openocd/src/target/openrisc/or1k_du_adv.c

977 lines
26 KiB
C

/***************************************************************************
* Copyright (C) 2013 by Franck Jullien *
* elec4fun@gmail.com *
* *
* Inspired from adv_jtag_bridge which is: *
* Copyright (C) 2008-2010 Nathan Yawn *
* nyawn@opencores.net *
* *
* And the Mohor interface version of this file which is: *
* Copyright (C) 2011 by Julius Baxter *
* julius@opencores.org *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "or1k_tap.h"
#include "or1k.h"
#include "or1k_du.h"
#include <target/target.h>
#include <jtag/jtag.h>
/* This an option to the adv debug unit.
* If this is defined, status bits will be skipped on burst
* reads and writes to improve download speeds.
* This option must match the RTL configured option.
*/
#define ADBG_USE_HISPEED 1
/* Definitions for the top-level debug unit. This really just consists
* of a single register, used to select the active debug module ("chain").
*/
#define DBG_MODULE_SELECT_REG_SIZE 2
#define DBG_MAX_MODULES 4
#define DC_WISHBONE 0
#define DC_CPU0 1
#define DC_CPU1 2
#define DC_JSP 3
/* CPU control register bits mask */
#define DBG_CPU_CR_STALL 0x01
#define DBG_CPU_CR_RESET 0x02
/* Polynomial for the CRC calculation
* Yes, it's backwards. Yes, this is on purpose.
* The hardware is designed this way to save on logic and routing,
* and it's really all the same to us here.
*/
#define ADBG_CRC_POLY 0xedb88320
/* These are for the internal registers in the Wishbone module
* The first is the length of the index register,
* the indexes of the various registers are defined after that.
*/
#define DBG_WB_REG_SEL_LEN 1
#define DBG_WB_REG_ERROR 0
/* Opcode definitions for the Wishbone module. */
#define DBG_WB_OPCODE_LEN 4
#define DBG_WB_CMD_NOP 0x0
#define DBG_WB_CMD_BWRITE8 0x1
#define DBG_WB_CMD_BWRITE16 0x2
#define DBG_WB_CMD_BWRITE32 0x3
#define DBG_WB_CMD_BREAD8 0x5
#define DBG_WB_CMD_BREAD16 0x6
#define DBG_WB_CMD_BREAD32 0x7
#define DBG_WB_CMD_IREG_WR 0x9
#define DBG_WB_CMD_IREG_SEL 0xd
/* Internal register definitions for the CPU0 module. */
#define DBG_CPU0_REG_SEL_LEN 1
#define DBG_CPU0_REG_STATUS 0
/* Opcode definitions for the first CPU module. */
#define DBG_CPU0_OPCODE_LEN 4
#define DBG_CPU0_CMD_NOP 0x0
#define DBG_CPU0_CMD_BWRITE32 0x3
#define DBG_CPU0_CMD_BREAD32 0x7
#define DBG_CPU0_CMD_IREG_WR 0x9
#define DBG_CPU0_CMD_IREG_SEL 0xd
/* Internal register definitions for the CPU1 module. */
#define DBG_CPU1_REG_SEL_LEN 1
#define DBG_CPU1_REG_STATUS 0
/* Opcode definitions for the second CPU module. */
#define DBG_CPU1_OPCODE_LEN 4
#define DBG_CPU1_CMD_NOP 0x0
#define DBG_CPU1_CMD_BWRITE32 0x3
#define DBG_CPU1_CMD_BREAD32 0x7
#define DBG_CPU1_CMD_IREG_WR 0x9
#define DBG_CPU1_CMD_IREG_SEL 0xd
#define MAX_READ_STATUS_WAIT 10
#define MAX_READ_BUSY_RETRY 2
#define MAX_READ_CRC_RETRY 2
#define MAX_WRITE_CRC_RETRY 2
#define BURST_READ_READY 1
#define MAX_BUS_ERRORS 2
#define MAX_BURST_SIZE (4 * 1024)
#define STATUS_BYTES 1
#define CRC_LEN 4
static struct or1k_du or1k_du_adv;
static const char * const chain_name[] = {"WISHBONE", "CPU0", "CPU1", "JSP"};
static uint32_t adbg_compute_crc(uint32_t crc, uint32_t data_in,
int length_bits)
{
for (int i = 0; i < length_bits; i++) {
uint32_t d, c;
d = ((data_in >> i) & 0x1) ? 0xffffffff : 0;
