openocd/src/flash/nor/tms470.c

1160 lines
34 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2007,2008 by Christopher Kilgour *
* techie |_at_| whiterocker |_dot_| com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
/* ----------------------------------------------------------------------
* Internal Support, Helpers
* ---------------------------------------------------------------------- */
struct tms470_flash_bank {
unsigned ordinal;
/* device identification register */
uint32_t device_ident_reg;
uint32_t silicon_version;
uint32_t technology_family;
uint32_t rom_flash;
uint32_t part_number;
const char *part_name;
};
static const struct flash_sector tms470r1a256_sectors[] = {
{0x00000000, 0x00002000, -1, -1},
{0x00002000, 0x00002000, -1, -1},
{0x00004000, 0x00002000, -1, -1},
{0x00006000, 0x00002000, -1, -1},
{0x00008000, 0x00008000, -1, -1},
{0x00010000, 0x00008000, -1, -1},
{0x00018000, 0x00008000, -1, -1},
{0x00020000, 0x00008000, -1, -1},
{0x00028000, 0x00008000, -1, -1},
{0x00030000, 0x00008000, -1, -1},
{0x00038000, 0x00002000, -1, -1},
{0x0003A000, 0x00002000, -1, -1},
{0x0003C000, 0x00002000, -1, -1},
{0x0003E000, 0x00002000, -1, -1},
};
#define TMS470R1A256_NUM_SECTORS \
ARRAY_SIZE(tms470r1a256_sectors)
static const struct flash_sector tms470r1a288_bank0_sectors[] = {
{0x00000000, 0x00002000, -1, -1},
{0x00002000, 0x00002000, -1, -1},
{0x00004000, 0x00002000, -1, -1},
{0x00006000, 0x00002000, -1, -1},
};
#define TMS470R1A288_BANK0_NUM_SECTORS \
ARRAY_SIZE(tms470r1a288_bank0_sectors)
static const struct flash_sector tms470r1a288_bank1_sectors[] = {
{0x00040000, 0x00010000, -1, -1},
{0x00050000, 0x00010000, -1, -1},
{0x00060000, 0x00010000, -1, -1},
{0x00070000, 0x00010000, -1, -1},
};
#define TMS470R1A288_BANK1_NUM_SECTORS \
ARRAY_SIZE(tms470r1a288_bank1_sectors)
static const struct flash_sector tms470r1a384_bank0_sectors[] = {
{0x00000000, 0x00002000, -1, -1},
{0x00002000, 0x00002000, -1, -1},
{0x00004000, 0x00004000, -1, -1},
{0x00008000, 0x00004000, -1, -1},
{0x0000C000, 0x00004000, -1, -1},
{0x00010000, 0x00004000, -1, -1},
{0x00014000, 0x00004000, -1, -1},
{0x00018000, 0x00002000, -1, -1},
{0x0001C000, 0x00002000, -1, -1},
{0x0001E000, 0x00002000, -1, -1},
};
#define TMS470R1A384_BANK0_NUM_SECTORS \
ARRAY_SIZE(tms470r1a384_bank0_sectors)
static const struct flash_sector tms470r1a384_bank1_sectors[] = {
{0x00020000, 0x00008000, -1, -1},
{0x00028000, 0x00008000, -1, -1},
{0x00030000, 0x00008000, -1, -1},
{0x00038000, 0x00008000, -1, -1},
};
#define TMS470R1A384_BANK1_NUM_SECTORS \
ARRAY_SIZE(tms470r1a384_bank1_sectors)
static const struct flash_sector tms470r1a384_bank2_sectors[] = {
{0x00040000, 0x00008000, -1, -1},
{0x00048000, 0x00008000, -1, -1},
{0x00050000, 0x00008000, -1, -1},
{0x00058000, 0x00008000, -1, -1},
};
#define TMS470R1A384_BANK2_NUM_SECTORS \
ARRAY_SIZE(tms470r1a384_bank2_sectors)
/* ---------------------------------------------------------------------- */
static int tms470_read_part_info(struct flash_bank *bank)
{
struct tms470_flash_bank *tms470_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t device_ident_reg;
uint32_t silicon_version;
uint32_t technology_family;
uint32_t rom_flash;
uint32_t part_number;
const char *part_name;
/* we shall not rely on the caller in this test, this function allocates memory,
thus and executing the code more than once may cause memory leak */
if (tms470_info->device_ident_reg)
return ERROR_OK;
/* read and parse the device identification register */
target_read_u32(target, 0xFFFFFFF0, &device_ident_reg);
LOG_INFO("device_ident_reg = 0x%08" PRIx32 "", device_ident_reg);
if ((device_ident_reg & 7) == 0) {
LOG_WARNING("Cannot identify target as a TMS470 family.");
return ERROR_FLASH_OPERATION_FAILED;
}
silicon_version = (device_ident_reg >> 12) & 0xF;
technology_family = (device_ident_reg >> 11) & 1;
rom_flash = (device_ident_reg >> 10) & 1;
part_number = (device_ident_reg >> 3) & 0x7f;
free(bank->sectors);
bank->sectors = NULL;
bank->num_sectors = 0;
/*
* If the part number is known, determine if the flash bank is valid
* based on the base address being within the known flash bank
* ranges. Then fixup/complete the remaining fields of the flash
* bank structure.
