openocd/src/target/arm_adi_v5.c

1983 lines
53 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009-2010 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2009-2010 by David Brownell *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/**
* @file
* This file implements support for the ARM Debug Interface version 5 (ADIv5)
* debugging architecture. Compared with previous versions, this includes
* a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
* transport, and focusses on memory mapped resources as defined by the
* CoreSight architecture.
*
* A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
* basic components: a Debug Port (DP) transporting messages to and from a
* debugger, and an Access Port (AP) accessing resources. Three types of DP
* are defined. One uses only JTAG for communication, and is called JTAG-DP.
* One uses only SWD for communication, and is called SW-DP. The third can
* use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
* is used to access memory mapped resources and is called a MEM-AP. Also a
* JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
*
* This programming interface allows DAP pipelined operations through a
* transaction queue. This primarily affects AP operations (such as using
* a MEM-AP to access memory or registers). If the current transaction has
* not finished by the time the next one must begin, and the ORUNDETECT bit
* is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
* further AP operations will fail. There are two basic methods to avoid
* such overrun errors. One involves polling for status instead of using
* transaction piplining. The other involves adding delays to ensure the
* AP has enough time to complete one operation before starting the next
* one. (For JTAG these delays are controlled by memaccess_tck.)
*/
/*
* Relevant specifications from ARM include:
*
* ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
* CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
*
* CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
* Cortex-M3(tm) TRM, ARM DDI 0337G
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "arm.h"
#include "arm_adi_v5.h"
#include <helper/time_support.h>
/* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
/*
uint32_t tar_block_size(uint32_t address)
Return the largest block starting at address that does not cross a tar block size alignment boundary
*/
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
}
/***************************************************************************
* *
* DP and MEM-AP register access through APACC and DPACC *
* *
***************************************************************************/
/**
* Select one of the APs connected to the specified DAP. The
* selection is implicitly used with future AP transactions.
* This is a NOP if the specified AP is already selected.
*
* @param dap The DAP
* @param apsel Number of the AP to (implicitly) use with further
* transactions. This normally identifies a MEM-AP.
*/
void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
{
uint32_t new_ap = (ap << 24) & 0xFF000000;
if (new_ap != dap->ap_current) {
dap->ap_current = new_ap;
/* Switching AP invalidates cached values.
* Values MUST BE UPDATED BEFORE AP ACCESS.
*/
dap->ap_bank_value = -1;
dap->ap_csw_value = -1;
dap->ap_tar_value = -1;
}
}
/**
* Queue transactions setting up transfer parameters for the
* currently selected MEM-AP.
*
* Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
* initiate data reads or writes using memory or peripheral addresses.
* If the CSW is configured for it, the TAR may be automatically
* incremented after each transfer.
*
* @todo Rename to reflect it being specifically a MEM-AP function.
*
* @param dap The DAP connected to the MEM-AP.
* @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
* matches the cached value, the register is not changed.
* @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
* matches the cached address, the register is not changed.
*
* @return ERROR_OK if the transaction was properly queued, else a fault code.
*/
int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
{
int retval;
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
dap->apcsw[dap->ap_current >> 24];
if (csw != dap->ap_csw_value) {
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
if (retval != ERROR_OK)
return retval;
dap->ap_csw_value = csw;
}
if (tar != dap->ap_tar_value) {
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
if (retval != ERROR_OK)
return retval;
dap->ap_tar_value = tar;
}
/* Disable TAR cache when autoincrementing */
if (csw & CSW_ADDRINC_MASK)
dap->ap_tar_value = -1;
return ERROR_OK;
}
/**
* Asynchronous (queued) read of a word from memory or a system register.
*
* @param dap The DAP connected to the MEM-AP performing the read.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the word will be stored when the
* transaction queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t *value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when reading several consecutive addresses.
*/
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
}
/**
* Synchronous read of a word from memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param dap The DAP connected to the MEM-AP performing the read.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the result will be stored.
*
* @return ERROR_OK for success; *value holds the result.
