openocd/src/flash/nand/mx2.c
Antonio Borneo b0759dfc53 flash/nand: review NAND driver interface
From struct nand_flash_controller :
- remove unused field register_commands;
- remove field controller_ready, exported but
  never referenced.
Remove dead code pointed by controller_ready.

Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
2011-01-02 19:49:36 +01:00

770 lines
24 KiB
C

/***************************************************************************
* Copyright (C) 2009 by Alexei Babich *
* Rezonans plc., Chelyabinsk, Russia *
* impatt@mail.ru *
* *
* Copyright (C) 2010 by Gaetan CARLIER *
* Trump s.a., Belgium *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/*
* Freescale iMX2* OpenOCD NAND Flash controller support.
* based on Freescale iMX3* OpenOCD NAND Flash controller support.
*/
/*
* driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @imx27
* tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #",
* "nand write # file 0", "nand verify"
*
* get_next_halfword_from_sram_buffer() not tested
* !! all function only tested with 2k page nand device; imx27_write_page
* writes the 4 MAIN_BUFFER's and is not compatible with < 2k page
* !! oob must be be used due to NFS bug
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "mx2.h"
#include <target/target.h>
/* This permits to print (in LOG_INFO) how much bytes
* has been written after a page read or write.
* This is useful when OpenOCD is used with a graphical
* front-end to estimate progression of the global read/write
*/
#undef _MX2_PRINT_STAT
//#define _MX2_PRINT_STAT
static const char target_not_halted_err_msg[] =
"target must be halted to use mx2 NAND flash controller";
static const char data_block_size_err_msg[] =
"minimal granularity is one half-word, %" PRId32 " is incorrect";
static const char sram_buffer_bounds_err_msg[] =
"trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
static const char get_status_register_err_msg[] = "can't get NAND status";
static uint32_t in_sram_address;
static unsigned char sign_of_sequental_byte_read;
static int initialize_nf_controller(struct nand_device *nand);
static int get_next_byte_from_sram_buffer(struct target * target, uint8_t * value);
static int get_next_halfword_from_sram_buffer(struct target * target,
uint16_t * value);
static int poll_for_complete_op(struct target * target, const char *text);
static int validate_target_state(struct nand_device *nand);
static int do_data_output(struct nand_device *nand);
static int imx27_command(struct nand_device *nand, uint8_t command);
static int imx27_address(struct nand_device *nand, uint8_t address);
NAND_DEVICE_COMMAND_HANDLER(imx27_nand_device_command)
{
struct mx2_nf_controller *mx2_nf_info;
int hwecc_needed;
int x;
mx2_nf_info = malloc(sizeof(struct mx2_nf_controller));
if (mx2_nf_info == NULL) {
LOG_ERROR("no memory for nand controller");
return ERROR_FAIL;
}
nand->controller_priv = mx2_nf_info;
mx2_nf_info->target = get_target(CMD_ARGV[1]);
if (mx2_nf_info->target == NULL) {
LOG_ERROR("target '%s' not defined", CMD_ARGV[1]);
return ERROR_FAIL;
}
if (CMD_ARGC < 3) {
LOG_ERROR("use \"nand device imx27 target noecc|hwecc\"");
return ERROR_FAIL;
}
/*
* check hwecc requirements
*/
hwecc_needed = strcmp(CMD_ARGV[2], "hwecc");
if (hwecc_needed == 0)
mx2_nf_info->flags.hw_ecc_enabled = 1;
else
mx2_nf_info->flags.hw_ecc_enabled = 0;
mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE;
mx2_nf_info->fin = MX2_NF_FIN_NONE;
mx2_nf_info->flags.target_little_endian =
(mx2_nf_info->target->endianness == TARGET_LITTLE_ENDIAN);
/*
* testing host endianess
*/
x = 1;
if (*(char *) &x == 1)
mx2_nf_info->flags.host_little_endian = 1;
else
mx2_nf_info->flags.host_little_endian = 0;
return ERROR_OK;
}
static int imx27_init(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int validate_target_result;
uint16_t buffsize_register_content;
uint32_t pcsr_register_content;