*/
switch (part_number) {
case 0x0a:
part_name = "TMS470R1A256";
if (bank->base >= 0x00040000) {
LOG_ERROR("No %s flash bank contains base address "
TARGET_ADDR_FMT ".",
part_name,
bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
tms470_info->ordinal = 0;
bank->base = 0x00000000;
bank->size = 256 * 1024;
bank->num_sectors = TMS470R1A256_NUM_SECTORS;
bank->sectors = malloc(sizeof(tms470r1a256_sectors));
if (!bank->sectors)
return ERROR_FLASH_OPERATION_FAILED;
(void)memcpy(bank->sectors, tms470r1a256_sectors, sizeof(tms470r1a256_sectors));
break;
case 0x2b:
part_name = "TMS470R1A288";
if (bank->base < 0x00008000) {
tms470_info->ordinal = 0;
bank->base = 0x00000000;
bank->size = 32 * 1024;
bank->num_sectors = TMS470R1A288_BANK0_NUM_SECTORS;
bank->sectors = malloc(sizeof(tms470r1a288_bank0_sectors));
if (!bank->sectors)
return ERROR_FLASH_OPERATION_FAILED;
(void)memcpy(bank->sectors, tms470r1a288_bank0_sectors,
sizeof(tms470r1a288_bank0_sectors));
} else if ((bank->base >= 0x00040000) && (bank->base < 0x00080000)) {
tms470_info->ordinal = 1;
bank->base = 0x00040000;
bank->size = 256 * 1024;
bank->num_sectors = TMS470R1A288_BANK1_NUM_SECTORS;
bank->sectors = malloc(sizeof(tms470r1a288_bank1_sectors));
if (!bank->sectors)
return ERROR_FLASH_OPERATION_FAILED;
(void)memcpy(bank->sectors, tms470r1a288_bank1_sectors,
sizeof(tms470r1a288_bank1_sectors));
} else {
LOG_ERROR("No %s flash bank contains base address " TARGET_ADDR_FMT ".",
part_name, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
break;
case 0x2d:
part_name = "TMS470R1A384";
if (bank->base < 0x00020000) {
tms470_info->ordinal = 0;
bank->base = 0x00000000;
bank->size = 128 * 1024;
bank->num_sectors = TMS470R1A384_BANK0_NUM_SECTORS;
bank->sectors = malloc(sizeof(tms470r1a384_bank0_sectors));
if (!bank->sectors)
return ERROR_FLASH_OPERATION_FAILED;
(void)memcpy(bank->sectors, tms470r1a384_bank0_sectors,
sizeof(tms470r1a384_bank0_sectors));
} else if ((bank->base >= 0x00020000) && (bank->base < 0x00040000)) {
tms470_info->ordinal = 1;
bank->base = 0x00020000;
bank->size = 128 * 1024;
bank->num_sectors = TMS470R1A384_BANK1_NUM_SECTORS;
bank->sectors = malloc(sizeof(tms470r1a384_bank1_sectors));
if (!bank->sectors)
return ERROR_FLASH_OPERATION_FAILED;
(void)memcpy(bank->sectors, tms470r1a384_bank1_sectors,
sizeof(tms470r1a384_bank1_sectors));
} else if ((bank->base >= 0x00040000) && (bank->base < 0x00060000)) {
tms470_info->ordinal = 2;
bank->base = 0x00040000;
bank->size = 128 * 1024;
bank->num_sectors = TMS470R1A384_BANK2_NUM_SECTORS;
bank->sectors = malloc(sizeof(tms470r1a384_bank2_sectors));
if (!bank->sectors)
return ERROR_FLASH_OPERATION_FAILED;
(void)memcpy(bank->sectors, tms470r1a384_bank2_sectors,
sizeof(tms470r1a384_bank2_sectors));
} else {
LOG_ERROR("No %s flash bank contains base address " TARGET_ADDR_FMT ".",
part_name, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
break;
default:
LOG_WARNING("Could not identify part 0x%02x as a member of the TMS470 family.",
(unsigned)part_number);
return ERROR_FLASH_OPERATION_FAILED;
}
/* turn off memory selects */
target_write_u32(target, 0xFFFFFFE4, 0x00000000);
target_write_u32(target, 0xFFFFFFE0, 0x00000000);
LOG_INFO("Identified %s, ver=%d, core=%s, nvmem=%s.",
part_name,
(int)(silicon_version),
(technology_family ? "1.8v" : "3.3v"),
(rom_flash ? "rom" : "flash"));
tms470_info->device_ident_reg = device_ident_reg;
tms470_info->silicon_version = silicon_version;
tms470_info->technology_family = technology_family;
tms470_info->rom_flash = rom_flash;
tms470_info->part_number = part_number;
tms470_info->part_name = part_name;
/*
* Disable reset on address access violation.
