openocd/src/flash/nor/cfi.c
Øyvind Harboe b6a8254065 flash: fix bug in error propagation of flash write_image
when a write/unlock/erase failed during write_image, then
an error was not propagated back up so e.g. flash write
image from tcl scripts would not throw an exception.

Also flash filling speed was printed even when the
operation failed. Output is now less confusing.

Signed-off-by: Øyvind Harboe <oyvind.harboe@zylin.com>
2010-06-14 12:27:58 +02:00

2809 lines
84 KiB
C

/***************************************************************************
* Copyright (C) 2005, 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* Copyright (C) 2009 Michael Schwingen *
* michael@schwingen.org *
* Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
* Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "cfi.h"
#include "non_cfi.h"
#include <target/arm.h>
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#define CFI_MAX_BUS_WIDTH 4
#define CFI_MAX_CHIP_WIDTH 4
/* defines internal maximum size for code fragment in cfi_intel_write_block() */
#define CFI_MAX_INTEL_CODESIZE 256
static struct cfi_unlock_addresses cfi_unlock_addresses[] =
{
[CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
[CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
};
/* CFI fixups foward declarations */
static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param);
static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param);
static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *flash, void *param);
/* fixup after reading cmdset 0002 primary query table */
static const struct cfi_fixup cfi_0002_fixups[] = {
{CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
{CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
{0, 0, NULL, NULL}
};
/* fixup after reading cmdset 0001 primary query table */
static const struct cfi_fixup cfi_0001_fixups[] = {
{0, 0, NULL, NULL}
};
static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
const struct cfi_fixup *f;
for (f = fixups; f->fixup; f++)
{
if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
{
f->fixup(bank, f->param);
}
}
}
/* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->x16_as_x8) offset *= 2;
/* while the sector list isn't built, only accesses to sector 0 work */
if (sector == 0)
return bank->base + offset * bank->bus_width;
else
{
if (!bank->sectors)
{
LOG_ERROR("BUG: sector list not yet built");
exit(-1);
}
return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
}
}
static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
{
int i;
/* clear whole buffer, to ensure bits that exceed the bus_width
* are set to zero
*/
for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
cmd_buf[i] = 0;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
{
for (i = bank->bus_width; i > 0; i--)
{
*cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
}
}
else
{
for (i = 1; i <= bank->bus_width; i++)
{
*cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
}
}
}
static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
{
uint8_t command[CFI_MAX_BUS_WIDTH];
cfi_command(bank, cmd, command);
return target_write_memory(bank->target, address, bank->bus_width, 1, command);
}
/* read unsigned 8-bit value from the bank
* flash banks are expected to be made of similar chips
* the query result should be the same for all
*/
static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
{
struct target *target = bank->target;
uint8_t data[CFI_MAX_BUS_WIDTH];
int retval;
retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
if (retval != ERROR_OK)
return retval;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
*val = data[0];
else
*val = data[bank->bus_width - 1];
return ERROR_OK;
}
/* read unsigned 8-bit value from the bank
* in case of a bank made of multiple chips,
* the individual values are ORed
*/
static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
{
struct target *target = bank->target;
uint8_t data[CFI_MAX_BUS_WIDTH];
int i;
int retval;
retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
if (retval != ERROR_OK)
return retval;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
{
for (i = 0; i < bank->bus_width / bank->chip_width; i++)
data[0] |= data[i];
*val = data[0];
}
else
{
uint8_t value = 0;
for (i = 0; i < bank->bus_width / bank->chip_width; i++)
value |= data[bank->bus_width - 1 - i];
*val = value;
}
return ERROR_OK;
}
static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
{
struct target *target = bank->target;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
uint8_t data[CFI_MAX_BUS_WIDTH * 2];
int retval;
if (cfi_info->x16_as_x8)
{
uint8_t i;
for (i = 0;i < 2;i++)
{
retval = target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
&data[i*bank->bus_width]);
if (retval != ERROR_OK)
return retval;
}
} else
{
retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
if (retval != ERROR_OK)
return retval;
}
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
*val = data[0] | data[bank->bus_width] << 8;
else
*val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
return ERROR_OK;
}
static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
{
struct target *target = bank->target;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
uint8_t data[CFI_MAX_BUS_WIDTH * 4];
int retval;
if (cfi_info->x16_as_x8)
{
uint8_t i;
for (i = 0;i < 4;i++)
{
retval = target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
&data[i*bank->bus_width]);
if (retval != ERROR_OK)
return retval;
}
}
else
{
retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
if (retval != ERROR_OK)
return retval;
}
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
*val = data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
else
*val = data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
return ERROR_OK;
}
static int cfi_reset(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int retval = ERROR_OK;
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
if (cfi_info->manufacturer == 0x20 &&
(cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
{
/* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
* so we send an extra 0xF0 reset to fix the bug */
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
{
return retval;
}
}
return retval;
}
static void cfi_intel_clear_status_register(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
exit(-1);
}
cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
}
static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
{
uint8_t status;
int retval = ERROR_OK;
for (;;)
{
if (timeout-- < 0)
{
LOG_ERROR("timeout while waiting for WSM to become ready");
return ERROR_FAIL;
}