* Otherwise a fault code.
*/
int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t *value)
{
int retval;
retval = mem_ap_read_u32(dap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
/**
* Asynchronous (queued) write of a word to memory or a system register.
*
* @param dap The DAP connected to the MEM-AP.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written to the address when transaction
* queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when writing several consecutive addresses.
*/
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
value);
}
/**
* Synchronous write of a word to memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param dap The DAP connected to the MEM-AP.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written.
*
* @return ERROR_OK for success; the data was written. Otherwise a fault code.
*/
int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t value)
{
int retval = mem_ap_write_u32(dap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
/*****************************************************************************
* *
* mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address, bool addr_incr) *
* *
* Write a buffer in target order (little endian) *
* *
*****************************************************************************/
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address, bool addr_incr)
{
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
const uint8_t *pBuffer = buffer;
uint32_t incr_flag = CSW_ADDRINC_OFF;
count >>= 2;
wcount = count;
/* if we have an unaligned access - reorder data */
if (adr & 0x3u) {
for (writecount = 0; writecount < count; writecount++) {
int i;
uint32_t outvalue;
memcpy(&outvalue, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++) {
*((uint8_t *)pBuffer + (adr & 0x3)) = outvalue;
outvalue >>= 8;
adr++;
}
pBuffer += sizeof(uint32_t);
}
}
while (wcount > 0) {
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
if (addr_incr)
incr_flag = CSW_ADDRINC_SINGLE;
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag, address);
if (retval != ERROR_OK)
return retval;
for (writecount = 0; writecount < blocksize; writecount++) {
uint32_t tmp;
tmp = buf_get_u32(buffer + 4 * writecount, 0, 32);
retval = dap_queue_ap_write(dap, AP_REG_DRW, tmp);
if (retval != ERROR_OK)
break;
}
retval = dap_run(dap);
if (retval == ERROR_OK) {
wcount = wcount - blocksize;
if (addr_incr)
address = address + 4 * blocksize;
buffer = buffer + 4 * blocksize;
} else
errorcount++;
if (errorcount > 1) {
LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
return retval;
}
}
return retval;
}
static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
wcount = count >> 1;
while (wcount > 0) {
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
writecount = blocksize;
do {
nbytes = MIN((writecount << 1), 4);
if (nbytes < 4) {
retval = mem_ap_write_buf_u16(dap, buffer,
nbytes, address);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
address += nbytes >> 1;
} else {
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
}
buffer += nbytes >> 1;
writecount -= nbytes >> 1;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
uint16_t svalue;
memcpy(&svalue, buffer, sizeof(uint16_t));
uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count -= 2;
address += 2;
buffer += 2;
}
return retval;
}
static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
wcount = count;
while (wcount > 0) {
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
writecount = blocksize;
do {
nbytes = MIN(writecount, 4);
if (nbytes < 4) {
retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
address += nbytes;
} else {
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
}
buffer += nbytes;
writecount -= nbytes;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count--;
address++;
buffer++;
}
return retval;
}
/**
* Synchronously read a block of 32-bit words into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the words will be stored (in host byte order).
* @param count How many words to read.
* @param address Memory address from which to read words; all the
* @param addr_incr if true, increment the source address for each u32
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address, bool addr_incr)
{
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t *pBuffer = buffer;
uint32_t incr_flag = CSW_ADDRINC_OFF;
count >>= 2;
wcount = count;
while (wcount > 0) {
/* Adjust to read blocks within boundaries aligned to the
* TAR autoincrement size (at least 2^10). Autoincrement
* mode avoids an extra per-word roundtrip to update TAR.