*/
target_write_u32(target, 0xFFFFFFE0, 0x00004007);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
static uint32_t keys_set;
static uint32_t flash_keys[4];
COMMAND_HANDLER(tms470_handle_flash_keyset_command)
{
if (CMD_ARGC > 4)
return ERROR_COMMAND_SYNTAX_ERROR;
else if (CMD_ARGC == 4) {
int i;
for (i = 0; i < 4; i++) {
int start = (strncmp(CMD_ARGV[i], "0x", 2) == 0) ? 2 : 0;
if (sscanf(&CMD_ARGV[i][start], "%" SCNx32 "", &flash_keys[i]) != 1) {
command_print(CMD, "could not process flash key %s",
CMD_ARGV[i]);
LOG_ERROR("could not process flash key %s", CMD_ARGV[i]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
keys_set = 1;
} else if (CMD_ARGC != 0) {
command_print(CMD, "tms470 flash_keyset <key0> <key1> <key2> <key3>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (keys_set) {
command_print(CMD,
"using flash keys 0x%08" PRIx32 ", 0x%08" PRIx32 ", 0x%08" PRIx32 ", 0x%08" PRIx32 "",
flash_keys[0],
flash_keys[1],
flash_keys[2],
flash_keys[3]);
} else
command_print(CMD, "flash keys not set");
return ERROR_OK;
}
static const uint32_t flash_keys_all_ones[] = { 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF,};
static const uint32_t flash_keys_all_zeros[] = { 0x00000000, 0x00000000,
0x00000000, 0x00000000,};
static const uint32_t flash_keys_mix1[] = { 0xf0fff0ff, 0xf0fff0ff,
0xf0fff0ff, 0xf0fff0ff};
static const uint32_t flash_keys_mix2[] = { 0x0000ffff, 0x0000ffff,
0x0000ffff, 0x0000ffff};
/* ---------------------------------------------------------------------- */
static int osc_mhz = 12;
COMMAND_HANDLER(tms470_handle_osc_megahertz_command)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
else if (CMD_ARGC == 1)
sscanf(CMD_ARGV[0], "%d", &osc_mhz);
if (osc_mhz <= 0) {
LOG_ERROR("osc_megahertz must be positive and non-zero!");
command_print(CMD, "osc_megahertz must be positive and non-zero!");
osc_mhz = 12;
return ERROR_COMMAND_SYNTAX_ERROR;
}
command_print(CMD, "osc_megahertz=%d", osc_mhz);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
static int plldis;
COMMAND_HANDLER(tms470_handle_plldis_command)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
else if (CMD_ARGC == 1) {
sscanf(CMD_ARGV[0], "%d", &plldis);
plldis = plldis ? 1 : 0;
}
command_print(CMD, "plldis=%d", plldis);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
static int tms470_check_flash_unlocked(struct target *target)
{
uint32_t fmbbusy;
target_read_u32(target, 0xFFE89C08, &fmbbusy);
LOG_INFO("tms470 fmbbusy = 0x%08" PRIx32 " -> %s",
fmbbusy,
fmbbusy & 0x8000 ? "unlocked" : "LOCKED");
return fmbbusy & 0x8000 ? ERROR_OK : ERROR_FLASH_OPERATION_FAILED;
}
/* ---------------------------------------------------------------------- */
static int tms470_try_flash_keys(struct target *target, const uint32_t *key_set)
{
uint32_t glbctrl, fmmstat;
int retval = ERROR_FLASH_OPERATION_FAILED;
/* set GLBCTRL.4 */
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
/* only perform the key match when 3VSTAT is clear */
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
if (!(fmmstat & 0x08)) {
unsigned i;
uint32_t fmbptr, fmbac2, orig_fmregopt;
target_write_u32(target, 0xFFE8BC04, fmmstat & ~0x07);
/* wait for pump ready */
do {
target_read_u32(target, 0xFFE8A814, &fmbptr);
alive_sleep(1);
} while (!(fmbptr & 0x0200));
/* force max wait states */
target_read_u32(target, 0xFFE88004, &fmbac2);
target_write_u32(target, 0xFFE88004, fmbac2 | 0xff);
/* save current access mode, force normal read mode */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0x00);
for (i = 0; i < 4; i++) {
uint32_t tmp;
/* There is no point displaying the value of tmp, it is
* filtered by the chip. The purpose of this read is to
* prime the unlocking logic rather than read out the value.