retval = cfi_get_u8(bank, 0, 0x0, &status);
if (retval != ERROR_OK)
return retval;
if (status & 0x80)
break;
alive_sleep(1);
}
/* mask out bit 0 (reserved) */
status = status & 0xfe;
LOG_DEBUG("status: 0x%x", status);
if (status != 0x80)
{
LOG_ERROR("status register: 0x%x", status);
if (status & 0x2)
LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
if (status & 0x4)
LOG_ERROR("Program suspended");
if (status & 0x8)
LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
if (status & 0x10)
LOG_ERROR("Program Error / Error in Setting Lock-Bit");
if (status & 0x20)
LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
if (status & 0x40)
LOG_ERROR("Block Erase Suspended");
cfi_intel_clear_status_register(bank);
retval = ERROR_FAIL;
}
*val = status;
return retval;
}
static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
{
uint8_t status, oldstatus;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int retval;
retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
if (retval != ERROR_OK)
return retval;
do {
retval = cfi_get_u8(bank, 0, 0x0, &status);
if (retval != ERROR_OK)
return retval;
if ((status ^ oldstatus) & 0x40) {
if (status & cfi_info->status_poll_mask & 0x20) {
retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
if (retval != ERROR_OK)
return retval;
retval = cfi_get_u8(bank, 0, 0x0, &status);
if (retval != ERROR_OK)
return retval;
if ((status ^ oldstatus) & 0x40) {
LOG_ERROR("dq5 timeout, status: 0x%x", status);
return(ERROR_FLASH_OPERATION_FAILED);
} else {
LOG_DEBUG("status: 0x%x", status);
return(ERROR_OK);
}
}
} else { /* no toggle: finished, OK */
LOG_DEBUG("status: 0x%x", status);
return(ERROR_OK);
}
oldstatus = status;
alive_sleep(1);
} while (timeout-- > 0);
LOG_ERROR("timeout, status: 0x%x", status);
return(ERROR_FLASH_BUSY);
}
static int cfi_read_intel_pri_ext(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext;
if (cfi_info->pri_ext)
free(cfi_info->pri_ext);
pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
if (pri_ext == NULL)
{
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_info->pri_ext = pri_ext;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
if (retval != ERROR_OK)
return retval;
if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
{
if ((retval = cfi_reset(bank)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not read bank flash bank information");
return ERROR_FLASH_BANK_INVALID;
}
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
pri_ext->feature_support,
pri_ext->suspend_cmd_support,
pri_ext->blk_status_reg_mask);
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
(pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
(pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
if (retval != ERROR_OK)
return retval;
if (pri_ext->num_protection_fields != 1)
{
LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
}
retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
return ERROR_OK;
}
static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext;
if (cfi_info->pri_ext)
free(cfi_info->pri_ext);
pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
if (pri_ext == NULL)
{
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_info->pri_ext = pri_ext;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
if (retval != ERROR_OK)
return retval;
if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
{
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not read spansion bank information");
return ERROR_FLASH_BANK_INVALID;
}
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
pri_ext->EraseSuspend, pri_ext->BlkProt);
LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
(pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
(pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
/* default values for implementation specific workarounds */
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
pri_ext->_reversed_geometry = 0;
return ERROR_OK;
}
static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
{
int retval;
struct cfi_atmel_pri_ext atmel_pri_ext;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext;
if (cfi_info->pri_ext)
free(cfi_info->pri_ext);
pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
if (pri_ext == NULL)
{
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
/* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
* but a different primary extended query table.
* We read the atmel table, and prepare a valid AMD/Spansion query table.
*/
memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
cfi_info->pri_ext = pri_ext;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
if (retval != ERROR_OK)
return retval;
if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
{
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not read atmel bank information");
return ERROR_FLASH_BANK_INVALID;
}
pri_ext->pri[0] = atmel_pri_ext.pri[0];
pri_ext->pri[1] = atmel_pri_ext.pri[1];
pri_ext->pri[2] = atmel_pri_ext.pri[2];
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
pri_ext->major_version = atmel_pri_ext.major_version;
pri_ext->minor_version = atmel_pri_ext.minor_version;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
if (atmel_pri_ext.features & 0x02)
pri_ext->EraseSuspend = 2;
if (atmel_pri_ext.bottom_boot)
pri_ext->TopBottom = 2;
else
pri_ext->TopBottom = 3;
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
return ERROR_OK;
}
static int cfi_read_0002_pri_ext(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->manufacturer == CFI_MFR_ATMEL)
{
return cfi_read_atmel_pri_ext(bank);
}
else
{
return cfi_read_spansion_pri_ext(bank);
}
}
static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
pri_ext->pri[1], pri_ext->pri[2],
pri_ext->major_version, pri_ext->minor_version);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
(pri_ext->SiliconRevision) >> 2,
(pri_ext->SiliconRevision) & 0x03);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
pri_ext->EraseSuspend,
pri_ext->BlkProt);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
(pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
(pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
return ERROR_OK;
}
static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
(pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
(pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
return ERROR_OK;
}
/* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
*/
FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
{
struct cfi_flash_bank *cfi_info;
if (CMD_ARGC < 6)
{
LOG_WARNING("incomplete flash_bank cfi configuration");
return ERROR_FLASH_BANK_INVALID;
}
/* both widths must:
* - not exceed max value;
* - not be null;
* - be equal to a power of 2.
