openocd/src/flash/nor/kinetis.c
Christopher Kilgour 392fe70927 kinetis: fix "SF1" parts to limit FlexRAM usage
Ensure FlexRAM usage is limited to half the FlexRAM size when programming.
Assume the FlexNVM sector size is equal to half the FlexRAM.
Fix sector erase checking which had an error introduced when the
  kinetis_ftfx_command( ) signature was changed.

Change-Id: I88edd9c7d4a4ba474cad7b00052feaeedfa8ced8
Signed-off-by: Christopher Kilgour <techie@whiterocker.com>
Reviewed-on: http://openocd.zylin.com/1358
Tested-by: jenkins
Reviewed-by: Freddie Chopin <freddie.chopin@gmail.com>
2013-04-28 07:37:03 +00:00

826 lines
24 KiB
C

/***************************************************************************
* Copyright (C) 2011 by Mathias Kuester *
* kesmtp@freenet.de *
* *
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "helper/binarybuffer.h"
/*
* Implementation Notes
*
* The persistent memories in the Kinetis chip families K10 through
* K70 are all manipulated with the Flash Memory Module. Some
* variants call this module the FTFE, others call it the FTFL. To
* indicate that both are considered here, we use FTFX.
*
* Within the module, according to the chip variant, the persistent
* memory is divided into what Freescale terms Program Flash, FlexNVM,
* and FlexRAM. All chip variants have Program Flash. Some chip
* variants also have FlexNVM and FlexRAM, which always appear
* together.
*
* A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
* each block to a separate bank. Each block size varies by chip and
* may be determined by the read-only SIM_FCFG1 register. The sector
* size within each bank/block varies by the chip granularity as
* described below.
*
* Kinetis offers four different of flash granularities applicable
* across the chip families. The granularity is apparently reflected
* by at least the reference manual suffix. For example, for chip
* MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
* where the "3" indicates there are four flash blocks with 4kiB
* sectors. All possible granularities are indicated below.
*
* The first half of the flash (1 or 2 blocks, depending on the
* granularity) is always Program Flash and always starts at address
* 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
* register, determines whether the second half of the flash is also
* Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
* half of flash is Program Flash and is contiguous in the memory map
* from the first half. When PFLSH is clear, the second half of flash
* is FlexNVM and always starts at address 0x10000000. FlexRAM, which
* is also present when PFLSH is clear, always starts at address
* 0x14000000.
*
* The Flash Memory Module provides a register set where flash
* commands are loaded to perform flash operations like erase and
* program. Different commands are available depending on whether
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
* the commands used are quite consistent between flash blocks, the
* parameters they accept differ according to the flash granularity.
* Some Kinetis chips have different granularity between Program Flash
* and FlexNVM/FlexRAM, so flash command arguments may differ between
* blocks in the same chip.
*
* Although not documented as such by Freescale, it appears that bits
* 8:7 of the read-only SIM_SDID register reflect the granularity
* settings 0..3, so sector sizes and block counts are applicable
* according to the following table.
*/
const struct {
unsigned pflash_sector_size_bytes;
unsigned nvm_sector_size_bytes;
unsigned num_blocks;
} kinetis_flash_params[4] = {
{ 1<<10, 1<<10, 2 },
{ 2<<10, 1<<10, 2 },
{ 2<<10, 2<<10, 2 },
{ 4<<10, 4<<10, 4 }
};
/* Addressess */
#define FLEXRAM 0x14000000
#define FTFx_FSTAT 0x40020000
#define FTFx_FCNFG 0x40020001
#define FTFx_FCCOB3 0x40020004
#define FTFx_FPROT3 0x40020010
#define SIM_SDID 0x40048024
#define SIM_FCFG1 0x4004804c
#define SIM_FCFG2 0x40048050
/* Commands */
#define FTFx_CMD_BLOCKSTAT 0x00
#define FTFx_CMD_SECTSTAT 0x01
#define FTFx_CMD_LWORDPROG 0x06
#define FTFx_CMD_SECTERASE 0x09
#define FTFx_CMD_SECTWRITE 0x0b
#define FTFx_CMD_SETFLEXRAM 0x81
struct kinetis_flash_bank {
unsigned granularity;
unsigned bank_ordinal;
uint32_t sector_size;
uint32_t protection_size;
uint32_t sim_sdid;
uint32_t sim_fcfg1;
uint32_t sim_fcfg2;
enum {
FC_AUTO = 0,
FC_PFLASH,
FC_FLEX_NVM,
FC_FLEX_RAM,
} flash_class;
};
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
{
struct kinetis_flash_bank *bank_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("add flash_bank kinetis %s", bank->name);
bank_info = malloc(sizeof(struct kinetis_flash_bank));
memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
bank->driver_priv = bank_info;
return ERROR_OK;
}
static int kinetis_protect(struct flash_bank *bank, int set, int first,
int last)
{
LOG_WARNING("kinetis_protect not supported yet");
/* FIXME: TODO */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_FLASH_BANK_INVALID;
}
static int kinetis_protect_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (kinfo->flash_class == FC_PFLASH) {
int result;
uint8_t buffer[4];
uint32_t fprot, psec;
int i, b;
/* read protection register */
result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
if (result != ERROR_OK)
return result;
fprot = target_buffer_get_u32(bank->target, buffer);
/*
* Every bit protects 1/32 of the full flash (not necessarily
* just this bank), but we enforce the bank ordinals for
* PFlash to start at zero.