*/
target_read_u32(target, 0x00001FF0 + 4 * i, &tmp);
LOG_INFO("tms470 writing fmpkey = 0x%08" PRIx32 "", key_set[i]);
target_write_u32(target, 0xFFE89C0C, key_set[i]);
}
if (tms470_check_flash_unlocked(target) == ERROR_OK) {
/*
* There seems to be a side-effect of reading the FMPKEY
* register in that it re-enables the protection. So we
* re-enable it.
*/
for (i = 0; i < 4; i++) {
uint32_t tmp;
target_read_u32(target, 0x00001FF0 + 4 * i, &tmp);
target_write_u32(target, 0xFFE89C0C, key_set[i]);
}
retval = ERROR_OK;
}
/* restore settings */
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
target_write_u32(target, 0xFFE88004, fmbac2);
}
/* clear config bit */
target_write_u32(target, 0xFFFFFFDC, glbctrl);
return retval;
}
/* ---------------------------------------------------------------------- */
static int tms470_unlock_flash(struct flash_bank *bank)
{
struct target *target = bank->target;
const uint32_t *p_key_sets[5];
unsigned i, key_set_count;
if (keys_set) {
key_set_count = 5;
p_key_sets[0] = flash_keys;
p_key_sets[1] = flash_keys_all_ones;
p_key_sets[2] = flash_keys_all_zeros;
p_key_sets[3] = flash_keys_mix1;
p_key_sets[4] = flash_keys_mix2;
} else {
key_set_count = 4;
p_key_sets[0] = flash_keys_all_ones;
p_key_sets[1] = flash_keys_all_zeros;
p_key_sets[2] = flash_keys_mix1;
p_key_sets[3] = flash_keys_mix2;
}
for (i = 0; i < key_set_count; i++) {
if (tms470_try_flash_keys(target, p_key_sets[i]) == ERROR_OK) {
LOG_INFO("tms470 flash is unlocked");
return ERROR_OK;
}
}
LOG_WARNING("tms470 could not unlock flash memory protection level 2");
return ERROR_FLASH_OPERATION_FAILED;
}
/* ---------------------------------------------------------------------- */
static int tms470_flash_initialize_internal_state_machine(struct flash_bank *bank)
{
uint32_t fmmac2, fmmac1, fmmaxep, k, delay, glbctrl, sysclk;
struct target *target = bank->target;
struct tms470_flash_bank *tms470_info = bank->driver_priv;
int result = ERROR_OK;
/*
* Select the desired bank to be programmed by writing BANK[2:0] of
* FMMAC2.
*/
target_read_u32(target, 0xFFE8BC04, &fmmac2);
fmmac2 &= ~0x0007;
fmmac2 |= (tms470_info->ordinal & 7);
target_write_u32(target, 0xFFE8BC04, fmmac2);
LOG_DEBUG("set fmmac2 = 0x%04" PRIx32 "", fmmac2);
/*
* Disable level 1 sector protection by setting bit 15 of FMMAC1.
*/
target_read_u32(target, 0xFFE8BC00, &fmmac1);
fmmac1 |= 0x8000;
target_write_u32(target, 0xFFE8BC00, fmmac1);
LOG_DEBUG("set fmmac1 = 0x%04" PRIx32 "", fmmac1);
/*
* FMTCREG = 0x2fc0;
*/
target_write_u32(target, 0xFFE8BC10, 0x2fc0);
LOG_DEBUG("set fmtcreg = 0x2fc0");
/*
* MAXPP = 50
*/
target_write_u32(target, 0xFFE8A07C, 50);
LOG_DEBUG("set fmmaxpp = 50");
/*
* MAXCP = 0xf000 + 2000
*/
target_write_u32(target, 0xFFE8A084, 0xf000 + 2000);
LOG_DEBUG("set fmmaxcp = 0x%04x", 0xf000 + 2000);
/*
* configure VHV
*/
target_read_u32(target, 0xFFE8A080, &fmmaxep);
if (fmmaxep == 0xf000) {
fmmaxep = 0xf000 + 4095;
target_write_u32(target, 0xFFE8A80C, 0x9964);
LOG_DEBUG("set fmptr3 = 0x9964");
} else {
fmmaxep = 0xa000 + 4095;
target_write_u32(target, 0xFFE8A80C, 0x9b64);
LOG_DEBUG("set fmptr3 = 0x9b64");
}
target_write_u32(target, 0xFFE8A080, fmmaxep);
LOG_DEBUG("set fmmaxep = 0x%04" PRIx32 "", fmmaxep);
/*
* FMPTR4 = 0xa000
*/
target_write_u32(target, 0xFFE8A810, 0xa000);
LOG_DEBUG("set fmptr4 = 0xa000");
/*
* FMPESETUP, delay parameter selected based on clock frequency.