* bus must be wide enought to hold one chip */
if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
|| (bank->bus_width > CFI_MAX_BUS_WIDTH)
|| (bank->chip_width == 0)
|| (bank->bus_width == 0)
|| (bank->chip_width & (bank->chip_width - 1))
|| (bank->bus_width & (bank->bus_width - 1))
|| (bank->chip_width > bank->bus_width))
{
LOG_ERROR("chip and bus width have to specified in bytes");
return ERROR_FLASH_BANK_INVALID;
}
cfi_info = malloc(sizeof(struct cfi_flash_bank));
cfi_info->probed = 0;
cfi_info->erase_region_info = 0;
cfi_info->pri_ext = NULL;
bank->driver_priv = cfi_info;
cfi_info->write_algorithm = NULL;
cfi_info->x16_as_x8 = 0;
cfi_info->jedec_probe = 0;
cfi_info->not_cfi = 0;
for (unsigned i = 6; i < CMD_ARGC; i++)
{
if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
{
cfi_info->x16_as_x8 = 1;
}
else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
{
cfi_info->jedec_probe = 1;
}
}
cfi_info->write_algorithm = NULL;
/* bank wasn't probed yet */
cfi_info->qry[0] = 0xff;
return ERROR_OK;
}
static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int i;
cfi_intel_clear_status_register(bank);
for (i = first; i <= last; i++)
{
if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ), &status);
if (retval != ERROR_OK)
return retval;
if (status == 0x80)
bank->sectors[i].is_erased = 1;
else
{
if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
}
return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
}
static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
int i;
for (i = first; i <= last; i++)
{
if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
bank->sectors[i].is_erased = 1;
else
{
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
}
return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
}
static int cfi_erase(struct flash_bank *bank, int first, int last)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
{
return ERROR_FLASH_SECTOR_INVALID;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_erase(bank, first, last);
break;
case 2:
return cfi_spansion_erase(bank, first, last);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
int retry = 0;
int i;
/* if the device supports neither legacy lock/unlock (bit 3) nor
* instant individual block locking (bit 5).
*/
if (!(pri_ext->feature_support & 0x28))
return ERROR_FLASH_OPERATION_FAILED;
cfi_intel_clear_status_register(bank);
for (i = first; i <= last; i++)
{
if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
if (set)
{
if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
bank->sectors[i].is_protected = 1;
}
else
{
if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
bank->sectors[i].is_protected = 0;
}
/* instant individual block locking doesn't require reading of the status register */
if (!(pri_ext->feature_support & 0x20))
{
/* Clear lock bits operation may take up to 1.4s */
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 1400, &status);
if (retval != ERROR_OK)
return retval;
}
else
{
uint8_t block_status;
/* read block lock bit, to verify status */
if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
{
return retval;
}
retval = cfi_get_u8(bank, i, 0x2, &block_status);
if (retval != ERROR_OK)
return retval;
if ((block_status & 0x1) != set)
{
LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK)
{
return retval;
}
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 10, &status);
if (retval != ERROR_OK)
return retval;
if (retry > 10)
return ERROR_FLASH_OPERATION_FAILED;
else
{
i--;
retry++;
}
}
}
}
/* if the device doesn't support individual block lock bits set/clear,
* all blocks have been unlocked in parallel, so we set those that should be protected
*/
if ((!set) && (!(pri_ext->feature_support & 0x20)))
{
/* FIX!!! this code path is broken!!!
*
* The correct approach is:
*
* 1. read out current protection status
*
* 2. override read out protection status w/unprotected.
*
* 3. re-protect what should be protected.
