openocd/src/flash/nor/stm32f1x.c
Spencer Oliver aebe7596f6 stm32f1x: preserve user option byte data
The user is able to use 2bytes of the options byte data for whatever
purpose they wish. Make sure we preserve this during an option erase/write.

Change-Id: Ibf951b11c59a148e671b1eb47fdc9b4f49ccae15
Signed-off-by: Spencer Oliver <spen@spen-soft.co.uk>
Reviewed-on: http://openocd.zylin.com/983
Tested-by: jenkins
Reviewed-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
2012-12-31 19:08:01 +00:00

1560 lines
42 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* stm32x register locations */
#define FLASH_REG_BASE_B0 0x40022000
#define FLASH_REG_BASE_B1 0x40022040
#define STM32_FLASH_ACR 0x00
#define STM32_FLASH_KEYR 0x04
#define STM32_FLASH_OPTKEYR 0x08
#define STM32_FLASH_SR 0x0C
#define STM32_FLASH_CR 0x10
#define STM32_FLASH_AR 0x14
#define STM32_FLASH_OBR 0x1C
#define STM32_FLASH_WRPR 0x20
/* TODO: Check if code using these really should be hard coded to bank 0.
* There are valid cases, on dual flash devices the protection of the
* second bank is done on the bank0 reg's. */
#define STM32_FLASH_ACR_B0 0x40022000
#define STM32_FLASH_KEYR_B0 0x40022004
#define STM32_FLASH_OPTKEYR_B0 0x40022008
#define STM32_FLASH_SR_B0 0x4002200C
#define STM32_FLASH_CR_B0 0x40022010
#define STM32_FLASH_AR_B0 0x40022014
#define STM32_FLASH_OBR_B0 0x4002201C
#define STM32_FLASH_WRPR_B0 0x40022020
/* option byte location */
#define STM32_OB_RDP 0x1FFFF800
#define STM32_OB_USER 0x1FFFF802
#define STM32_OB_DATA0 0x1FFFF804
#define STM32_OB_DATA1 0x1FFFF806
#define STM32_OB_WRP0 0x1FFFF808
#define STM32_OB_WRP1 0x1FFFF80A
#define STM32_OB_WRP2 0x1FFFF80C
#define STM32_OB_WRP3 0x1FFFF80E
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_OPTPG (1 << 4)
#define FLASH_OPTER (1 << 5)
#define FLASH_STRT (1 << 6)
#define FLASH_LOCK (1 << 7)
#define FLASH_OPTWRE (1 << 9)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0)
#define FLASH_PGERR (1 << 2)
#define FLASH_WRPRTERR (1 << 4)
#define FLASH_EOP (1 << 5)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
#define OPT_BFB2 5 /* dual flash bank only */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* timeout values */
#define FLASH_WRITE_TIMEOUT 10
#define FLASH_ERASE_TIMEOUT 100
struct stm32x_options {
uint16_t RDP;
uint16_t user_options;
uint16_t user_data;
uint16_t protection[4];
};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
int ppage_size;
int probed;
bool has_dual_banks;
/* used to access dual flash bank stm32xl */
uint32_t register_base;
int user_data_offset;
};
static int stm32x_mass_erase(struct flash_bank *bank);
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count);
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = 0;
stm32x_info->has_dual_banks = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
return ERROR_OK;
}
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return reg + stm32x_info->register_base;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPRTERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
if (status & FLASH_PGERR) {
LOG_ERROR("stm32x device programming failed");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
FLASH_WRPRTERR | FLASH_PGERR);
}
return retval;
}
int stm32x_check_operation_supported(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
/* if we have a dual flash bank device then
* we need to perform option byte stuff on bank0 only */
if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
LOG_ERROR("Option Byte Operation's must use bank0");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current option bytes */
int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
stm32x_info->option_bytes.user_data = (optiondata >> stm32x_info->user_data_offset) & 0xffff;
stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
if (optiondata & (1 << OPT_READOUT))
LOG_INFO("Device Security Bit Set");
/* each bit refers to a 4bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
return ERROR_OK;
}
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current options */
stm32x_read_options(bank);
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* erase option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
/* clear readout protection and complementary option bytes
* this will also force a device unlock if set */
stm32x_info->option_bytes.RDP = 0x5AA5;
return ERROR_OK;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
return retval;
/* program option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
uint8_t opt_bytes[16];
target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.RDP);
target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user_options);
target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.user_data & 0xff);
target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.user_data >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection[0]);