*
* According to the TI App Note SPNU257 and flashing code, delay is
* int((sysclk(MHz) + 1) / 2), with a minimum of 5. The system
* clock is usually derived from the ZPLL module, and selected by
* the plldis global.
*/
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
sysclk = (plldis ? 1 : (glbctrl & 0x08) ? 4 : 8) * osc_mhz / (1 + (glbctrl & 7));
delay = (sysclk > 10) ? (sysclk + 1) / 2 : 5;
target_write_u32(target, 0xFFE8A018, (delay << 4) | (delay << 8));
LOG_DEBUG("set fmpsetup = 0x%04" PRIx32 "", (delay << 4) | (delay << 8));
/*
* FMPVEVACCESS, based on delay.
*/
k = delay | (delay << 8);
target_write_u32(target, 0xFFE8A05C, k);
LOG_DEBUG("set fmpvevaccess = 0x%04" PRIx32 "", k);
/*
* FMPCHOLD, FMPVEVHOLD, FMPVEVSETUP, based on delay.
*/
k <<= 1;
target_write_u32(target, 0xFFE8A034, k);
LOG_DEBUG("set fmpchold = 0x%04" PRIx32 "", k);
target_write_u32(target, 0xFFE8A040, k);
LOG_DEBUG("set fmpvevhold = 0x%04" PRIx32 "", k);
target_write_u32(target, 0xFFE8A024, k);
LOG_DEBUG("set fmpvevsetup = 0x%04" PRIx32 "", k);
/*
* FMCVACCESS, based on delay.
*/
k = delay * 16;
target_write_u32(target, 0xFFE8A060, k);
LOG_DEBUG("set fmcvaccess = 0x%04" PRIx32 "", k);
/*
* FMCSETUP, based on delay.
*/
k = 0x3000 | delay * 20;
target_write_u32(target, 0xFFE8A020, k);
LOG_DEBUG("set fmcsetup = 0x%04" PRIx32 "", k);
/*
* FMEHOLD, based on delay.
*/
k = (delay * 20) << 2;
target_write_u32(target, 0xFFE8A038, k);
LOG_DEBUG("set fmehold = 0x%04" PRIx32 "", k);
/*
* PWIDTH, CWIDTH, EWIDTH, based on delay.
*/
target_write_u32(target, 0xFFE8A050, delay * 8);
LOG_DEBUG("set fmpwidth = 0x%04" PRIx32 "", delay * 8);
target_write_u32(target, 0xFFE8A058, delay * 1000);
LOG_DEBUG("set fmcwidth = 0x%04" PRIx32 "", delay * 1000);
target_write_u32(target, 0xFFE8A054, delay * 5400);
LOG_DEBUG("set fmewidth = 0x%04" PRIx32 "", delay * 5400);
return result;
}
/* ---------------------------------------------------------------------- */
static int tms470_flash_status(struct flash_bank *bank)
{
struct target *target = bank->target;
int result = ERROR_OK;
uint32_t fmmstat;
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
LOG_DEBUG("set fmmstat = 0x%04" PRIx32 "", fmmstat);
if (fmmstat & 0x0080) {
LOG_WARNING("tms470 flash command: erase still active after busy clear.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0040) {
LOG_WARNING("tms470 flash command: program still active after busy clear.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0020) {
LOG_WARNING("tms470 flash command: invalid data command.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0010) {
LOG_WARNING("tms470 flash command: program, erase or validate sector failed.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0008) {
LOG_WARNING("tms470 flash command: voltage instability detected.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0006) {
LOG_WARNING("tms470 flash command: command suspend detected.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0001) {
LOG_WARNING("tms470 flash command: sector was locked.");
result = ERROR_FLASH_OPERATION_FAILED;
}
return result;
}
/* ---------------------------------------------------------------------- */
static int tms470_erase_sector(struct flash_bank *bank, int sector)
{
uint32_t glbctrl, orig_fmregopt, fmbsea, fmbseb, fmmstat;
struct target *target = bank->target;
uint32_t flash_addr = bank->base + bank->sectors[sector].offset;
int result = ERROR_OK;
/*
* Set the bit GLBCTRL4 of the GLBCTRL register (in the System
* module) to enable writing to the flash registers }.