c = (crc & 0x1) ? 0xffffffff : 0;
crc = crc >> 1;
crc = crc ^ ((d ^ c) & ADBG_CRC_POLY);
}
return crc;
}
static int find_status_bit(void *_buf, int len)
{
int i = 0;
int count = 0;
int ret = -1;
uint8_t *buf = _buf;
while (!(buf[i] & (1 << count++)) && (i < len)) {
if (count == 8) {
count = 0;
i++;
}
}
if (i < len)
ret = (i * 8) + count;
return ret;
}
static int or1k_adv_jtag_init(struct or1k_jtag *jtag_info)
{
struct or1k_tap_ip *tap_ip = jtag_info->tap_ip;
int retval = tap_ip->init(jtag_info);
if (retval != ERROR_OK) {
LOG_ERROR("TAP initialization failed");
return retval;
}
/* TAP is now configured to communicate with debug interface */
jtag_info->or1k_jtag_inited = 1;
/* TAP reset - not sure what state debug module chain is in now */
jtag_info->or1k_jtag_module_selected = -1;
jtag_info->current_reg_idx = malloc(DBG_MAX_MODULES * sizeof(uint8_t));
memset(jtag_info->current_reg_idx, 0, DBG_MAX_MODULES * sizeof(uint8_t));
if (or1k_du_adv.options & ADBG_USE_HISPEED)
LOG_INFO("adv debug unit is configured with option ADBG_USE_HISPEED");
LOG_DEBUG("Init done");
return ERROR_OK;
}
/* Selects one of the modules in the debug unit
* (e.g. wishbone unit, CPU0, etc.)
*/
static int adbg_select_module(struct or1k_jtag *jtag_info, int chain)
{
if (jtag_info->or1k_jtag_module_selected == chain)
return ERROR_OK;
/* MSB of the data out must be set to 1, indicating a module
* select command
*/
uint8_t data = chain | (1 << DBG_MODULE_SELECT_REG_SIZE);
LOG_DEBUG("Select module: %s", chain_name[chain]);
struct scan_field field;
field.num_bits = (DBG_MODULE_SELECT_REG_SIZE + 1);
field.out_value = &data;
field.in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 1, &field, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
jtag_info->or1k_jtag_module_selected = chain;
return ERROR_OK;
}
/* Set the index of the desired register in the currently selected module
* 1 bit module select command
* 4 bits opcode
* n bits index
*/
static int adbg_select_ctrl_reg(struct or1k_jtag *jtag_info, uint8_t regidx)
{
int index_len;
uint32_t opcode;
uint32_t opcode_len;
/* If this reg is already selected, don't do a JTAG transaction */
if (jtag_info->current_reg_idx[jtag_info->or1k_jtag_module_selected] == regidx)
return ERROR_OK;
switch (jtag_info->or1k_jtag_module_selected) {
case DC_WISHBONE:
index_len = DBG_WB_REG_SEL_LEN;
opcode = DBG_WB_CMD_IREG_SEL;
opcode_len = DBG_WB_OPCODE_LEN;
break;
case DC_CPU0:
index_len = DBG_CPU0_REG_SEL_LEN;
opcode = DBG_CPU0_CMD_IREG_SEL;
opcode_len = DBG_CPU0_OPCODE_LEN;
break;
case DC_CPU1:
index_len = DBG_CPU1_REG_SEL_LEN;
opcode = DBG_CPU1_CMD_IREG_SEL;
opcode_len = DBG_CPU1_OPCODE_LEN;
break;
default:
LOG_ERROR("Illegal debug chain selected (%i) while selecting control register",
jtag_info->or1k_jtag_module_selected);
return ERROR_FAIL;
}
/* MSB must be 0 to access modules */
uint32_t data = (opcode & ~(1 << opcode_len)) << index_len;
data |= regidx;
struct scan_field field;
field.num_bits = (opcode_len + 1) + index_len;
field.out_value = (uint8_t *)&data;
field.in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 1, &field, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
jtag_info->current_reg_idx[jtag_info->or1k_jtag_module_selected] = regidx;
return ERROR_OK;
}
/* Write control register (internal to the debug unit) */