target_buffer_set_u16(target, opt_bytes + 10, stm32x_info->option_bytes.protection[1]);
target_buffer_set_u16(target, opt_bytes + 12, stm32x_info->option_bytes.protection[2]);
target_buffer_set_u16(target, opt_bytes + 14, stm32x_info->option_bytes.protection[3]);
uint32_t offset = STM32_OB_RDP - bank->base;
retval = stm32x_write_block(bank, opt_bytes, offset, sizeof(opt_bytes) / 2);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
LOG_ERROR("working area required to erase options bytes");
return retval;
}
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t protection;
int i, s;
int num_bits;
int set;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
/* medium density - each protection bit is for 4 * 1K pages
* high density - each protection bit is for 2 * 2K pages */
num_bits = (bank->num_sectors / stm32x_info->ppage_size);
if (stm32x_info->ppage_size == 2) {
/* high density flash/connectivity line protection */
set = 1;
if (protection & (1 << 31))
set = 0;
/* bit 31 controls sector 62 - 255 protection for high density
* bit 31 controls sector 62 - 127 protection for connectivity line */
for (s = 62; s < bank->num_sectors; s++)
bank->sectors[s].is_protected = set;
if (bank->num_sectors > 61)
num_bits = 31;
for (i = 0; i < num_bits; i++) {
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
} else {
/* low/medium density flash protection */
for (i = 0; i < num_bits; i++) {
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
return stm32x_mass_erase(bank);
/* unlock flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
for (i = first; i <= last; i++) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
bank->base + bank->sectors[i].offset);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
int i, reg, bit;
int status;
uint32_t protection;
stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
if ((first % stm32x_info->ppage_size) != 0) {
LOG_WARNING("aligned start protect sector to a %d sector boundary",
stm32x_info->ppage_size);
first = first - (first % stm32x_info->ppage_size);
}
if (((last + 1) % stm32x_info->ppage_size) != 0) {
LOG_WARNING("aligned end protect sector to a %d sector boundary",
stm32x_info->ppage_size);
last++;
last = last - (last % stm32x_info->ppage_size);
last--;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
prot_reg[0] = (uint16_t)protection;
prot_reg[1] = (uint16_t)(protection >> 8);
prot_reg[2] = (uint16_t)(protection >> 16);
prot_reg[3] = (uint16_t)(protection >> 24);
if (stm32x_info->ppage_size == 2) {
/* high density flash */
/* bit 7 controls sector 62 - 255 protection */
if (last > 61) {
if (set)
prot_reg[3] &= ~(1 << 7);
else
prot_reg[3] |= (1 << 7);
}
if (first > 61)
first = 62;
if (last > 61)
last = 61;
for (i = first; i <= last; i++) {
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
} else {
/* medium density flash */
for (i = first; i <= last; i++) {
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
status = stm32x_erase_options(bank);
if (status != ERROR_OK)
return status;
stm32x_info->option_bytes.protection[0] = prot_reg[0];
stm32x_info->option_bytes.protection[1] = prot_reg[1];
stm32x_info->option_bytes.protection[2] = prot_reg[2];
stm32x_info->option_bytes.protection[3] = prot_reg[3];
return stm32x_write_options(bank);
}
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* see contrib/loaders/flash/stm32f1x.S for src */
static const uint8_t stm32x_flash_write_code[] = {
/* #define STM32_FLASH_SR_OFFSET 0x0C */
/* wait_fifo: */
0x16, 0x68, /* ldr r6, [r2, #0] */
0x00, 0x2e, /* cmp r6, #0 */
0x18, 0xd0, /* beq exit */
0x55, 0x68, /* ldr r5, [r2, #4] */
0xb5, 0x42, /* cmp r5, r6 */
0xf9, 0xd0, /* beq wait_fifo */
0x2e, 0x88, /* ldrh r6, [r5, #0] */
0x26, 0x80, /* strh r6, [r4, #0] */
0x02, 0x35, /* adds r5, #2 */
0x02, 0x34, /* adds r4, #2 */
/* busy: */
0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
0x01, 0x27, /* movs r7, #1 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd1, /* bne busy */
0x14, 0x27, /* movs r7, #0x14 */
0x3e, 0x42, /* tst r6, r7 */
0x08, 0xd1, /* bne error */
0x9d, 0x42, /* cmp r5, r3 */
0x01, 0xd3, /* bcc no_wrap */
0x15, 0x46, /* mov r5, r2 */
0x08, 0x35, /* adds r5, #8 */
/* no_wrap: */
0x55, 0x60, /* str r5, [r2, #4] */
0x01, 0x39, /* subs r1, r1, #1 */
0x00, 0x29, /* cmp r1, #0 */
0x02, 0xd0, /* beq exit */
0xe5, 0xe7, /* b wait_fifo */
/* error: */
0x00, 0x20, /* movs r0, #0 */
0x50, 0x60, /* str r0, [r2, #4] */
/* exit: */
0x30, 0x46, /* mov r0, r6 */
0x00, 0xbe, /* bkpt #0 */
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
buf_set_u32(reg_params[1].value, 0, 32, count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
LOG_ERROR("flash memory not erased before writing");
/* Clear but report errors */
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
}
if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