*/
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
LOG_DEBUG("set glbctrl = 0x%08" PRIx32 "", glbctrl | 0x10);
/* Force normal read mode. */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0);
LOG_DEBUG("set fmregopt = 0x%08x", 0);
(void)tms470_flash_initialize_internal_state_machine(bank);
/*
* Select one or more bits in FMBSEA or FMBSEB to disable Level 1
* protection for the particular sector to be erased/written.
*/
assert(sector >= 0);
if (sector < 16) {
target_read_u32(target, 0xFFE88008, &fmbsea);
target_write_u32(target, 0xFFE88008, fmbsea | (1 << sector));
LOG_DEBUG("set fmbsea = 0x%04" PRIx32 "", fmbsea | (1 << sector));
} else {
target_read_u32(target, 0xFFE8800C, &fmbseb);
target_write_u32(target, 0xFFE8800C, fmbseb | (1 << (sector - 16)));
LOG_DEBUG("set fmbseb = 0x%04" PRIx32 "", fmbseb | (1 << (sector - 16)));
}
bank->sectors[sector].is_protected = 0;
/*
* clear status register, sent erase command, kickoff erase
*/
target_write_u16(target, flash_addr, 0x0040);
LOG_DEBUG("write *(uint16_t *)0x%08" PRIx32 "=0x0040", flash_addr);
target_write_u16(target, flash_addr, 0x0020);
LOG_DEBUG("write *(uint16_t *)0x%08" PRIx32 "=0x0020", flash_addr);
target_write_u16(target, flash_addr, 0xffff);
LOG_DEBUG("write *(uint16_t *)0x%08" PRIx32 "=0xffff", flash_addr);
/*
* Monitor FMMSTAT, busy until clear, then check and other flags for
* ultimate result of the operation.
*/
do {
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
if (fmmstat & 0x0100)
alive_sleep(1);
} while (fmmstat & 0x0100);
result = tms470_flash_status(bank);
if (sector < 16) {
target_write_u32(target, 0xFFE88008, fmbsea);
LOG_DEBUG("set fmbsea = 0x%04" PRIx32 "", fmbsea);
bank->sectors[sector].is_protected = fmbsea & (1 << sector) ? 0 : 1;
} else {
target_write_u32(target, 0xFFE8800C, fmbseb);
LOG_DEBUG("set fmbseb = 0x%04" PRIx32 "", fmbseb);
bank->sectors[sector].is_protected = fmbseb & (1 << (sector - 16)) ? 0 : 1;
}
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
LOG_DEBUG("set fmregopt = 0x%08" PRIx32 "", orig_fmregopt);
target_write_u32(target, 0xFFFFFFDC, glbctrl);
LOG_DEBUG("set glbctrl = 0x%08" PRIx32 "", glbctrl);
return result;
}
/*----------------------------------------------------------------------
* Implementation of Flash Driver Interfaces
*---------------------------------------------------------------------- */
static const struct command_registration tms470_any_command_handlers[] = {
{
.name = "flash_keyset",
.usage = "<key0> <key1> <key2> <key3>",
.handler = tms470_handle_flash_keyset_command,
.mode = COMMAND_ANY,
.help = "tms470 flash_keyset <key0> <key1> <key2> <key3>",
},
{
.name = "osc_megahertz",
.usage = "<MHz>",
.handler = tms470_handle_osc_megahertz_command,
.mode = COMMAND_ANY,
.help = "tms470 osc_megahertz <MHz>",
},
{
.name = "plldis",
.usage = "<0 | 1>",
.handler = tms470_handle_plldis_command,
.mode = COMMAND_ANY,
.help = "tms470 plldis <0/1>",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration tms470_command_handlers[] = {
{
.name = "tms470",
.mode = COMMAND_ANY,
.help = "TI tms470 flash command group",
.usage = "",
.chain = tms470_any_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
/* ---------------------------------------------------------------------- */
static int tms470_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct tms470_flash_bank *tms470_info = bank->driver_priv;
int result = ERROR_OK;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
tms470_read_part_info(bank);
if ((first >= bank->num_sectors) || (last >= bank->num_sectors) ||
(first > last)) {
LOG_ERROR("Sector range %u to %u invalid.", first, last);
return ERROR_FLASH_SECTOR_INVALID;
}
result = tms470_unlock_flash(bank);
if (result != ERROR_OK)
return result;
for (unsigned int sector = first; sector <= last; sector++) {
LOG_INFO("Erasing tms470 bank %u sector %u...", tms470_info->ordinal, sector);
result = tms470_erase_sector(bank, sector);
if (result != ERROR_OK) {
LOG_ERROR("tms470 could not erase flash sector.");
break;
} else
LOG_INFO("sector erased successfully.");
}
return result;
}
/* ---------------------------------------------------------------------- */
static int tms470_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct tms470_flash_bank *tms470_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t fmmac2, fmbsea, fmbseb;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
tms470_read_part_info(bank);
if ((first >= bank->num_sectors) || (last >= bank->num_sectors) ||
(first > last)) {
LOG_ERROR("Sector range %u to %u invalid.", first, last);
return ERROR_FLASH_SECTOR_INVALID;
}
/* enable the appropriate bank */