static int adbg_ctrl_write(struct or1k_jtag *jtag_info, uint8_t regidx,
uint32_t *cmd_data, int length_bits)
{
int index_len;
uint32_t opcode;
uint32_t opcode_len;
LOG_DEBUG("Write control register %" PRId8 ": 0x%08" PRIx32, regidx, cmd_data[0]);
int retval = adbg_select_ctrl_reg(jtag_info, regidx);
if (retval != ERROR_OK) {
LOG_ERROR("Error while calling adbg_select_ctrl_reg");
return retval;
}
switch (jtag_info->or1k_jtag_module_selected) {
case DC_WISHBONE:
index_len = DBG_WB_REG_SEL_LEN;
opcode = DBG_WB_CMD_IREG_WR;
opcode_len = DBG_WB_OPCODE_LEN;
break;
case DC_CPU0:
index_len = DBG_CPU0_REG_SEL_LEN;
opcode = DBG_CPU0_CMD_IREG_WR;
opcode_len = DBG_CPU0_OPCODE_LEN;
break;
case DC_CPU1:
index_len = DBG_CPU1_REG_SEL_LEN;
opcode = DBG_CPU1_CMD_IREG_WR;
opcode_len = DBG_CPU1_OPCODE_LEN;
break;
default:
LOG_ERROR("Illegal debug chain selected (%i) while doing control write",
jtag_info->or1k_jtag_module_selected);
return ERROR_FAIL;
}
struct scan_field field[2];
/* MSB must be 0 to access modules */
uint32_t data = (opcode & ~(1 << opcode_len)) << index_len;
data |= regidx;
field[0].num_bits = length_bits;
field[0].out_value = (uint8_t *)cmd_data;
field[0].in_value = NULL;
field[1].num_bits = (opcode_len + 1) + index_len;
field[1].out_value = (uint8_t *)&data;
field[1].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 2, field, TAP_IDLE);
return jtag_execute_queue();
}
/* Reads control register (internal to the debug unit) */
static int adbg_ctrl_read(struct or1k_jtag *jtag_info, uint32_t regidx,
uint32_t *data, int length_bits)
{
int retval = adbg_select_ctrl_reg(jtag_info, regidx);
if (retval != ERROR_OK) {
LOG_ERROR("Error while calling adbg_select_ctrl_reg");
return retval;
}
int opcode_len;
uint32_t opcode;
/* There is no 'read' command, We write a NOP to read */
switch (jtag_info->or1k_jtag_module_selected) {
case DC_WISHBONE:
opcode = DBG_WB_CMD_NOP;
opcode_len = DBG_WB_OPCODE_LEN;
break;
case DC_CPU0:
opcode = DBG_CPU0_CMD_NOP;
opcode_len = DBG_CPU0_OPCODE_LEN;
break;
case DC_CPU1:
opcode = DBG_CPU1_CMD_NOP;
opcode_len = DBG_CPU1_OPCODE_LEN;
break;
default:
LOG_ERROR("Illegal debug chain selected (%i) while doing control read",
jtag_info->or1k_jtag_module_selected);
return ERROR_FAIL;
}
/* Zero MSB = op for module, not top-level debug unit */
uint32_t outdata = opcode & ~(0x1 << opcode_len);
struct scan_field field[2];
field[0].num_bits = length_bits;
field[0].out_value = NULL;
field[0].in_value = (uint8_t *)data;
field[1].num_bits = opcode_len + 1;
field[1].out_value = (uint8_t *)&outdata;
field[1].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 2, field, TAP_IDLE);
return jtag_execute_queue();
}
/* sends out a burst command to the selected module in the debug unit (MSB to LSB):
* 1-bit module command
* 4-bit opcode
* 32-bit address
* 16-bit length (of the burst, in words)
*/
static int adbg_burst_command(struct or1k_jtag *jtag_info, uint32_t opcode,
uint32_t address, uint16_t length_words)
{
uint32_t data[2];
/* Set up the data */
data[0] = length_words | (address << 16);
/* MSB must be 0 to access modules */
data[1] = ((address >> 16) | ((opcode & 0xf) << 16)) & ~(0x1 << 20);
struct scan_field field;
field.num_bits = 53;
field.out_value = (uint8_t *)&data[0];
field.in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 1, &field, TAP_IDLE);
return jtag_execute_queue();