*
*/
for (i = 0; i < bank->num_sectors; i++)
{
if (bank->sectors[i].is_protected == 1)
{
cfi_intel_clear_status_register(bank);
if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
{
return retval;
}
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 100, &status);
if (retval != ERROR_OK)
return retval;
}
}
}
return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
}
static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
{
LOG_ERROR("Invalid sector range");
return ERROR_FLASH_SECTOR_INVALID;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_protect(bank, set, first, last);
break;
default:
LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
return ERROR_FAIL;
}
}
/* Convert code image to target endian */
/* FIXME create general block conversion fcts in target.c?) */
static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count)
{
uint32_t i;
for (i = 0; i< count; i++)
{
target_buffer_set_u32(target, dest, *src);
dest += 4;
src++;
}
}
static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
{
struct target *target = bank->target;
uint8_t buf[CFI_MAX_BUS_WIDTH];
cfi_command(bank, cmd, buf);
switch (bank->bus_width)
{
case 1 :
return buf[0];
break;
case 2 :
return target_buffer_get_u16(target, buf);
break;
case 4 :
return target_buffer_get_u32(target, buf);
break;
default :
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return 0;
}
}
static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
struct reg_param reg_params[7];
struct arm_algorithm armv4_5_info;
struct working_area *source;
uint32_t buffer_size = 32768;
uint32_t write_command_val, busy_pattern_val, error_pattern_val;
/* algorithm register usage:
* r0: source address (in RAM)
* r1: target address (in Flash)
* r2: count
* r3: flash write command
* r4: status byte (returned to host)
* r5: busy test pattern
* r6: error test pattern
*/
static const uint32_t word_32_code[] = {
0xe4904004, /* loop: ldr r4, [r0], #4 */
0xe5813000, /* str r3, [r1] */
0xe5814000, /* str r4, [r1] */
0xe5914000, /* busy: ldr r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811004, /* add r1, r1 #4 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
static const uint32_t word_16_code[] = {
0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
0xe1c130b0, /* strh r3, [r1] */
0xe1c140b0, /* strh r4, [r1] */
0xe1d140b0, /* busy ldrh r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811002, /* add r1, r1 #2 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
static const uint32_t word_8_code[] = {
0xe4d04001, /* loop: ldrb r4, [r0], #1 */
0xe5c13000, /* strb r3, [r1] */
0xe5c14000, /* strb r4, [r1] */
0xe5d14000, /* busy ldrb r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811001, /* add r1, r1 #1 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
const uint32_t *target_code_src;
uint32_t target_code_size;
int retval = ERROR_OK;
cfi_intel_clear_status_register(bank);
armv4_5_info.common_magic = ARM_COMMON_MAGIC;
armv4_5_info.core_mode = ARM_MODE_SVC;
armv4_5_info.core_state = ARM_STATE_ARM;
/* If we are setting up the write_algorith, we need target_code_src */
/* if not we only need target_code_size. */
/* However, we don't want to create multiple code paths, so we */
/* do the unecessary evaluation of target_code_src, which the */
/* compiler will probably nicely optimize away if not needed */
/* prepare algorithm code for target endian */
switch (bank->bus_width)
{
case 1 :
target_code_src = word_8_code;
target_code_size = sizeof(word_8_code);
break;
case 2 :
target_code_src = word_16_code;
target_code_size = sizeof(word_16_code);
break;
case 4 :
target_code_src = word_32_code;
target_code_size = sizeof(word_32_code);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* flash write code */
if (!cfi_info->write_algorithm)
{
if (target_code_size > sizeof(target_code))
{
LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
/* Get memory for block write handler */
retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
if (retval != ERROR_OK)
{
LOG_WARNING("No working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
/* write algorithm code to working area */
retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
if (retval != ERROR_OK)
{
LOG_ERROR("Unable to write block write code to target");
goto cleanup;
}
}
/* Get a workspace buffer for the data to flash starting with 32k size.
Half size until buffer would be smaller 256 Bytem then fail back */
/* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
LOG_WARNING("no large enough working area available, can't do block memory writes");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup;
}
};
/* setup algo registers */
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
/* prepare command and status register patterns */
write_command_val = cfi_command_val(bank, 0x40);
busy_pattern_val = cfi_command_val(bank, 0x80);
error_pattern_val = cfi_command_val(bank, 0x7e);
LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
/* Programming main loop */
while (count > 0)
{
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
uint32_t wsm_error;
if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
{
goto cleanup;
}
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
/* Execute algorithm, assume breakpoint for last instruction */
retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
cfi_info->write_algorithm->address,
cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
10000, /* 10s should be enough for max. 32k of data */
&armv4_5_info);
/* On failure try a fall back to direct word writes */
if (retval != ERROR_OK)
{
cfi_intel_clear_status_register(bank);
LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
retval = ERROR_FLASH_OPERATION_FAILED;
/* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
/* FIXME To allow fall back or recovery, we must save the actual status