target_read_u32(target, 0xFFE8BC04, &fmmac2);
target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal);
/* get the original sector protection flags for this bank */
target_read_u32(target, 0xFFE88008, &fmbsea);
target_read_u32(target, 0xFFE8800C, &fmbseb);
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
if (sector < 16) {
fmbsea = set ? fmbsea & ~(1 << sector) : fmbsea | (1 << sector);
bank->sectors[sector].is_protected = set ? 1 : 0;
} else {
fmbseb = set ? fmbseb &
~(1 << (sector - 16)) : fmbseb | (1 << (sector - 16));
bank->sectors[sector].is_protected = set ? 1 : 0;
}
}
/* update the protection bits */
target_write_u32(target, 0xFFE88008, fmbsea);
target_write_u32(target, 0xFFE8800C, fmbseb);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
static int tms470_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t glbctrl, fmbac2, orig_fmregopt, fmbsea, fmbseb, fmmaxpp, fmmstat;
int result = ERROR_OK;
uint32_t i;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
tms470_read_part_info(bank);
LOG_INFO("Writing %" PRIu32 " bytes starting at " TARGET_ADDR_FMT,
count, bank->base + offset);
/* set GLBCTRL.4 */
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
(void)tms470_flash_initialize_internal_state_machine(bank);
/* force max wait states */
target_read_u32(target, 0xFFE88004, &fmbac2);
target_write_u32(target, 0xFFE88004, fmbac2 | 0xff);
/* save current access mode, force normal read mode */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0x00);
/*
* Disable Level 1 protection for all sectors to be erased/written.
*/
target_read_u32(target, 0xFFE88008, &fmbsea);
target_write_u32(target, 0xFFE88008, 0xffff);
target_read_u32(target, 0xFFE8800C, &fmbseb);
target_write_u32(target, 0xFFE8800C, 0xffff);
/* read MAXPP */
target_read_u32(target, 0xFFE8A07C, &fmmaxpp);
for (i = 0; i < count; i += 2) {
uint32_t addr = bank->base + offset + i;
uint16_t word = (((uint16_t) buffer[i]) << 8) | (uint16_t) buffer[i + 1];
if (word != 0xffff) {
LOG_INFO("writing 0x%04x at 0x%08" PRIx32 "", word, addr);
/* clear status register */
target_write_u16(target, addr, 0x0040);
/* program flash command */
target_write_u16(target, addr, 0x0010);
/* burn the 16-bit word (big-endian) */
target_write_u16(target, addr, word);
/*
* Monitor FMMSTAT, busy until clear, then check and other flags
* for ultimate result of the operation.
*/
do {
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
if (fmmstat & 0x0100)
alive_sleep(1);
} while (fmmstat & 0x0100);
if (fmmstat & 0x3ff) {
LOG_ERROR("fmstat = 0x%04" PRIx32 "", fmmstat);
LOG_ERROR(
"Could not program word 0x%04x at address 0x%08" PRIx32 ".",
word,
addr);
result = ERROR_FLASH_OPERATION_FAILED;
break;
}
} else
LOG_INFO("skipping 0xffff at 0x%08" PRIx32 "", addr);
}
/* restore */
target_write_u32(target, 0xFFE88008, fmbsea);
target_write_u32(target, 0xFFE8800C, fmbseb);
target_write_u32(target, 0xFFE88004, fmbac2);
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
target_write_u32(target, 0xFFFFFFDC, glbctrl);
return result;
}
/* ---------------------------------------------------------------------- */
static int tms470_probe(struct flash_bank *bank)
{
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
return tms470_read_part_info(bank);
}
static int tms470_auto_probe(struct flash_bank *bank)
{
struct tms470_flash_bank *tms470_info = bank->driver_priv;
if (tms470_info->device_ident_reg)
return ERROR_OK;
return tms470_probe(bank);
}
/* ---------------------------------------------------------------------- */
static int tms470_erase_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct tms470_flash_bank *tms470_info = bank->driver_priv;
int result = ERROR_OK;
uint32_t fmmac2, fmbac2, glbctrl, orig_fmregopt;
static uint8_t buffer[64 * 1024];
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!tms470_info->device_ident_reg)
tms470_read_part_info(bank);
/* set GLBCTRL.4 */
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
/* save current access mode, force normal read mode */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0x00);
/* enable the appropriate bank */
target_read_u32(target, 0xFFE8BC04, &fmmac2);
target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal);
/* TCR = 0 */
target_write_u32(target, 0xFFE8BC10, 0x2fc0);
/* clear TEZ in fmbrdy */
target_write_u32(target, 0xFFE88010, 0x0b);
/* save current wait states, force max */
target_read_u32(target, 0xFFE88004, &fmbac2);
target_write_u32(target, 0xFFE88004, fmbac2 | 0xff);
/*
* The TI primitives inspect the flash memory by reading one 32-bit
* word at a time. Here we read an entire sector and inspect it in
* an attempt to reduce the JTAG overhead.