int retval;
uint16_t nand_status_content;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
target_read_u16(target, MX2_NF_BUFSIZ, &buffsize_register_content);
mx2_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
target_read_u32(target, MX2_FMCR, &pcsr_register_content);
if (!nand->bus_width) {
/* bus_width not yet defined. Read it from MX2_FMCR */
nand->bus_width =
(pcsr_register_content & MX2_FMCR_NF_16BIT_SEL) ? 16 : 8;
} else {
/* bus_width forced in soft. Sync it to MX2_FMCR */
pcsr_register_content |=
((nand->bus_width == 16) ? MX2_FMCR_NF_16BIT_SEL : 0x00000000);
target_write_u32(target, MX2_FMCR, pcsr_register_content);
}
if (nand->bus_width == 16)
LOG_DEBUG("MX2_NF : bus is 16-bit width");
else
LOG_DEBUG("MX2_NF : bus is 8-bit width");
if (!nand->page_size) {
nand->page_size =
(pcsr_register_content & MX2_FMCR_NF_FMS) ? 2048 : 512;
} else {
pcsr_register_content |=
((nand->page_size == 2048) ? MX2_FMCR_NF_FMS : 0x00000000);
target_write_u32(target, MX2_FMCR, pcsr_register_content);
}
if (mx2_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
LOG_ERROR("NAND controller have only 1 kb SRAM, so "
"pagesize 2048 is incompatible with it");
} else {
LOG_DEBUG("MX2_NF : NAND controller can handle pagesize of 2048");
}
initialize_nf_controller(nand);
retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_STATUS);
retval |= imx27_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return ERROR_FAIL;
}
target_read_u16(target, MX2_NF_MAIN_BUFFER0, &nand_status_content);
if (!(nand_status_content & 0x0080)) {
LOG_INFO("NAND read-only");
mx2_nf_info->flags.nand_readonly = 1;
} else {
mx2_nf_info->flags.nand_readonly = 0;
}
return ERROR_OK;
}
static int imx27_read_data(struct nand_device *nand, void *data)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int validate_target_result;
int try_data_output_from_nand_chip;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
/*
* get data from nand chip
*/
try_data_output_from_nand_chip = do_data_output(nand);
if (try_data_output_from_nand_chip != ERROR_OK) {
LOG_ERROR("imx27_read_data : read data failed : '%x'",
try_data_output_from_nand_chip);
return try_data_output_from_nand_chip;
}
if (nand->bus_width == 16)
get_next_halfword_from_sram_buffer(target, data);
else
get_next_byte_from_sram_buffer(target, data);
return ERROR_OK;
}
static int imx27_write_data(struct nand_device *nand, uint16_t data)
{
LOG_ERROR("write_data() not implemented");
return ERROR_NAND_OPERATION_FAILED;
}
static int imx27_reset(struct nand_device *nand)
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
initialize_nf_controller(nand);
return ERROR_OK;
}
static int imx27_command(struct nand_device *nand, uint8_t command)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int validate_target_result;
int poll_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
switch(command) {
case NAND_CMD_READOOB:
command = NAND_CMD_READ0;
/* set read point for data_read() and read_block_data() to
* spare area in SRAM buffer
*/
in_sram_address = MX2_NF_SPARE_BUFFER0;
break;
case NAND_CMD_READ1:
command = NAND_CMD_READ0;
/*
* offset == one half of page size
*/
in_sram_address =
MX2_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
break;
default:
in_sram_address = MX2_NF_MAIN_BUFFER0;
break;
}
target_write_u16(target, MX2_NF_FCMD, command);
/*
* start command input operation (set MX2_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FCI);
poll_result = poll_for_complete_op(target, "command");
if (poll_result != ERROR_OK)
return poll_result;
/*
* reset cursor to begin of the buffer
*/
sign_of_sequental_byte_read = 0;
/* Handle special read command and adjust NF_CFG2(FDO) */
switch(command) {
case NAND_CMD_READID:
mx2_nf_info->optype = MX2_NF_DATAOUT_NANDID;
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
break;
case NAND_CMD_STATUS:
mx2_nf_info->optype = MX2_NF_DATAOUT_NANDSTATUS;