}
static int adbg_wb_burst_read(struct or1k_jtag *jtag_info, int size,
int count, uint32_t start_address, uint8_t *data)
{
int retry_full_crc = 0;
int retry_full_busy = 0;
int retval;
uint8_t opcode;
LOG_DEBUG("Doing burst read, word size %d, word count %d, start address 0x%08" PRIx32,
size, count, start_address);
/* Select the appropriate opcode */
switch (jtag_info->or1k_jtag_module_selected) {
case DC_WISHBONE:
if (size == 1)
opcode = DBG_WB_CMD_BREAD8;
else if (size == 2)
opcode = DBG_WB_CMD_BREAD16;
else if (size == 4)
opcode = DBG_WB_CMD_BREAD32;
else {
LOG_WARNING("Tried burst read with invalid word size (%d),"
"defaulting to 4-byte words", size);
opcode = DBG_WB_CMD_BREAD32;
}
break;
case DC_CPU0:
if (size == 4)
opcode = DBG_CPU0_CMD_BREAD32;
else {
LOG_WARNING("Tried burst read with invalid word size (%d),"
"defaulting to 4-byte words", size);
opcode = DBG_CPU0_CMD_BREAD32;
}
break;
case DC_CPU1:
if (size == 4)
opcode = DBG_CPU1_CMD_BREAD32;
else {
LOG_WARNING("Tried burst read with invalid word size (%d),"
"defaulting to 4-byte words", size);
opcode = DBG_CPU0_CMD_BREAD32;
}
break;
default:
LOG_ERROR("Illegal debug chain selected (%i) while doing burst read",
jtag_info->or1k_jtag_module_selected);
return ERROR_FAIL;
}
int total_size_bytes = count * size;
struct scan_field field;
uint8_t *in_buffer = malloc(total_size_bytes + CRC_LEN + STATUS_BYTES);
retry_read_full:
/* Send the BURST READ command, returns TAP to idle state */
retval = adbg_burst_command(jtag_info, opcode, start_address, count);
if (retval != ERROR_OK)
goto out;
field.num_bits = (total_size_bytes + CRC_LEN + STATUS_BYTES) * 8;
field.out_value = NULL;
field.in_value = in_buffer;
jtag_add_dr_scan(jtag_info->tap, 1, &field, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
goto out;
/* Look for the start bit in the first (STATUS_BYTES * 8) bits */
int shift = find_status_bit(in_buffer, STATUS_BYTES);
/* We expect the status bit to be in the first byte */
if (shift < 0) {
if (retry_full_busy++ < MAX_READ_BUSY_RETRY) {
LOG_WARNING("Burst read timed out");
goto retry_read_full;
} else {
LOG_ERROR("Burst read failed");
retval = ERROR_FAIL;
goto out;
}
}
buffer_shr(in_buffer, total_size_bytes + CRC_LEN + STATUS_BYTES, shift);
uint32_t crc_read;
memcpy(data, in_buffer, total_size_bytes);
memcpy(&crc_read, &in_buffer[total_size_bytes], 4);
uint32_t crc_calc = 0xffffffff;
for (int i = 0; i < total_size_bytes; i++)
crc_calc = adbg_compute_crc(crc_calc, data[i], 8);
if (crc_calc != crc_read) {
LOG_WARNING("CRC ERROR! Computed 0x%08" PRIx32 ", read CRC 0x%08" PRIx32, crc_calc, crc_read);
if (retry_full_crc++ < MAX_READ_CRC_RETRY)
goto retry_read_full;
else {
LOG_ERROR("Burst read failed");
retval = ERROR_FAIL;
goto out;
}
} else
LOG_DEBUG("CRC OK!");
/* Now, read the error register, and retry/recompute as necessary */
if (jtag_info->or1k_jtag_module_selected == DC_WISHBONE &&
!(or1k_du_adv.options & ADBG_USE_HISPEED)) {
uint32_t err_data[2] = {0, 0};
uint32_t addr;
int bus_error_retries = 0;
/* First, just get 1 bit...read address only if necessary */
retval = adbg_ctrl_read(jtag_info, DBG_WB_REG_ERROR, err_data, 1);
if (retval != ERROR_OK)
goto out;
/* Then we have a problem */
if (err_data[0] & 0x1) {
retval = adbg_ctrl_read(jtag_info, DBG_WB_REG_ERROR, err_data, 33);
