
*/
nand->controller->address(nand, 0x0);
if (data)
nand->controller->address(nand, 0x0);
else
nand->controller->address(nand, 0x8);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 5th cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
/* large page devices need a start command */
nand->controller->command(nand, NAND_CMD_READSTART);
}
if (nand->controller->nand_ready) {
if (!nand->controller->nand_ready(nand, 100))
return ERROR_NAND_OPERATION_TIMEOUT;
} else {
alive_sleep(1);
}
if (data)
{
if (nand->controller->read_block_data != NULL)
(nand->controller->read_block_data)(nand, data, data_size);
else
{
for (i = 0; i < data_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
nand->controller->read_data(nand, data);
data += 2;
i += 2;
}
else
{
nand->controller->read_data(nand, data);
data += 1;
i += 1;
}
}
}
}
if (oob)
{
if (nand->controller->read_block_data != NULL)
(nand->controller->read_block_data)(nand, oob, oob_size);
else
{
for (i = 0; i < oob_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
nand->controller->read_data(nand, oob);
oob += 2;
i += 2;
}
else
{
nand->controller->read_data(nand, oob);
oob += 1;
i += 1;
}
}
}
}
return ERROR_OK;
}
int nand_write_page_raw(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
uint32_t i;
int retval;
uint8_t status;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
nand->controller->command(nand, NAND_CMD_SEQIN);
if (nand->page_size <= 512)
{
/* column (always 0, we start at the beginning of a page/OOB area) */
nand->controller->address(nand, 0x0);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 4th cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 5th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
}
else
{
/* column (0 when we start at the beginning of a page,
* or 2048 for the beginning of OOB area)
*/
nand->controller->address(nand, 0x0);
if (data)
nand->controller->address(nand, 0x0);
else
nand->controller->address(nand, 0x8);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 5th cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
}
if (data)
{
if (nand->controller->write_block_data != NULL)
(nand->controller->write_block_data)(nand, data, data_size);
else
{
for (i = 0; i < data_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
uint16_t data_buf = le_to_h_u16(data);
nand->controller->write_data(nand, data_buf);
data += 2;
i += 2;
}
else
{
nand->controller->write_data(nand, *data);
data += 1;
i += 1;
}
}
}
}
if (oob)
{
if (nand->controller->write_block_data != NULL)
(nand->controller->write_block_data)(nand, oob, oob_size);
else
{
for (i = 0; i < oob_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
uint16_t oob_buf = le_to_h_u16(data);
nand->controller->write_data(nand, oob_buf);
oob += 2;
i += 2;
}
else
{
nand->controller->write_data(nand, *oob);
oob += 1;
i += 1;
}
}
}
}
nand->controller->command(nand, NAND_CMD_PAGEPROG);
retval = nand->controller->nand_ready ?
nand->controller->nand_ready(nand, 100) :
nand_poll_ready(nand, 100);
if (!retval)
return ERROR_NAND_OPERATION_TIMEOUT;
if ((retval = nand_read_status(nand, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL)
{
LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_list_command)
{
struct nand_device *p;
int i;
if (!nand_devices)
{
command_print(CMD_CTX, "no NAND flash devices configured");
return ERROR_OK;
}
for (p = nand_devices, i = 0; p; p = p->next, i++)
{
if (p->device)
command_print(CMD_CTX, "#%i: %s (%s) "
"pagesize: %i, buswidth: %i,\n\t"
"blocksize: %i, blocks: %i",
i, p->device->name, p->manufacturer->name,
p->page_size, p->bus_width,
p->erase_size, p->num_blocks);
else
command_print(CMD_CTX, "#%i: not probed", i);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_info_command)
{
int i = 0;
int j = 0;
int first = -1;
int last = -1;
struct nand_device *p;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &p);
if (ERROR_OK != retval)
return retval;
switch (CMD_ARGC) {