*/
b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
for (psec = 0, i = 0; i < bank->num_sectors; i++) {
if ((fprot >> b) & 1)
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
psec += bank->sectors[i].size;
if (psec >= kinfo->protection_size) {
psec = 0;
b++;
}
}
} else {
LOG_ERROR("Protection checks for FlexNVM not yet supported");
return ERROR_FLASH_BANK_INVALID;
}
return ERROR_OK;
}
static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
uint8_t *ftfx_fstat)
{
uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
fccob7, fccob6, fccob5, fccob4,
fccobb, fccoba, fccob9, fccob8};
int result, i;
uint8_t buffer;
/* wait for done */
for (i = 0; i < 50; i++) {
result =
target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
if (result != ERROR_OK)
return result;
if (buffer & 0x80)
break;
buffer = 0x00;
}
if (buffer != 0x80) {
/* reset error flags */
buffer = 0x30;
result =
target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
if (result != ERROR_OK)
return result;
}
result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
if (result != ERROR_OK)
return result;
/* start command */
buffer = 0x80;
result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
if (result != ERROR_OK)
return result;
/* wait for done */
for (i = 0; i < 50; i++) {
result =
target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
if (result != ERROR_OK)
return result;
if (*ftfx_fstat & 0x80)
break;
}
if ((*ftfx_fstat & 0xf0) != 0x80) {
LOG_ERROR
("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
*ftfx_fstat, command[3], command[2], command[1], command[0],
command[7], command[6], command[5], command[4],
command[11], command[10], command[9], command[8]);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_erase(struct flash_bank *bank, int first, int last)
{
int result, i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
/*
* FIXME: TODO: use the 'Erase Flash Block' command if the
* requested erase is PFlash or NVM and encompasses the entire
* block. Should be quicker.
*/
for (i = first; i <= last; i++) {
uint8_t ftfx_fstat;
/* set command and sector address */
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %d failed", i);
return ERROR_FLASH_OPERATION_FAILED;
}
bank->sectors[i].is_erased = 1;
}
if (first == 0) {
LOG_WARNING
("flash configuration field erased, please reset the device");
}
return ERROR_OK;
}
static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
unsigned int i, result, fallback = 0;
uint8_t buf[8];
uint32_t wc;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (kinfo->flash_class == FC_FLEX_NVM) {
uint8_t ftfx_fstat;
LOG_DEBUG("flash write into FlexNVM @%08X", offset);
/* make flex ram available */
result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* check if ram ready */
result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
if (result != ERROR_OK)
return result;
if (!(buf[0] & (1 << 1))) {
/* fallback to longword write */
fallback = 1;
LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
buf[0]);
}
} else {
LOG_DEBUG("flash write into PFLASH @08%X", offset);
}
/* program section command */
if (fallback == 0) {
/*
* Kinetis uses different terms for the granularity of
* sector writes, e.g. "phrase" or "128 bits". We use
* the generic term "chunk". The largest possible
* Kinetis "chunk" is 16 bytes (128 bits).
*/
unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
/* assume the NVM sector size is half the FlexRAM size */
unsigned prog_size_bytes = MIN(kinfo->sector_size,
kinetis_flash_params[kinfo->granularity].nvm_sector_size_bytes);
for (i = 0; i < count; i += prog_size_bytes) {
uint8_t residual_buffer[16];
uint8_t ftfx_fstat;
uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
uint32_t residual_wc = 0;
/*
* Assume the word count covers an entire
* sector.