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
target_write_u16 (target, MX2_NF_BUFADDR, 0);
in_sram_address = 0;
break;
case NAND_CMD_READ0:
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE;
break;
default:
/* Ohter command use the default 'One page data out' FDO */
mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE;
break;
}
return ERROR_OK;
}
static int imx27_address(struct nand_device *nand, uint8_t address)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int validate_target_result;
int poll_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
target_write_u16(target, MX2_NF_FADDR, address);
/*
* start address input operation (set MX2_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FAI);
poll_result = poll_for_complete_op(target, "address");
if (poll_result != ERROR_OK)
return poll_result;
return ERROR_OK;
}
static int imx27_nand_ready(struct nand_device *nand, int tout)
{
uint16_t poll_complete_status;
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int validate_target_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
do {
target_read_u16(target, MX2_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX2_NF_BIT_OP_DONE)
return tout;
alive_sleep(1);
}
while (tout-- > 0);
return tout;
}
static int imx27_write_page(struct nand_device *nand, uint32_t page,
uint8_t * data, uint32_t data_size, uint8_t * oob,
uint32_t oob_size)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int retval;
uint16_t nand_status_content;
uint16_t swap1, swap2, new_swap1;
int poll_result;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (!data) {
LOG_ERROR("nothing to program");
return ERROR_NAND_OPERATION_FAILED;
}
/*
* validate target state
*/
retval = validate_target_state(nand);
if (retval != ERROR_OK)
return retval;
in_sram_address = MX2_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_SEQIN);
retval |= imx27_address(nand, 0); //col
retval |= imx27_address(nand, 0); //col
retval |= imx27_address(nand, page & 0xff); //page address
retval |= imx27_address(nand, (page >> 8) & 0xff); //page address
retval |= imx27_address(nand, (page >> 16) & 0xff); //page address
target_write_buffer(target, MX2_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (mx2_nf_info->flags.hw_ecc_enabled) {
/*
* part of spare block will be overrided by hardware
* ECC generator
*/
LOG_DEBUG("part of spare block will be overrided "
"by hardware ECC generator");
}
target_write_buffer(target, MX2_NF_SPARE_BUFFER0, oob_size,
oob);
}
//BI-swap - work-around of imx27 NFC for NAND device with page == 2kb
target_read_u16(target, MX2_NF_MAIN_BUFFER3 + 464, &swap1);
if (oob) {
LOG_ERROR("Due to NFC Bug, oob is not correctly implemented "
"in mx2 driver");
return ERROR_NAND_OPERATION_FAILED;
}
//target_read_u16 (target, MX2_NF_SPARE_BUFFER3 + 4, &swap2);
swap2 = 0xffff; //Spare buffer unused forced to 0xffff
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MX2_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MX2_NF_SPARE_BUFFER3 + 4, swap2);
/*
* start data input operation (set MX2_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_BUFADDR, 0);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;
target_write_u16(target, MX2_NF_BUFADDR, 1);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;
target_write_u16(target, MX2_NF_BUFADDR, 2);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;
target_write_u16(target, MX2_NF_BUFADDR, 3);
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;
retval |= imx27_command(nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK)
return retval;
/*
* check status register
*/
retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_STATUS);
target_write_u16 (target, MX2_NF_BUFADDR, 0);
mx2_nf_info->optype = MX2_NF_DATAOUT_NANDSTATUS;
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR (get_status_register_err_msg);
return retval;
}
target_read_u16 (target, MX2_NF_MAIN_BUFFER0, &nand_status_content);