default:
return ERROR_COMMAND_SYNTAX_ERROR;
case 1:
first = 0;
last = INT32_MAX;
break;
case 2:
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], i);
first = last = i;
i = 0;
break;
case 3:
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], first);
COMMAND_PARSE_NUMBER(int, CMD_ARGV[2], last);
break;
}
if (NULL == p->device)
{
command_print(CMD_CTX, "#%s: not probed", CMD_ARGV[0]);
return ERROR_OK;
}
if (first >= p->num_blocks)
first = p->num_blocks - 1;
if (last >= p->num_blocks)
last = p->num_blocks - 1;
command_print(CMD_CTX, "#%i: %s (%s) pagesize: %i, buswidth: %i, erasesize: %i",
i++, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size);
for (j = first; j <= last; j++)
{
char *erase_state, *bad_state;
if (p->blocks[j].is_erased == 0)
erase_state = "not erased";
else if (p->blocks[j].is_erased == 1)
erase_state = "erased";
else
erase_state = "erase state unknown";
if (p->blocks[j].is_bad == 0)
bad_state = "";
else if (p->blocks[j].is_bad == 1)
bad_state = " (marked bad)";
else
bad_state = " (block condition unknown)";
command_print(CMD_CTX,
"\t#%i: 0x%8.8" PRIx32 " (%" PRId32 "kB) %s%s",
j,
p->blocks[j].offset,
p->blocks[j].size / 1024,
erase_state,
bad_state);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_probe_command)
{
if (CMD_ARGC != 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct nand_device *p;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &p);
if (ERROR_OK != retval)
return retval;
if ((retval = nand_probe(p)) == ERROR_OK)
{
command_print(CMD_CTX, "NAND flash device '%s' found", p->device->name);
}
else if (retval == ERROR_NAND_OPERATION_FAILED)
{
command_print(CMD_CTX, "probing failed for NAND flash device");
}
else
{
command_print(CMD_CTX, "unknown error when probing NAND flash device");
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_erase_command)
{
if (CMD_ARGC != 1 && CMD_ARGC != 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct nand_device *p;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &p);
if (ERROR_OK != retval)
return retval;
unsigned long offset;
unsigned long length;
/* erase specified part of the chip; or else everything */
if (CMD_ARGC == 3) {
unsigned long size = p->erase_size * p->num_blocks;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], offset);
if ((offset % p->erase_size) != 0 || offset >= size)
return ERROR_INVALID_ARGUMENTS;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], length);
if ((length == 0) || (length % p->erase_size) != 0
|| (length + offset) > size)
return ERROR_INVALID_ARGUMENTS;
offset /= p->erase_size;
length /= p->erase_size;
} else {
offset = 0;
length = p->num_blocks;
}
retval = nand_erase(p, offset, offset + length - 1);
if (retval == ERROR_OK)
{
command_print(CMD_CTX, "erased blocks %lu to %lu "
"on NAND flash device #%s '%s'",
offset, offset + length,
CMD_ARGV[0], p->device->name);
}
else if (retval == ERROR_NAND_OPERATION_FAILED)
{
command_print(CMD_CTX, "erase failed");
}
else
{
command_print(CMD_CTX, "unknown error when erasing NAND flash device");
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_check_bad_blocks_command)
{
int first = -1;
int last = -1;
if ((CMD_ARGC < 1) || (CMD_ARGC > 3) || (CMD_ARGC == 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct nand_device *p;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &p);
if (ERROR_OK != retval)
return retval;
if (CMD_ARGC == 3)
{
unsigned long offset;
unsigned long length;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], offset);
if (offset % p->erase_size)
return ERROR_INVALID_ARGUMENTS;
offset /= p->erase_size;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], length);
if (length % p->erase_size)
return ERROR_INVALID_ARGUMENTS;
length -= 1;
length /= p->erase_size;
first = offset;
last = offset + length;
}
retval = nand_build_bbt(p, first, last);
if (retval == ERROR_OK)
{
command_print(CMD_CTX, "checked NAND flash device for bad blocks, "