somewhere, so that a higher level code can start recovery. */
goto cleanup;
}
/* Check return value from algo code */
wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
if (wsm_error)
{
/* read status register (outputs debug inforation) */
uint8_t status;
cfi_intel_wait_status_busy(bank, 100, &status);
cfi_intel_clear_status_register(bank);
retval = ERROR_FLASH_OPERATION_FAILED;
goto cleanup;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
keep_alive();
}
/* free up resources */
cleanup:
if (source)
target_free_working_area(target, source);
if (cfi_info->write_algorithm)
{
target_free_working_area(target, cfi_info->write_algorithm);
cfi_info->write_algorithm = NULL;
}
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
destroy_reg_param(&reg_params[6]);
return retval;
}
static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct target *target = bank->target;
struct reg_param reg_params[10];
struct arm_algorithm armv4_5_info;
struct working_area *source;
uint32_t buffer_size = 32768;
uint32_t status;
int retval = ERROR_OK;
/* input parameters - */
/* R0 = source address */
/* R1 = destination address */
/* R2 = number of writes */
/* R3 = flash write command */
/* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
/* output parameters - */
/* R5 = 0x80 ok 0x00 bad */
/* temp registers - */
/* R6 = value read from flash to test status */
/* R7 = holding register */
/* unlock registers - */
/* R8 = unlock1_addr */
/* R9 = unlock1_cmd */
/* R10 = unlock2_addr */
/* R11 = unlock2_cmd */
static const uint32_t word_32_code[] = {
/* 00008100 <sp_32_code>: */
0xe4905004, /* ldr r5, [r0], #4 */
0xe5889000, /* str r9, [r8] */
0xe58ab000, /* str r11, [r10] */
0xe5883000, /* str r3, [r8] */
0xe5815000, /* str r5, [r1] */
0xe1a00000, /* nop */
/* */
/* 00008110 <sp_32_busy>: */
0xe5916000, /* ldr r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
0xe5916000, /* ldr r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
0x1a000004, /* bne 8154 <sp_32_done> */
/* */
/* 00008140 <sp_32_cont>: */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 8154 <sp_32_done> */
0xe2811004, /* add r1, r1, #4 ; 0x4 */
0xeaffffe8, /* b 8100 <sp_32_code> */
/* */
/* 00008154 <sp_32_done>: */
0xeafffffe /* b 8154 <sp_32_done> */
};
static const uint32_t word_16_code[] = {
/* 00008158 <sp_16_code>: */
0xe0d050b2, /* ldrh r5, [r0], #2 */
0xe1c890b0, /* strh r9, [r8] */
0xe1cab0b0, /* strh r11, [r10] */
0xe1c830b0, /* strh r3, [r8] */
0xe1c150b0, /* strh r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* */
/* 00008168 <sp_16_busy>: */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 8198 <sp_16_cont> */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 8168 <sp_16_busy> */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 8198 <sp_16_cont> */
0xe3a05000, /* mov r5, #0 ; 0x0 */
0x1a000004, /* bne 81ac <sp_16_done> */
/* */
/* 00008198 <sp_16_cont>: */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 81ac <sp_16_done> */
0xe2811002, /* add r1, r1, #2 ; 0x2 */
0xeaffffe8, /* b 8158 <sp_16_code> */
/* */
/* 000081ac <sp_16_done>: */
0xeafffffe /* b 81ac <sp_16_done> */
};
static const uint32_t word_16_code_dq7only[] = {
/* <sp_16_code>: */
0xe0d050b2, /* ldrh r5, [r0], #2 */
0xe1c890b0, /* strh r9, [r8] */
0xe1cab0b0, /* strh r11, [r10] */
0xe1c830b0, /* strh r3, [r8] */
0xe1c150b0, /* strh r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* */
/* <sp_16_busy>: */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe2177080, /* ands r7, #0x80 */
0x1afffffb, /* bne 8168 <sp_16_busy> */
/* */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 81ac <sp_16_done> */
0xe2811002, /* add r1, r1, #2 ; 0x2 */
0xeafffff0, /* b 8158 <sp_16_code> */
/* */
/* 000081ac <sp_16_done>: */
0xeafffffe /* b 81ac <sp_16_done> */
};
static const uint32_t word_8_code[] = {
/* 000081b0 <sp_16_code_end>: */
0xe4d05001, /* ldrb r5, [r0], #1 */
0xe5c89000, /* strb r9, [r8] */
0xe5cab000, /* strb r11, [r10] */
0xe5c83000, /* strb r3, [r8] */
0xe5c15000, /* strb r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* */
/* 000081c0 <sp_8_busy>: */
0xe5d16000, /* ldrb r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 81f0 <sp_8_cont> */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 81c0 <sp_8_busy> */
0xe5d16000, /* ldrb r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 81f0 <sp_8_cont> */
0xe3a05000, /* mov r5, #0 ; 0x0 */
0x1a000004, /* bne 8204 <sp_8_done> */
/* */
/* 000081f0 <sp_8_cont>: */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 8204 <sp_8_done> */
0xe2811001, /* add r1, r1, #1 ; 0x1 */
0xeaffffe8, /* b 81b0 <sp_16_code_end> */
/* */
/* 00008204 <sp_8_done>: */
0xeafffffe /* b 8204 <sp_8_done> */
};
armv4_5_info.common_magic = ARM_COMMON_MAGIC;
armv4_5_info.core_mode = ARM_MODE_SVC;
armv4_5_info.core_state = ARM_STATE_ARM;
int target_code_size;
const uint32_t *target_code_src;
switch (bank->bus_width)
{
case 1 :
target_code_src = word_8_code;
target_code_size = sizeof(word_8_code);
break;
case 2 :
/* Check for DQ5 support */
if( cfi_info->status_poll_mask & (1 << 5) )
{
target_code_src = word_16_code;
target_code_size = sizeof(word_16_code);
}
else
{
/* No DQ5 support. Use DQ7 DATA# polling only. */
target_code_src = word_16_code_dq7only;
target_code_size = sizeof(word_16_code_dq7only);
}
break;
case 4 :
target_code_src = word_32_code;
target_code_size = sizeof(word_32_code);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* flash write code */
if (!cfi_info->write_algorithm)
{
uint8_t *target_code;
/* convert bus-width dependent algorithm code to correct endiannes */
target_code = malloc(target_code_size);
if (target_code == NULL)
{
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
/* allocate working area */