if (nand_status_content & 0x0001) {
/*
* page not correctly written
*/
return ERROR_NAND_OPERATION_FAILED;
}
#ifdef _MX2_PRINT_STAT
LOG_INFO("%d bytes newly written", data_size);
#endif
return ERROR_OK;
}
static int imx27_read_page(struct nand_device *nand, uint32_t page,
uint8_t * data, uint32_t data_size, uint8_t * oob,
uint32_t oob_size)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int retval;
uint16_t swap1, swap2, new_swap1;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
/*
* validate target state
*/
retval = validate_target_state(nand);
if (retval != ERROR_OK) {
return retval;
}
/* Reset address_cycles before imx27_command ?? */
retval = ERROR_OK;
retval |= imx27_command(nand, NAND_CMD_READ0);
retval |= imx27_address(nand, 0); //col
retval |= imx27_address(nand, 0); //col
retval |= imx27_address(nand, page & 0xff); //page address
retval |= imx27_address(nand, (page >> 8) & 0xff); //page address
retval |= imx27_address(nand, (page >> 16) & 0xff); //page address
retval |= imx27_command(nand, NAND_CMD_READSTART);
target_write_u16(target, MX2_NF_BUFADDR, 0);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 0");
return retval;
}
//Test nand page size to know how much MAIN_BUFFER must be written
target_write_u16(target, MX2_NF_BUFADDR, 1);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 1");
return retval;
}
target_write_u16(target, MX2_NF_BUFADDR, 2);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 2");
return retval;
}
target_write_u16(target, MX2_NF_BUFADDR, 3);
mx2_nf_info->fin = MX2_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MX2_NF : Error reading page 3");
return retval;
}
//BI-swap - work-around of imx27 NFC for NAND device with page == 2k
target_read_u16(target, MX2_NF_MAIN_BUFFER3 + 464, &swap1);
target_read_u16(target, MX2_NF_SPARE_BUFFER3 + 4, &swap2);
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MX2_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, MX2_NF_SPARE_BUFFER3 + 4, swap2);
if (data)
target_read_buffer(target, MX2_NF_MAIN_BUFFER0, data_size, data);
if (oob)
target_read_buffer(target, MX2_NF_SPARE_BUFFER0, oob_size,
oob);
#ifdef _MX2_PRINT_STAT
if (data_size > 0) {
/* When Operation Status is read (when page is erased),
* this function is used but data_size is null.
*/
LOG_INFO("%d bytes newly read", data_size);
}
#endif
return ERROR_OK;
}
static int initialize_nf_controller(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
uint16_t work_mode;
uint16_t temp;
/*
* resets NAND flash controller in zero time ? I dont know.
*/
target_write_u16(target, MX2_NF_CFG1, MX2_NF_BIT_RESET_EN);
work_mode = MX2_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN) {
LOG_DEBUG("MX2_NF : work in Big Endian mode");
work_mode |= MX2_NF_BIT_BE_EN;
} else {
LOG_DEBUG("MX2_NF : work in Little Endian mode");
}
if (mx2_nf_info->flags.hw_ecc_enabled) {
LOG_DEBUG("MX2_NF : work with ECC mode");
work_mode |= MX2_NF_BIT_ECC_EN;
} else {
LOG_DEBUG("MX2_NF : work without ECC mode");
}
target_write_u16(target, MX2_NF_CFG1, work_mode);
/*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/
target_write_u16(target, MX2_NF_BUFCFG, 2);
target_read_u16(target, MX2_NF_FWP, &temp);
if ((temp & 0x0007) == 1) {
LOG_ERROR("NAND flash is tight-locked, reset needed");
return ERROR_FAIL;
}
/*
* unlock NAND flash for write
*/
target_write_u16(target, MX2_NF_FWP, 4);
target_write_u16(target, MX2_NF_LOCKSTART, 0x0000);
target_write_u16(target, MX2_NF_LOCKEND, 0xFFFF);
/*
* 0x0000 means that first SRAM buffer @0xD800_0000 will be used
*/
target_write_u16(target, MX2_NF_BUFADDR, 0x0000);
/*
* address of SRAM buffer
*/
in_sram_address = MX2_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
return ERROR_OK;
}
static int get_next_byte_from_sram_buffer(struct target * target, uint8_t * value)
{
static uint8_t even_byte = 0;
uint16_t temp;
/*
* host-big_endian ??