"use \"nand info\" command to list blocks");
}
else if (retval == ERROR_NAND_OPERATION_FAILED)
{
command_print(CMD_CTX, "error when checking for bad blocks on "
"NAND flash device");
}
else
{
command_print(CMD_CTX, "unknown error when checking for bad "
"blocks on NAND flash device");
}
return ERROR_OK;
}
struct nand_fileio_state {
uint32_t address;
uint32_t size;
uint8_t *page;
uint32_t page_size;
enum oob_formats oob_format;
uint8_t *oob;
uint32_t oob_size;
const int *eccpos;
bool file_opened;
struct fileio fileio;
struct duration bench;
};
static void nand_fileio_init(struct nand_fileio_state *state)
{
memset(state, 0, sizeof(*state));
state->oob_format = NAND_OOB_NONE;
}
static int nand_fileio_start(struct command_context *cmd_ctx,
struct nand_device *nand, const char *filename, int filemode,
struct nand_fileio_state *state)
{
if (state->address % nand->page_size)
{
command_print(cmd_ctx, "only page-aligned addresses are supported");
return ERROR_COMMAND_SYNTAX_ERROR;
}
duration_start(&state->bench);
if (NULL != filename)
{
int retval = fileio_open(&state->fileio, filename, filemode, FILEIO_BINARY);
if (ERROR_OK != retval)
{
const char *msg = (FILEIO_READ == filemode) ? "read" : "write";
command_print(cmd_ctx, "failed to open '%s' for %s access",
filename, msg);
return retval;
}
state->file_opened = true;
}
if (!(state->oob_format & NAND_OOB_ONLY))
{
state->page_size = nand->page_size;
state->page = malloc(nand->page_size);
}
if (state->oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC | NAND_OOB_SW_ECC_KW))
{
if (nand->page_size == 512)
{
state->oob_size = 16;
state->eccpos = nand_oob_16.eccpos;
}
else if (nand->page_size == 2048)
{
state->oob_size = 64;
state->eccpos = nand_oob_64.eccpos;
}
state->oob = malloc(state->oob_size);
}
return ERROR_OK;
}
static int nand_fileio_cleanup(struct nand_fileio_state *state)
{
if (state->file_opened)
fileio_close(&state->fileio);
if (state->oob)
{
free(state->oob);
state->oob = NULL;
}
if (state->page)
{
free(state->page);
state->page = NULL;
}
return ERROR_OK;
}
static int nand_fileio_finish(struct nand_fileio_state *state)
{
nand_fileio_cleanup(state);
return duration_measure(&state->bench);
}
static COMMAND_HELPER(nand_fileio_parse_args, struct nand_fileio_state *state,
struct nand_device **dev, enum fileio_access filemode,
bool need_size, bool sw_ecc)
{
nand_fileio_init(state);
unsigned minargs = need_size ? 4 : 3;
if (CMD_ARGC < minargs)
return ERROR_COMMAND_SYNTAX_ERROR;
struct nand_device *nand;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &nand);
if (ERROR_OK != retval)
return retval;
if (NULL == nand->device)
{
command_print(CMD_CTX, "#%s: not probed", CMD_ARGV[0]);
return ERROR_OK;
}
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], state->address);
if (need_size)
{
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], state->size);
if (state->size % nand->page_size)
{
command_print(CMD_CTX, "only page-aligned sizes are supported");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
if (CMD_ARGC > minargs)
{
for (unsigned i = minargs; i < CMD_ARGC; i++)
{
if (!strcmp(CMD_ARGV[i], "oob_raw"))
state->oob_format |= NAND_OOB_RAW;
else if (!strcmp(CMD_ARGV[i], "oob_only"))
state->oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY;
else if (sw_ecc && !strcmp(CMD_ARGV[i], "oob_softecc"))
state->oob_format |= NAND_OOB_SW_ECC;
else if (sw_ecc && !strcmp(CMD_ARGV[i], "oob_softecc_kw"))
state->oob_format |= NAND_OOB_SW_ECC_KW;
else
{
command_print(CMD_CTX, "unknown option: %s", CMD_ARGV[i]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
}
retval = nand_fileio_start(CMD_CTX, nand, CMD_ARGV[1], filemode, state);
if (ERROR_OK != retval)
return retval;
if (!need_size)
state->size = state->fileio.size;
*dev = nand;
return ERROR_OK;
}
/**
* @returns If no error occurred, returns number of bytes consumed;
* otherwise, returns a negative error code.)