*/
wc = prog_size_bytes / 4;
/*
* If bytes to be programmed are less than the
* full sector, then determine the number of
* full-words to program, and put together the
* residual buffer so that a full "section"
* may always be programmed.
*/
if ((count - i) < prog_size_bytes) {
/* number of bytes to program beyond full section */
unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
/* number of complete words to copy directly from buffer */
wc = (count - i) / 4;
/* number of total sections to write, including residual */
section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
/* any residual bytes delivers a whole residual section */
residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
/* clear residual buffer then populate residual bytes */
(void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
(void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
}
LOG_DEBUG("write section @ %08X with length %d bytes",
offset + i, wc*4);
/* write data to flexram as whole-words */
result = target_write_memory(bank->target, FLEXRAM, 4, wc,
buffer + i);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
return result;
}
/* write the residual words to the flexram */
if (residual_wc) {
result = target_write_memory(bank->target,
FLEXRAM+4*wc,
4, residual_wc,
residual_buffer);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
return result;
}
}
/* execute section-write command */
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
section_count>>8, section_count, 0, 0,
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
}
}
/* program longword command, not supported in "SF3" devices */
else if (kinfo->granularity != 3) {
for (i = 0; i < count; i += 4) {
uint8_t ftfx_fstat;
LOG_DEBUG("write longword @ %08X", offset + i);
uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
memcpy(padding, buffer + i, MIN(4, count-i));
result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
padding[3], padding[2], padding[1], padding[0],
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
}
} else {
LOG_ERROR("Flash write strategy not implemented");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_read_part_info(struct flash_bank *bank)
{
int result, i;
uint8_t buf[4];
uint32_t offset = 0;
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
first_nvm_bank = 0, reassign = 0;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
result = target_read_memory(bank->target, SIM_SDID, 1, 4, buf);
if (result != ERROR_OK)
return result;
kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf);
granularity = (kinfo->sim_sdid >> 7) & 0x03;
result = target_read_memory(bank->target, SIM_FCFG1, 1, 4, buf);
if (result != ERROR_OK)
return result;
kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
result = target_read_memory(bank->target, SIM_FCFG2, 1, 4, buf);
if (result != ERROR_OK)
return result;
kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid,
kinfo->sim_fcfg1, kinfo->sim_fcfg2);
fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
if (!fcfg2_pflsh) {
switch (fcfg1_nvmsize) {
case 0x03:
case 0x07:
case 0x09:
case 0x0b:
nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
break;
case 0x0f:
if (granularity == 3)
nvm_size = 512<<10;
else
nvm_size = 256<<10;
break;
default:
nvm_size = 0;
break;
}
switch (fcfg1_eesize) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
ee_size = (16 << (10 - fcfg1_eesize));
break;
default:
ee_size = 0;
break;
}
}
switch (fcfg1_pfsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
case 0x0d:
pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
break;
case 0x0f:
if (granularity == 3)
pf_size = 1024<<10;
else if (fcfg2_pflsh)
pf_size = 512<<10;
else
pf_size = 256<<10;
break;
default:
pf_size = 0;
break;
}
LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
nvm_size, pf_size, ee_size, fcfg2_pflsh);
num_blocks = kinetis_flash_params[granularity].num_blocks;
num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
first_nvm_bank = num_pflash_blocks;
num_nvm_blocks = num_blocks - num_pflash_blocks;
LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
num_blocks, num_pflash_blocks, num_nvm_blocks);
/*
* If the flash class is already assigned, verify the
* parameters.