*/
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
uint32_t i, addr = bank->base + bank->sectors[sector].offset;
LOG_INFO("checking flash bank %u sector %u", tms470_info->ordinal, sector);
target_read_buffer(target, addr, bank->sectors[sector].size, buffer);
bank->sectors[sector].is_erased = 1;
for (i = 0; i < bank->sectors[sector].size; i++) {
if (buffer[i] != 0xff) {
bank->sectors[sector].is_erased = 0;
break;
}
}
if (bank->sectors[sector].is_erased != 1) {
result = ERROR_FLASH_SECTOR_NOT_ERASED;
break;
} else
LOG_INFO("sector erased");
}
/* reset TEZ, wait states, read mode, GLBCTRL.4 */
target_write_u32(target, 0xFFE88010, 0x0f);
target_write_u32(target, 0xFFE88004, fmbac2);
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
target_write_u32(target, 0xFFFFFFDC, glbctrl);
return result;
}
/* ---------------------------------------------------------------------- */
static int tms470_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct tms470_flash_bank *tms470_info = bank->driver_priv;
int result = ERROR_OK;
uint32_t fmmac2, fmbsea, fmbseb;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!tms470_info->device_ident_reg)
tms470_read_part_info(bank);
/* enable the appropriate bank */
target_read_u32(target, 0xFFE8BC04, &fmmac2);
target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal);
target_read_u32(target, 0xFFE88008, &fmbsea);
target_read_u32(target, 0xFFE8800C, &fmbseb);
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
int protected;
if (sector < 16) {
protected = fmbsea & (1 << sector) ? 0 : 1;
bank->sectors[sector].is_protected = protected;
} else {
protected = fmbseb & (1 << (sector - 16)) ? 0 : 1;
bank->sectors[sector].is_protected = protected;
}
LOG_DEBUG("bank %u sector %u is %s",
tms470_info->ordinal,
sector,
protected ? "protected" : "not protected");
}
return result;
}
/* ---------------------------------------------------------------------- */
static int get_tms470_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct tms470_flash_bank *tms470_info = bank->driver_priv;
if (!tms470_info->device_ident_reg)
tms470_read_part_info(bank);
if (!tms470_info->device_ident_reg) {
command_print_sameline(cmd, "Cannot identify target as a TMS470\n");
return ERROR_FLASH_OPERATION_FAILED;
}
command_print_sameline(cmd, "\ntms470 information: Chip is %s\n", tms470_info->part_name);
command_print_sameline(cmd, "Flash protection level 2 is %s\n",
tms470_check_flash_unlocked(bank->target) == ERROR_OK ? "disabled" : "enabled");
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
/*
* flash bank tms470 <base> <size> <chip_width> <bus_width> <target>
* [options...]
*/
FLASH_BANK_COMMAND_HANDLER(tms470_flash_bank_command)
{
bank->driver_priv = malloc(sizeof(struct tms470_flash_bank));
if (!bank->driver_priv)
return ERROR_FLASH_OPERATION_FAILED;
(void)memset(bank->driver_priv, 0, sizeof(struct tms470_flash_bank));
return ERROR_OK;
}
const struct flash_driver tms470_flash = {
.name = "tms470",
.commands = tms470_command_handlers,
.flash_bank_command = tms470_flash_bank_command,
.erase = tms470_erase,
.protect = tms470_protect,
.write = tms470_write,
.read = default_flash_read,
.probe = tms470_probe,
.auto_probe = tms470_auto_probe,
.erase_check = tms470_erase_check,
.protect_check = tms470_protect_check,
.info = get_tms470_info,
.free_driver_priv = default_flash_free_driver_priv,
};