*/
static int nand_fileio_read(struct nand_device *nand,
struct nand_fileio_state *s)
{
size_t total_read = 0;
size_t one_read;
if (NULL != s->page)
{
fileio_read(&s->fileio, s->page_size, s->page, &one_read);
if (one_read < s->page_size)
memset(s->page + one_read, 0xff, s->page_size - one_read);
total_read += one_read;
}
if (s->oob_format & NAND_OOB_SW_ECC)
{
uint8_t ecc[3];
memset(s->oob, 0xff, s->oob_size);
for (uint32_t i = 0, j = 0; i < s->page_size; i += 256)
{
nand_calculate_ecc(nand, s->page + i, ecc);
s->oob[s->eccpos[j++]] = ecc[0];
s->oob[s->eccpos[j++]] = ecc[1];
s->oob[s->eccpos[j++]] = ecc[2];
}
}
else if (s->oob_format & NAND_OOB_SW_ECC_KW)
{
/*
* In this case eccpos is not used as
* the ECC data is always stored contigously
* at the end of the OOB area. It consists
* of 10 bytes per 512-byte data block.
*/
uint8_t *ecc = s->oob + s->oob_size - s->page_size / 512 * 10;
memset(s->oob, 0xff, s->oob_size);
for (uint32_t i = 0; i < s->page_size; i += 512)
{
nand_calculate_ecc_kw(nand, s->page + i, ecc);
ecc += 10;
}
}
else if (NULL != s->oob)
{
fileio_read(&s->fileio, s->oob_size, s->oob, &one_read);
if (one_read < s->oob_size)
memset(s->oob + one_read, 0xff, s->oob_size - one_read);
total_read += one_read;
}
return total_read;
}
COMMAND_HANDLER(handle_nand_write_command)
{
struct nand_device *nand = NULL;
struct nand_fileio_state s;
int retval = CALL_COMMAND_HANDLER(nand_fileio_parse_args,
&s, &nand, FILEIO_READ, false, true);
if (ERROR_OK != retval)
return retval;
uint32_t total_bytes = s.size;
while (s.size > 0)
{
int bytes_read = nand_fileio_read(nand, &s);
if (bytes_read <= 0)
{
command_print(CMD_CTX, "error while reading file");
return nand_fileio_cleanup(&s);
}
s.size -= bytes_read;
retval = nand_write_page(nand, s.address / nand->page_size,
s.page, s.page_size, s.oob, s.oob_size);
if (ERROR_OK != retval)
{
command_print(CMD_CTX, "failed writing file %s "
"to NAND flash %s at offset 0x%8.8" PRIx32,
CMD_ARGV[1], CMD_ARGV[0], s.address);
return nand_fileio_cleanup(&s);
}
s.address += s.page_size;
}
if (nand_fileio_finish(&s))
{
command_print(CMD_CTX, "wrote file %s to NAND flash %s up to "
"offset 0x%8.8" PRIx32 " in %fs (%0.3f kb/s)",
CMD_ARGV[1], CMD_ARGV[0], s.address, duration_elapsed(&s.bench),
duration_kbps(&s.bench, total_bytes));
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_verify_command)
{
struct nand_device *nand = NULL;
struct nand_fileio_state file;
int retval = CALL_COMMAND_HANDLER(nand_fileio_parse_args,
&file, &nand, FILEIO_READ, false, true);
if (ERROR_OK != retval)
return retval;
struct nand_fileio_state dev;
nand_fileio_init(&dev);
dev.address = file.address;
dev.size = file.size;
dev.oob_format = file.oob_format;
retval = nand_fileio_start(CMD_CTX, nand, NULL, FILEIO_NONE, &dev);
if (ERROR_OK != retval)
return retval;
while (file.size > 0)
{
int retval = nand_read_page(nand, dev.address / dev.page_size,
dev.page, dev.page_size, dev.oob, dev.oob_size);
if (ERROR_OK != retval)
{
command_print(CMD_CTX, "reading NAND flash page failed");
nand_fileio_cleanup(&dev);
return nand_fileio_cleanup(&file);
}
int bytes_read = nand_fileio_read(nand, &file);
if (bytes_read <= 0)
{
command_print(CMD_CTX, "error while reading file");
nand_fileio_cleanup(&dev);
return nand_fileio_cleanup(&file);
}
if ((dev.page && memcmp(dev.page, file.page, dev.page_size)) ||
(dev.oob && memcmp(dev.oob, file.oob, dev.oob_size)) )
{
command_print(CMD_CTX, "NAND flash contents differ "
"at 0x%8.8" PRIx32, dev.address);
nand_fileio_cleanup(&dev);
return nand_fileio_cleanup(&file);
}
file.size -= bytes_read;
dev.address += nand->page_size;
}
if (nand_fileio_finish(&file) == ERROR_OK)