if (retval != ERROR_OK)
goto out;
addr = (err_data[0] >> 1) | (err_data[1] << 31);
LOG_WARNING("WB bus error during burst read, address 0x%08" PRIx32 ", retrying!", addr);
bus_error_retries++;
if (bus_error_retries > MAX_BUS_ERRORS) {
LOG_ERROR("Max WB bus errors reached during burst read");
retval = ERROR_FAIL;
goto out;
}
/* Don't call retry_do(), a JTAG reset won't help a WB bus error */
/* Write 1 bit, to reset the error register */
err_data[0] = 1;
retval = adbg_ctrl_write(jtag_info, DBG_WB_REG_ERROR, err_data, 1);
if (retval != ERROR_OK)
goto out;
goto retry_read_full;
}
}
out:
free(in_buffer);
return retval;
}
/* Set up and execute a burst write to a contiguous set of addresses */
static int adbg_wb_burst_write(struct or1k_jtag *jtag_info, const uint8_t *data, int size,
int count, unsigned long start_address)
{
int retry_full_crc = 0;
int retval;
uint8_t opcode;
LOG_DEBUG("Doing burst write, word size %d, word count %d,"
"start address 0x%08lx", size, count, start_address);
/* Select the appropriate opcode */
switch (jtag_info->or1k_jtag_module_selected) {
case DC_WISHBONE:
if (size == 1)
opcode = DBG_WB_CMD_BWRITE8;
else if (size == 2)
opcode = DBG_WB_CMD_BWRITE16;
else if (size == 4)
opcode = DBG_WB_CMD_BWRITE32;
else {
LOG_DEBUG("Tried WB burst write with invalid word size (%d),"
"defaulting to 4-byte words", size);
opcode = DBG_WB_CMD_BWRITE32;
}
break;
case DC_CPU0:
if (size == 4)
opcode = DBG_CPU0_CMD_BWRITE32;
else {
LOG_DEBUG("Tried CPU0 burst write with invalid word size (%d),"
"defaulting to 4-byte words", size);
opcode = DBG_CPU0_CMD_BWRITE32;
}
break;
case DC_CPU1:
if (size == 4)
opcode = DBG_CPU1_CMD_BWRITE32;
else {
LOG_DEBUG("Tried CPU1 burst write with invalid word size (%d),"
"defaulting to 4-byte words", size);
opcode = DBG_CPU0_CMD_BWRITE32;
}
break;
default:
LOG_ERROR("Illegal debug chain selected (%i) while doing burst write",
jtag_info->or1k_jtag_module_selected);
return ERROR_FAIL;
}
retry_full_write:
/* Send the BURST WRITE command, returns TAP to idle state */
retval = adbg_burst_command(jtag_info, opcode, start_address, count);
if (retval != ERROR_OK)
return retval;
struct scan_field field[3];
/* Write a start bit so it knows when to start counting */
uint8_t value = 1;
field[0].num_bits = 1;
field[0].out_value = &value;
field[0].in_value = NULL;
uint32_t crc_calc = 0xffffffff;
for (int i = 0; i < (count * size); i++)
crc_calc = adbg_compute_crc(crc_calc, data[i], 8);
field[1].num_bits = count * size * 8;
field[1].out_value = data;
field[1].in_value = NULL;
field[2].num_bits = 32;
field[2].out_value = (uint8_t *)&crc_calc;
field[2].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 3, field, TAP_DRSHIFT);
/* Read the 'CRC match' bit, and go to idle */
field[0].num_bits = 1;
field[0].out_value = NULL;
field[0].in_value = &value;
jtag_add_dr_scan(jtag_info->tap, 1, field, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (!value) {
LOG_WARNING("CRC ERROR! match bit after write is %" PRIi8 " (computed CRC 0x%08" PRIx32 ")", value, crc_calc);
if (retry_full_crc++ < MAX_WRITE_CRC_RETRY)
goto retry_full_write;
else
return ERROR_FAIL;
} else
LOG_DEBUG("CRC OK!\n");
/* Now, read the error register, and retry/recompute as necessary */
if (jtag_info->or1k_jtag_module_selected == DC_WISHBONE &&
!(or1k_du_adv.options & ADBG_USE_HISPEED)) {