*/
if (sign_of_sequental_byte_read == 0)
even_byte = 0;
if (in_sram_address > MX2_NF_LAST_BUFFER_ADDR) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
sign_of_sequental_byte_read = 0;
even_byte = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
target_read_u16(target, in_sram_address, &temp);
if (even_byte) {
*value = temp >> 8;
even_byte = 0;
in_sram_address += 2;
} else {
*value = temp & 0xff;
even_byte = 1;
}
}
sign_of_sequental_byte_read = 1;
return ERROR_OK;
}
static int get_next_halfword_from_sram_buffer(struct target * target,
uint16_t * value)
{
if (in_sram_address > MX2_NF_LAST_BUFFER_ADDR) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
target_read_u16(target, in_sram_address, value);
in_sram_address += 2;
}
return ERROR_OK;
}
static int poll_for_complete_op(struct target * target, const char *text)
{
uint16_t poll_complete_status;
for (int poll_cycle_count = 0; poll_cycle_count < 100; poll_cycle_count++) {
target_read_u16(target, MX2_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX2_NF_BIT_OP_DONE)
break;
usleep(10);
}
if (!(poll_complete_status & MX2_NF_BIT_OP_DONE)) {
LOG_ERROR("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int validate_target_state(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR(target_not_halted_err_msg);
return ERROR_NAND_OPERATION_FAILED;
}
if (mx2_nf_info->flags.target_little_endian !=
(target->endianness == TARGET_LITTLE_ENDIAN)) {
/*
* endianness changed after NAND controller probed
*/
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int do_data_output(struct nand_device *nand)
{
struct mx2_nf_controller *mx2_nf_info = nand->controller_priv;
struct target *target = mx2_nf_info->target;
int poll_result;
uint16_t ecc_status;
switch(mx2_nf_info->fin) {
case MX2_NF_FIN_DATAOUT:
/*
* start data output operation (set MX2_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_DATAOUT_TYPE(mx2_nf_info->optype));
poll_result = poll_for_complete_op(target, "data output");
if (poll_result != ERROR_OK)
return poll_result;
mx2_nf_info->fin = MX2_NF_FIN_NONE;
/*
* ECC stuff
*/
if ((mx2_nf_info->optype == MX2_NF_DATAOUT_PAGE) && mx2_nf_info->flags.hw_ecc_enabled) {
target_read_u16(target, MX2_NF_ECCSTATUS, &ecc_status);
switch(ecc_status & 0x000c) {
case 1 << 2:
LOG_INFO("main area readed with 1 (correctable) error");
break;
case 2 << 2:
LOG_INFO("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch(ecc_status & 0x0003) {
case 1:
LOG_INFO("spare area readed with 1 (correctable) error");
break;
case 2:
LOG_INFO("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
}
break;
case MX2_NF_FIN_NONE:
break;
}
return ERROR_OK;
}
struct nand_flash_controller imx27_nand_flash_controller = {
.name = "imx27",
.nand_device_command = &imx27_nand_device_command,
.init = &imx27_init,
.reset = &imx27_reset,
.command = &imx27_command,
.address = &imx27_address,
.write_data = &imx27_write_data,
.read_data = &imx27_read_data,
.write_page = &imx27_write_page,
.read_page = &imx27_read_page,
.nand_ready = &imx27_nand_ready,
};