retval = target_alloc_working_area(target, target_code_size,
&cfi_info->write_algorithm);
if (retval != ERROR_OK)
{
free(target_code);
return retval;
}
/* write algorithm code to working area */
if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
target_code_size, target_code)) != ERROR_OK)
{
free(target_code);
return retval;
}
free(target_code);
}
/* the following code still assumes target code is fixed 24*4 bytes */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (cfi_info->write_algorithm)
target_free_working_area(target, cfi_info->write_algorithm);
LOG_WARNING("not enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
while (count > 0)
{
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
retval = target_write_buffer(target, source->address, thisrun_count, buffer);
if (retval != ERROR_OK)
{
break;
}
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
cfi_info->write_algorithm->address,
cfi_info->write_algorithm->address + ((target_code_size) - 4),
10000, &armv4_5_info);
if (retval != ERROR_OK)
{
break;
}
status = buf_get_u32(reg_params[5].value, 0, 32);
if (status != 0x80)
{
LOG_ERROR("flash write block failed status: 0x%" PRIx32 , status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
}
target_free_all_working_areas(target);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
destroy_reg_param(&reg_params[6]);
destroy_reg_param(&reg_params[7]);
destroy_reg_param(&reg_params[8]);
destroy_reg_param(&reg_params[9]);
return retval;
}
static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
cfi_intel_clear_status_register(bank);
if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
{
return retval;
}
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max), &status);
if (retval != 0x80)
{
if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
/* Calculate buffer size and boundary mask */
/* buffersize is (buffer size per chip) * (number of chips) */
/* bufferwsize is buffersize in words */
uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* Check for valid range */
if (address & buffermask)
{
LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check for valid size */
if (wordcount > bufferwsize)
{
LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write to flash buffer */
cfi_intel_clear_status_register(bank);
/* Initiate buffer operation _*/
if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
{
return retval;
}
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max), &status);
if (retval != ERROR_OK)
return retval;
if (status != 0x80)
{
if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write buffer wordcount-1 and data words */
if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
{
return retval;
}
/* Commit write operation */
if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
{
return retval;
}
retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max), &status);
if (retval != ERROR_OK)
return retval;
if (status != 0x80)
{
if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct target *target = bank->target;
if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
{
return retval;
}
if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
{
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
/* Calculate buffer size and boundary mask */
/* buffersize is (buffer size per chip) * (number of chips) */
/* bufferwsize is buffersize in words */
uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* Check for valid range */
if (address & buffermask)
{
LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check for valid size */
if (wordcount > bufferwsize)
{
LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
// Unlock
if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
{
return retval;
}
// Buffer load command
if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
{
return retval;
}
/* Write buffer wordcount-1 and data words */
if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
{
return retval;
}
/* Commit write operation */
if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
{
return retval;
}
if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
{
if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_write_word(bank, word, address);
break;
case 2:
return cfi_spansion_write_word(bank, word, address);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_write_words(bank, word, wordcount, address);
break;
case 2:
return cfi_spansion_write_words(bank, word, wordcount, address);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t address = bank->base + offset;
uint32_t read_p;
int align; /* number of unaligned bytes */
uint8_t current_word[CFI_MAX_BUS_WIDTH];
int i;
int retval;
LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
(int)count, (unsigned)offset);
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
/* start at the first byte of the first word (bus_width size) */
read_p = address & ~(bank->bus_width - 1);
if ((align = address - read_p) != 0)
{
LOG_INFO("Fixup %d unaligned read head bytes", align);
/* read a complete word from flash */
if ((retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word)) != ERROR_OK)
return retval;
/* take only bytes we need */
for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
*buffer++ = current_word[i];
read_p += bank->bus_width;
}
align = count / bank->bus_width;
if (align)
{
if ((retval = target_read_memory(target, read_p, bank->bus_width, align, buffer)) != ERROR_OK)
return retval;
read_p += align * bank->bus_width;
buffer += align * bank->bus_width;
count -= align * bank->bus_width;
}
if (count)
{
LOG_INFO("Fixup %d unaligned read tail bytes", count);
/* read a complete word from flash */
if ((retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word)) != ERROR_OK)
return retval;
/* take only bytes we need */
for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