LOG_ERROR("flash memory write protected");
/* Clear but report errors */
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint8_t *new_buffer = NULL;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* If there's an odd number of bytes, the data has to be padded. Duplicate
* the buffer and use the normal code path with a single block write since
* it's probably cheaper than to special case the last odd write using
* discrete accesses. */
if (count & 1) {
new_buffer = malloc(count + 1);
if (new_buffer == NULL) {
LOG_ERROR("odd number of bytes to write and no memory for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write, padding with 0xff");
buffer = memcpy(new_buffer, buffer, count);
buffer[count++] = 0xff;
}
uint32_t words_remaining = count / 2;
int retval, retval2;
/* unlock flash registers */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
goto cleanup;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto cleanup;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
if (retval != ERROR_OK)
goto cleanup;
/* try using a block write */
retval = stm32x_write_block(bank, buffer, offset, words_remaining);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single halfword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
while (words_remaining > 0) {
uint16_t value;
memcpy(&value, buffer, sizeof(uint16_t));
retval = target_write_u16(target, bank->base + offset, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
words_remaining--;
buffer += 2;
offset += 2;
}
}
reset_pg_and_lock:
retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
cleanup:
if (new_buffer)
free(new_buffer);
return retval;
}
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
/* This check the device CPUID core register to detect
* the M0 from the M3 devices. */
struct target *target = bank->target;
uint32_t cpuid, device_id_register = 0;
/* Get the CPUID from the ARM Core
* http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
int retval = target_read_u32(target, 0xE000ED00, &cpuid);
if (retval != ERROR_OK)
return retval;
if (((cpuid >> 4) & 0xFFF) == 0xC20) {
/* 0xC20 is M0 devices */
device_id_register = 0x40015800;
} else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
/* 0xC23 is M3 devices */
device_id_register = 0xE0042000;
} else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
/* 0xC24 is M4 devices */
device_id_register = 0xE0042000;
} else {
LOG_ERROR("Cannot identify target as a stm32x");
return ERROR_FAIL;
}
/* read stm32 device id register */
retval = target_read_u32(target, device_id_register, device_id);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
{
struct target *target = bank->target;
uint32_t cpuid, flash_size_reg;
int retval = target_read_u32(target, 0xE000ED00, &cpuid);
if (retval != ERROR_OK)
return retval;
if (((cpuid >> 4) & 0xFFF) == 0xC20) {
/* 0xC20 is M0 devices */
flash_size_reg = 0x1FFFF7CC;
} else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
/* 0xC23 is M3 devices */
flash_size_reg = 0x1FFFF7E0;
} else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
/* 0xC24 is M4 devices */
flash_size_reg = 0x1FFFF7CC;
} else {
LOG_ERROR("Cannot identify target as a stm32x");
return ERROR_FAIL;
}
retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
int page_size;
uint32_t base_address = 0x08000000;
stm32x_info->probed = 0;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_data_offset = 10;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* set page size, protection granularity and max flash size depending on family */
switch (device_id & 0xfff) {
case 0x410: /* medium density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
break;
case 0x412: /* low density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
break;
case 0x414: /* high density */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
break;
case 0x418: /* connectivity line density */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
break;
case 0x420: /* value line density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
break;
case 0x422: /* stm32f30x */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
break;
case 0x428: /* value line High density */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
break;
case 0x430: /* xl line density (dual flash banks) */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 1024;
stm32x_info->has_dual_banks = true;
break;
case 0x432: /* stm32f37x */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
break;
case 0x440: /* stm32f0x */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
break;
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
/* get flash size from target. */
retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
if (stm32x_info->has_dual_banks) {
/* split reported size into matching bank */
if (bank->base != 0x08080000) {
/* bank 0 will be fixed 512k */
flash_size_in_kb = 512;
} else {
flash_size_in_kb -= 512;