uint32_t addr;
int bus_error_retries = 0;
uint32_t err_data[2] = {0, 0};
/* First, just get 1 bit...read address only if necessary */
retval = adbg_ctrl_read(jtag_info, DBG_WB_REG_ERROR, err_data, 1);
if (retval != ERROR_OK)
return retval;
/* Then we have a problem */
if (err_data[0] & 0x1) {
retval = adbg_ctrl_read(jtag_info, DBG_WB_REG_ERROR, err_data, 33);
if (retval != ERROR_OK)
return retval;
addr = (err_data[0] >> 1) | (err_data[1] << 31);
LOG_WARNING("WB bus error during burst write, address 0x%08" PRIx32 ", retrying!", addr);
bus_error_retries++;
if (bus_error_retries > MAX_BUS_ERRORS) {
LOG_ERROR("Max WB bus errors reached during burst read");
retval = ERROR_FAIL;
return retval;
}
/* Don't call retry_do(), a JTAG reset won't help a WB bus error */
/* Write 1 bit, to reset the error register */
err_data[0] = 1;
retval = adbg_ctrl_write(jtag_info, DBG_WB_REG_ERROR, err_data, 1);
if (retval != ERROR_OK)
return retval;
goto retry_full_write;
}
}
return ERROR_OK;
}
/* Currently hard set in functions to 32-bits */
static int or1k_adv_jtag_read_cpu(struct or1k_jtag *jtag_info,
uint32_t addr, int count, uint32_t *value)
{
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
return adbg_wb_burst_read(jtag_info, 4, count, addr, (uint8_t *)value);
}
static int or1k_adv_jtag_write_cpu(struct or1k_jtag *jtag_info,
uint32_t addr, int count, const uint32_t *value)
{
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
return adbg_wb_burst_write(jtag_info, (uint8_t *)value, 4, count, addr);
}
static int or1k_adv_cpu_stall(struct or1k_jtag *jtag_info, int action)
{
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
uint32_t cpu_cr;
retval = adbg_ctrl_read(jtag_info, DBG_CPU0_REG_STATUS, &cpu_cr, 2);
if (retval != ERROR_OK)
return retval;
if (action == CPU_STALL)
cpu_cr |= DBG_CPU_CR_STALL;
else
cpu_cr &= ~DBG_CPU_CR_STALL;
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
return adbg_ctrl_write(jtag_info, DBG_CPU0_REG_STATUS, &cpu_cr, 2);
}
static int or1k_adv_is_cpu_running(struct or1k_jtag *jtag_info, int *running)
{
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
uint32_t cpu_cr = 0;
retval = adbg_ctrl_read(jtag_info, DBG_CPU0_REG_STATUS, &cpu_cr, 2);
if (retval != ERROR_OK)
return retval;
if (cpu_cr & DBG_CPU_CR_STALL)
*running = 0;
else
*running = 1;
return ERROR_OK;
}
static int or1k_adv_cpu_reset(struct or1k_jtag *jtag_info, int action)
{
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
uint32_t cpu_cr;
retval = adbg_ctrl_read(jtag_info, DBG_CPU0_REG_STATUS, &cpu_cr, 2);
if (retval != ERROR_OK)
return retval;
if (action == CPU_RESET)
cpu_cr |= DBG_CPU_CR_RESET;
else
cpu_cr &= ~DBG_CPU_CR_RESET;
retval = adbg_select_module(jtag_info, DC_CPU0);
if (retval != ERROR_OK)
return retval;
return adbg_ctrl_write(jtag_info, DBG_CPU0_REG_STATUS, &cpu_cr, 2);
}
static int or1k_adv_jtag_read_memory(struct or1k_jtag *jtag_info,
uint32_t addr, uint32_t size, int count, uint8_t *buffer)
{
LOG_DEBUG("Reading WB%" PRId32 " at 0x%08" PRIx32, size * 8, addr);
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_WISHBONE);
if (retval != ERROR_OK)
return retval;
int block_count_left = count;
uint32_t block_count_address = addr;
uint8_t *block_count_buffer = buffer;
while (block_count_left) {
int blocks_this_round = (block_count_left > MAX_BURST_SIZE) ?