*buffer++ = current_word[i];
}
return ERROR_OK;
}
static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t address = bank->base + offset; /* address of first byte to be programmed */
uint32_t write_p;
int align; /* number of unaligned bytes */
int blk_count; /* number of bus_width bytes for block copy */
uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
int i;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
/* start at the first byte of the first word (bus_width size) */
write_p = address & ~(bank->bus_width - 1);
if ((align = address - write_p) != 0)
{
LOG_INFO("Fixup %d unaligned head bytes", align);
/* read a complete word from flash */
if ((retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word)) != ERROR_OK)
return retval;
/* replace only bytes that must be written */
for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
}
/* handle blocks of bus_size aligned bytes */
blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
switch (cfi_info->pri_id)
{
/* try block writes (fails without working area) */
case 1:
case 3:
retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
break;
case 2:
retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (retval == ERROR_OK)
{
/* Increment pointers and decrease count on succesful block write */
buffer += blk_count;
write_p += blk_count;
count -= blk_count;
}
else
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* Calculate buffer size and boundary mask */
/* buffersize is (buffer size per chip) * (number of chips) */
/* bufferwsize is buffersize in words */
uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* fall back to memory writes */
while (count >= (uint32_t)bank->bus_width)
{
int fallback;
if ((write_p & 0xff) == 0)
{
LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
}
fallback = 1;
if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
{
retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
if (retval == ERROR_OK)
{
buffer += buffersize;
write_p += buffersize;
count -= buffersize;
fallback = 0;
}
}
/* try the slow way? */
if (fallback)
{
for (i = 0; i < bank->bus_width; i++)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
count -= bank->bus_width;
}
}
}
else
return retval;
}
/* return to read array mode, so we can read from flash again for padding */
if ((retval = cfi_reset(bank)) != ERROR_OK)
{
return retval;
}
/* handle unaligned tail bytes */
if (count > 0)
{
LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
/* read a complete word from flash */
if ((retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word)) != ERROR_OK)
return retval;
/* replace only bytes that must be written */
for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
}
/* return to read array mode */
return cfi_reset(bank);
}
static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *bank, void *param)
{
(void) param;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
pri_ext->_reversed_geometry = 1;
}
static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
{
int i;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
(void) param;
if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
{
LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
{
int j = (cfi_info->num_erase_regions - 1) - i;
uint32_t swap;
swap = cfi_info->erase_region_info[i];
cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
cfi_info->erase_region_info[j] = swap;
}
}
}
static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct cfi_unlock_addresses *unlock_addresses = param;
pri_ext->_unlock1 = unlock_addresses->unlock1;
pri_ext->_unlock2 = unlock_addresses->unlock2;
}
static int cfi_query_string(struct flash_bank *bank, int address)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int retval;
if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
{
return retval;
}
retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
{
if ((retval = cfi_reset(bank)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not probe bank: no QRY");
return ERROR_FLASH_BANK_INVALID;
}
return ERROR_OK;
}
static int cfi_probe(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
int num_sectors = 0;
int i;
int sector = 0;
uint32_t unlock1 = 0x555;
uint32_t unlock2 = 0x2aa;
int retval;
uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
cfi_info->probed = 0;
if (bank->sectors)
{
free(bank->sectors);
bank->sectors = NULL;
}
if(cfi_info->erase_region_info)
{
free(cfi_info->erase_region_info);
cfi_info->erase_region_info = NULL;
}
/* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
* while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
*/
if (cfi_info->jedec_probe)
{
unlock1 = 0x5555;
unlock2 = 0x2aaa;
}
/* switch to read identifier codes mode ("AUTOSELECT") */
if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, value_buf0)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_memory(target, flash_address(bank, 0, 0x01), bank->bus_width, 1, value_buf1)) != ERROR_OK)
{
return retval;
}
switch (bank->chip_width) {
case 1:
cfi_info->manufacturer = *value_buf0;
cfi_info->device_id = *value_buf1;
break;
case 2:
cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
break;
case 4:
cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
break;
default:
LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory", bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
/* switch back to read array mode */
if ((retval = cfi_reset(bank)) != ERROR_OK)
{
return retval;
}
/* check device/manufacturer ID for known non-CFI flashes. */
cfi_fixup_non_cfi(bank);
/* query only if this is a CFI compatible flash,
* otherwise the relevant info has already been filled in
*/
if (cfi_info->not_cfi == 0)
{
/* enter CFI query mode
* according to JEDEC Standard No. 68.01,
* a single bus sequence with address = 0x55, data = 0x98 should put
* the device into CFI query mode.