/* bank1 also uses a register offset */
stm32x_info->register_base = FLASH_REG_BASE_B1;
base_address = 0x08080000;
}
}
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
int num_pages = flash_size_in_kb * 1024 / page_size;
/* check that calculation result makes sense */
assert(num_pages > 0);
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (i = 0; i < num_pages; i++) {
bank->sectors[i].offset = i * page_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
uint32_t device_id;
int printed;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &device_id);
if (retval != ERROR_OK)
return retval;
if ((device_id & 0xfff) == 0x410) {
printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x0000:
snprintf(buf, buf_size, "A");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
case 0x2001:
snprintf(buf, buf_size, "Z");
break;
case 0x2003:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x412) {
printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x414) {
printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x418) {
printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x420) {
printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x422) {
printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x428) {
printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x430) {
printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x432) {
printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x440) {
printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "1.0");
break;
case 0x2000:
snprintf(buf, buf_size, "2.0");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else {
snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x locked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "stm32x failed to unlock device");
return ERROR_OK;
}
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
command_print(CMD_CTX, "Option Byte Complement Error");
if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
command_print(CMD_CTX, "Readout Protection On");
else
command_print(CMD_CTX, "Readout Protection Off");
if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
command_print(CMD_CTX, "Software Watchdog");
else
command_print(CMD_CTX, "Hardware Watchdog");
if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
command_print(CMD_CTX, "Stop: No reset generated");
else
command_print(CMD_CTX, "Stop: Reset generated");
if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
command_print(CMD_CTX, "Standby: No reset generated");
else
command_print(CMD_CTX, "Standby: Reset generated");
if (stm32x_info->has_dual_banks) {
if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
command_print(CMD_CTX, "Boot: Bank 0");
else
command_print(CMD_CTX, "Boot: Bank 1");
}
command_print(CMD_CTX, "User Option0: 0x%02" PRIx8,
(optionbyte >> stm32x_info->user_data_offset) & 0xff);
command_print(CMD_CTX, "User Option1: 0x%02" PRIx8,
(optionbyte >> (stm32x_info->user_data_offset + 8)) & 0xff);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint16_t optionbyte = 0xF8;
if (CMD_ARGC < 4)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (ERROR_OK != retval)
return retval;
/* REVISIT: ignores some options which we will display...
* and doesn't insist on the specified syntax.
*/
/* OPT_RDWDGSW */
if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
optionbyte |= (1 << 0);
else /* REVISIT must be "HWWDG" then ... */
optionbyte &= ~(1 << 0);
/* OPT_RDRSTSTOP */
if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
optionbyte |= (1 << 1);
else /* REVISIT must be "RSTSTNDBY" then ... */
optionbyte &= ~(1 << 1);
/* OPT_RDRSTSTDBY */
if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
optionbyte |= (1 << 2);
else /* REVISIT must be "RSTSTOP" then ... */
optionbyte &= ~(1 << 2);
if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
/* OPT_BFB2 */
if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
optionbyte |= (1 << 3);
else
optionbyte &= ~(1 << 3);
}
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
stm32x_info->option_bytes.user_options = optionbyte;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD_CTX, "stm32x failed to write options");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x write options complete.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "stm32x mass erase complete");
} else
command_print(CMD_CTX, "stm32x mass erase failed");
return retval;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option byte.",
},
{
.name = "options_write",
.handler = stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP')",
.help = "Replace bits in device option byte.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32f1x",
.mode = COMMAND_ANY,
.help = "stm32f1x flash command group",
.usage = "",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32f1x_flash = {
.name = "stm32f1x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
};