{
command_print(CMD_CTX, "verified file %s in NAND flash %s "
"up to offset 0x%8.8" PRIx32 " in %fs (%0.3f kb/s)",
CMD_ARGV[1], CMD_ARGV[0], dev.address, duration_elapsed(&file.bench),
duration_kbps(&file.bench, dev.size));
}
return nand_fileio_cleanup(&dev);
}
COMMAND_HANDLER(handle_nand_dump_command)
{
struct nand_device *nand = NULL;
struct nand_fileio_state s;
int retval = CALL_COMMAND_HANDLER(nand_fileio_parse_args,
&s, &nand, FILEIO_WRITE, true, false);
if (ERROR_OK != retval)
return retval;
while (s.size > 0)
{
size_t size_written;
int retval = nand_read_page(nand, s.address / nand->page_size,
s.page, s.page_size, s.oob, s.oob_size);
if (ERROR_OK != retval)
{
command_print(CMD_CTX, "reading NAND flash page failed");
return nand_fileio_cleanup(&s);
}
if (NULL != s.page)
fileio_write(&s.fileio, s.page_size, s.page, &size_written);
if (NULL != s.oob)
fileio_write(&s.fileio, s.oob_size, s.oob, &size_written);
s.size -= nand->page_size;
s.address += nand->page_size;
}
if (nand_fileio_finish(&s) == ERROR_OK)
{
command_print(CMD_CTX, "dumped %zu bytes in %fs (%0.3f kb/s)",
s.fileio.size, duration_elapsed(&s.bench),
duration_kbps(&s.bench, s.fileio.size));
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_raw_access_command)
{
if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct nand_device *p;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &p);
if (ERROR_OK != retval)
return retval;
if (NULL == p->device)
{
command_print(CMD_CTX, "#%s: not probed", CMD_ARGV[0]);
return ERROR_OK;
}
if (CMD_ARGC == 2)
COMMAND_PARSE_ENABLE(CMD_ARGV[1], p->use_raw);
const char *msg = p->use_raw ? "enabled" : "disabled";
command_print(CMD_CTX, "raw access is %s", msg);
return ERROR_OK;
}
static const struct command_registration nand_exec_command_handlers[] = {
{
.name = "list",
.handler = &handle_nand_list_command,
.mode = COMMAND_EXEC,
.help = "list configured NAND flash devices",
},
{
.name = "info",
.handler = &handle_nand_info_command,
.mode = COMMAND_EXEC,
.usage = "<bank>",
.help = "print info about a NAND flash device",
},
{
.name = "probe",
.handler = &handle_nand_probe_command,
.mode = COMMAND_EXEC,
.usage = "<bank>",
.help = "identify NAND flash device <num>",
},
{
.name = "check_bad_blocks",
.handler = &handle_nand_check_bad_blocks_command,
.mode = COMMAND_EXEC,
.usage = "<bank> [<offset> <length>]",
.help = "check NAND flash device <num> for bad blocks",
},
{
.name = "erase",
.handler = &handle_nand_erase_command,
.mode = COMMAND_EXEC,
.usage = "<bank> [<offset> <length>]",
.help = "erase blocks on NAND flash device",
},
{
.name = "dump",
.handler = &handle_nand_dump_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <filename> <offset> <length> "
"[oob_raw | oob_only]",
.help = "dump from NAND flash device",
},
{
.name = "verify",
.handler = &handle_nand_verify_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <filename> <offset> "
"[oob_raw | oob_only | oob_softecc | oob_softecc_kw]",
.help = "verify NAND flash device",
},
{
.name = "write",
.handler = &handle_nand_write_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <filename> <offset> "
"[oob_raw | oob_only | oob_softecc | oob_softecc_kw]",
.help = "write to NAND flash device",
},
{
.name = "raw_access",
.handler = &handle_nand_raw_access_command,
.mode = COMMAND_EXEC,
.usage = "<num> ['enable'|'disable']",
.help = "raw access to NAND flash device",
},
COMMAND_REGISTRATION_DONE
};
int nand_init(struct command_context *cmd_ctx)
{
if (!nand_devices)
return ERROR_OK;
struct command *parent = command_find_in_context(cmd_ctx, "nand");
return register_commands(cmd_ctx, parent, nand_exec_command_handlers);
}