MAX_BURST_SIZE : block_count_left;
retval = adbg_wb_burst_read(jtag_info, size, blocks_this_round,
block_count_address, block_count_buffer);
if (retval != ERROR_OK)
return retval;
block_count_left -= blocks_this_round;
block_count_address += size * MAX_BURST_SIZE;
block_count_buffer += size * MAX_BURST_SIZE;
}
/* The adv_debug_if always return words and half words in
* little-endian order no matter what the target endian is.
* So if the target endian is big, change the order.
*/
struct target *target = jtag_info->target;
if ((target->endianness == TARGET_BIG_ENDIAN) && (size != 1)) {
switch (size) {
case 4:
buf_bswap32(buffer, buffer, size * count);
break;
case 2:
buf_bswap16(buffer, buffer, size * count);
break;
}
}
return ERROR_OK;
}
static int or1k_adv_jtag_write_memory(struct or1k_jtag *jtag_info,
uint32_t addr, uint32_t size, int count, const uint8_t *buffer)
{
LOG_DEBUG("Writing WB%" PRId32 " at 0x%08" PRIx32, size * 8, addr);
int retval;
if (!jtag_info->or1k_jtag_inited) {
retval = or1k_adv_jtag_init(jtag_info);
if (retval != ERROR_OK)
return retval;
}
retval = adbg_select_module(jtag_info, DC_WISHBONE);
if (retval != ERROR_OK)
return retval;
/* The adv_debug_if wants words and half words in little-endian
* order no matter what the target endian is. So if the target
* endian is big, change the order.
*/
void *t = NULL;
struct target *target = jtag_info->target;
if ((target->endianness == TARGET_BIG_ENDIAN) && (size != 1)) {
t = malloc(count * size * sizeof(uint8_t));
if (t == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
switch (size) {
case 4:
buf_bswap32(t, buffer, size * count);
break;
case 2:
buf_bswap16(t, buffer, size * count);
break;
}
buffer = t;
}
int block_count_left = count;
uint32_t block_count_address = addr;
uint8_t *block_count_buffer = (uint8_t *)buffer;
while (block_count_left) {
int blocks_this_round = (block_count_left > MAX_BURST_SIZE) ?
MAX_BURST_SIZE : block_count_left;
retval = adbg_wb_burst_write(jtag_info, block_count_buffer,
size, blocks_this_round,
block_count_address);
if (retval != ERROR_OK) {
if (t != NULL)
free(t);
return retval;
}
block_count_left -= blocks_this_round;
block_count_address += size * MAX_BURST_SIZE;
block_count_buffer += size * MAX_BURST_SIZE;
}
if (t != NULL)
free(t);
return ERROR_OK;
}
static struct or1k_du or1k_du_adv = {
.name = "adv",
.options = ADBG_USE_HISPEED,
.or1k_jtag_init = or1k_adv_jtag_init,
.or1k_is_cpu_running = or1k_adv_is_cpu_running,
.or1k_cpu_stall = or1k_adv_cpu_stall,
.or1k_cpu_reset = or1k_adv_cpu_reset,
.or1k_jtag_read_cpu = or1k_adv_jtag_read_cpu,
.or1k_jtag_write_cpu = or1k_adv_jtag_write_cpu,
.or1k_jtag_read_memory = or1k_adv_jtag_read_memory,
.or1k_jtag_write_memory = or1k_adv_jtag_write_memory
};
int or1k_du_adv_register(void)
{
list_add_tail(&or1k_du_adv.list, &du_list);
return 0;
}