*/
if (kinfo->flash_class != FC_AUTO) {
if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
LOG_WARNING("Flash ordinal/bank number mismatch");
reassign = 1;
} else if (kinfo->granularity != granularity) {
LOG_WARNING("Flash granularity mismatch");
reassign = 1;
} else {
switch (kinfo->flash_class) {
case FC_PFLASH:
if (kinfo->bank_ordinal >= first_nvm_bank) {
LOG_WARNING("Class mismatch, bank %d is not PFlash",
bank->bank_number);
reassign = 1;
} else if (bank->size != (pf_size / num_pflash_blocks)) {
LOG_WARNING("PFlash size mismatch");
reassign = 1;
} else if (bank->base !=
(0x00000000 + bank->size * kinfo->bank_ordinal)) {
LOG_WARNING("PFlash address range mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].pflash_sector_size_bytes) {
LOG_WARNING("PFlash sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("PFlash bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
case FC_FLEX_NVM:
if ((kinfo->bank_ordinal >= num_blocks) ||
(kinfo->bank_ordinal < first_nvm_bank)) {
LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
bank->bank_number);
reassign = 1;
} else if (bank->size != (nvm_size / num_nvm_blocks)) {
LOG_WARNING("FlexNVM size mismatch");
reassign = 1;
} else if (bank->base !=
(0x10000000 + bank->size * kinfo->bank_ordinal)) {
LOG_WARNING("FlexNVM address range mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].nvm_sector_size_bytes) {
LOG_WARNING("FlexNVM sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("FlexNVM bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
case FC_FLEX_RAM:
if (kinfo->bank_ordinal != num_blocks) {
LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
bank->bank_number);
reassign = 1;
} else if (bank->size != ee_size) {
LOG_WARNING("FlexRAM size mismatch");
reassign = 1;
} else if (bank->base != FLEXRAM) {
LOG_WARNING("FlexRAM address mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].nvm_sector_size_bytes) {
LOG_WARNING("FlexRAM sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("FlexRAM bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
default:
LOG_WARNING("Unknown or inconsistent flash class");
reassign = 1;
break;
}
}
} else {
LOG_INFO("Probing flash info for bank %d", bank->bank_number);
reassign = 1;
}
if (!reassign)
return ERROR_OK;
kinfo->granularity = granularity;
if ((unsigned)bank->bank_number < num_pflash_blocks) {
/* pflash, banks start at address zero */
kinfo->flash_class = FC_PFLASH;
bank->size = (pf_size / num_pflash_blocks);
bank->base = 0x00000000 + bank->size * bank->bank_number;
kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
kinfo->protection_size = pf_size / 32;
} else if ((unsigned)bank->bank_number < num_blocks) {
/* nvm, banks start at address 0x10000000 */
kinfo->flash_class = FC_FLEX_NVM;
bank->size = (nvm_size / num_nvm_blocks);
bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
} else if ((unsigned)bank->bank_number == num_blocks) {
LOG_ERROR("FlexRAM support not yet implemented");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else {
LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
bank->bank_number, num_blocks);
return ERROR_FLASH_BANK_INVALID;
}
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->num_sectors = bank->size / kinfo->sector_size;
assert(bank->num_sectors > 0);
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = offset;
bank->sectors[i].size = kinfo->sector_size;
offset += kinfo->sector_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
return ERROR_OK;
}
static int kinetis_probe(struct flash_bank *bank)
{
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
return kinetis_read_part_info(bank);
}
static int kinetis_auto_probe(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (kinfo->sim_sdid)
return ERROR_OK;
return kinetis_probe(bank);
}
static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
{
const char *bank_class_names[] = {
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
};
struct kinetis_flash_bank *kinfo = bank->driver_priv;
(void) snprintf(buf, buf_size,
"%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
bank->driver->name, bank_class_names[kinfo->flash_class],
bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_blank_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (kinfo->flash_class == FC_PFLASH) {
int result;
uint8_t ftfx_fstat;
/* check if whole bank is blank */
result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return result;
if (ftfx_fstat & 0x01) {
/* the whole bank is not erased, check sector-by-sector */
int i;
for (i = 0; i < bank->num_sectors; i++) {
/* normal margin */
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
} else {
LOG_DEBUG("Ignoring errored PFlash sector blank-check");
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
int i;
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
} else {
LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_flash_read(struct flash_bank *bank,
uint8_t *buffer, uint32_t offset, uint32_t count)
{
LOG_WARNING("kinetis_flash_read not supported yet");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_FLASH_OPERATION_FAILED;
}
struct flash_driver kinetis_flash = {
.name = "kinetis",
.flash_bank_command = kinetis_flash_bank_command,
.erase = kinetis_erase,
.protect = kinetis_protect,
.write = kinetis_write,
.read = kinetis_flash_read,
.probe = kinetis_probe,
.auto_probe = kinetis_auto_probe,
.erase_check = kinetis_blank_check,
.protect_check = kinetis_protect_check,
.info = kinetis_info,
};