*
* SST flashes clearly violate this, and we will consider them incompatbile for now
*/
retval = cfi_query_string(bank, 0x55);
if (retval != ERROR_OK)
{
/*
* Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
* be harmless enough:
*
* http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
*/
LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
retval = cfi_query_string(bank, 0x555);
}
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
(cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
(cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
(cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
(cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
(1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
(1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
(1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
uint8_t data;
retval = cfi_query_u8(bank, 0, 0x27, &data);
if (retval != ERROR_OK)
return retval;
cfi_info->dev_size = 1 << data;
retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
if (cfi_info->num_erase_regions)
{
cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
for (i = 0; i < cfi_info->num_erase_regions; i++)
{
retval = cfi_query_u32(bank, 0, 0x2d + (4 * i), &cfi_info->erase_region_info[i]);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
i,
(cfi_info->erase_region_info[i] & 0xffff) + 1,
(cfi_info->erase_region_info[i] >> 16) * 256);
}
}
else
{
cfi_info->erase_region_info = NULL;
}
/* We need to read the primary algorithm extended query table before calculating
* the sector layout to be able to apply fixups
*/
switch (cfi_info->pri_id)
{
/* Intel command set (standard and extended) */
case 0x0001:
case 0x0003:
cfi_read_intel_pri_ext(bank);
break;
/* AMD/Spansion, Atmel, ... command set */
case 0x0002:
cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
cfi_read_0002_pri_ext(bank);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
/* return to read array mode
* we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
*/
if ((retval = cfi_reset(bank)) != ERROR_OK)
{
return retval;
}
} /* end CFI case */
/* apply fixups depending on the primary command set */
switch (cfi_info->pri_id)
{
/* Intel command set (standard and extended) */
case 0x0001:
case 0x0003:
cfi_fixup(bank, cfi_0001_fixups);
break;
/* AMD/Spansion, Atmel, ... command set */
case 0x0002:
cfi_fixup(bank, cfi_0002_fixups);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
{
LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
}
if (cfi_info->num_erase_regions == 0)
{
/* a device might have only one erase block, spanning the whole device */
bank->num_sectors = 1;
bank->sectors = malloc(sizeof(struct flash_sector));
bank->sectors[sector].offset = 0x0;
bank->sectors[sector].size = bank->size;
bank->sectors[sector].is_erased = -1;
bank->sectors[sector].is_protected = -1;
}
else
{
uint32_t offset = 0;
for (i = 0; i < cfi_info->num_erase_regions; i++)
{
num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
}
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
for (i = 0; i < cfi_info->num_erase_regions; i++)
{
uint32_t j;
for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
{
bank->sectors[sector].offset = offset;
bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
offset += bank->sectors[sector].size;
bank->sectors[sector].is_erased = -1;
bank->sectors[sector].is_protected = -1;
sector++;
}
}
if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
{
LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
(cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
}
}
cfi_info->probed = 1;
return ERROR_OK;
}
static int cfi_auto_probe(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->probed)
return ERROR_OK;
return cfi_probe(bank);
}
static int cfi_intel_protect_check(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
int i;
/* check if block lock bits are supported on this device */
if (!(pri_ext->blk_status_reg_mask & 0x1))
return ERROR_FLASH_OPERATION_FAILED;
if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
{
return retval;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint8_t block_status;
retval = cfi_get_u8(bank, i, 0x2, &block_status);
if (retval != ERROR_OK)
return retval;
if (block_status & 1)
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
}
static int cfi_spansion_protect_check(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
int i;
if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
{
return retval;
}
if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
{
return retval;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint8_t block_status;
retval = cfi_get_u8(bank, i, 0x2, &block_status);
if (retval != ERROR_OK)
return retval;
if (block_status & 1)
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
}
static int cfi_protect_check(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_protect_check(bank);
break;
case 2:
return cfi_spansion_protect_check(bank);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->qry[0] == 0xff)
{
printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
return ERROR_OK;
}
if (cfi_info->not_cfi == 0)
printed = snprintf(buf, buf_size, "\ncfi information:\n");
else
printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
cfi_info->manufacturer, cfi_info->device_id);
buf += printed;
buf_size -= printed;
if (cfi_info->not_cfi == 0)
{
printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x\n",
(cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
(cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
(cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
(cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
1 << cfi_info->word_write_timeout_typ,
1 << cfi_info->buf_write_timeout_typ,
1 << cfi_info->block_erase_timeout_typ,
1 << cfi_info->chip_erase_timeout_typ);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
(1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
(1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
(1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
(1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
cfi_info->dev_size,
cfi_info->interface_desc,
1 << cfi_info->max_buf_write_size);
buf += printed;
buf_size -= printed;
switch (cfi_info->pri_id)
{
case 1:
case 3:
cfi_intel_info(bank, buf, buf_size);
break;
case 2:
cfi_spansion_info(bank, buf, buf_size);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
}
return ERROR_OK;
}
struct flash_driver cfi_flash = {
.name = "cfi",
.flash_bank_command = cfi_flash_bank_command,
.erase = cfi_erase,
.protect = cfi_protect,
.write = cfi_write,
.read = cfi_read,
.probe = cfi_probe,
.auto_probe = cfi_auto_probe,
/* FIXME: access flash at bus_width size */
.erase_check = default_flash_blank_check,
.protect_check = cfi_protect_check,
.info = get_cfi_info,
};