*/
blocksize = max_tar_block_size(dap->tar_autoincr_block,
address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
if (addr_incr)
incr_flag = CSW_ADDRINC_SINGLE;
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag,
address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read_block(dap, AP_REG_DRW, blocksize, buffer);
retval = dap_run(dap);
if (retval != ERROR_OK) {
errorcount++;
if (errorcount <= 1) {
/* try again */
continue;
}
LOG_WARNING("Block read error address 0x%" PRIx32, address);
return retval;
}
wcount = wcount - blocksize;
if (addr_incr)
address += 4 * blocksize;
buffer += 4 * blocksize;
}
/* if we have an unaligned access - reorder data */
if (adr & 0x3u) {
for (readcount = 0; readcount < count; readcount++) {
int i;
uint32_t data;
memcpy(&data, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++) {
*((uint8_t *)pBuffer) =
(data >> 8 * (adr & 0x3));
pBuffer++;
adr++;
}
}
}
return retval;
}
static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count >> 1;
while (wcount > 0) {
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
readcount = blocksize;
do {
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return retval;
}
nbytes = MIN((readcount << 1), 4);
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= (nbytes >> 1);
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of 16-bit halfwords into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the halfwords will be stored (in host byte order).
* @param count How many halfwords to read.
* @param address Memory address from which to read words; all the
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
uint32_t invalue, i;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
if (address & 0x1) {
for (i = 0; i < 2; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
} else {
uint16_t svalue = (invalue >> 8 * (address & 0x3));
memcpy(buffer, &svalue, sizeof(uint16_t));
address += 2;
buffer += 2;
}
count -= 2;
}
return retval;
}
/* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
* roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
*
* The solution is to arrange for a large out/in scan in this loop and
* and convert data afterwards.
*/
static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count;
while (wcount > 0) {
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
readcount = blocksize;
do {
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return retval;
}
nbytes = MIN(readcount, 4);
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= nbytes;
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of bytes into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the bytes will be stored.
* @param count How many bytes to read.
* @param address Memory address from which to read data; all the
* data must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
count--;
address++;
buffer++;
}
return retval;
}
/*--------------------------------------------------------------------*/
/* Wrapping function with selection of AP */
/*--------------------------------------------------------------------*/
int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t *value)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_u32(swjdp, address, value);
}
int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t value)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_u32(swjdp, address, value);
}
int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t *value)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_atomic_u32(swjdp, address, value);
}
int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t value)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_atomic_u32(swjdp, address, value);
}
int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u8(swjdp, buffer, count, address);
}
int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u16(swjdp, buffer, count, address);
}
int mem_ap_sel_read_buf_u32_noincr(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u32(swjdp, buffer, count, address, false);
}
int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u32(swjdp, buffer, count, address, true);
}
int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u8(swjdp, buffer, count, address);
}
int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u16(swjdp, buffer, count, address);
}
int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u32(swjdp, buffer, count, address, true);
}
int mem_ap_sel_write_buf_u32_noincr(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u32(swjdp, buffer, count, address, false);
}
#define MDM_REG_STAT 0x00
#define MDM_REG_CTRL 0x04
#define MDM_REG_ID 0xfc
#define MDM_STAT_FMEACK (1<<0)
#define MDM_STAT_FREADY (1<<1)
#define MDM_STAT_SYSSEC (1<<2)
#define MDM_STAT_SYSRES (1<<3)
#define MDM_STAT_FMEEN (1<<5)
#define MDM_STAT_BACKDOOREN (1<<6)
#define MDM_STAT_LPEN (1<<7)
#define MDM_STAT_VLPEN (1<<8)
#define MDM_STAT_LLSMODEXIT (1<<9)
#define MDM_STAT_VLLSXMODEXIT (1<<10)
#define MDM_STAT_CORE_HALTED (1<<16)
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
#define MDM_STAT_CORESLEEPING (1<<18)
#define MEM_CTRL_FMEIP (1<<0)
#define MEM_CTRL_DBG_DIS (1<<1)
#define MEM_CTRL_DBG_REQ (1<<2)
#define MEM_CTRL_SYS_RES_REQ (1<<3)
#define MEM_CTRL_CORE_HOLD_RES (1<<4)
#define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
#define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
#define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
/**
*
*/
int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
{
uint32_t val;
int retval;
enum reset_types jtag_reset_config = jtag_get_reset_config();
dap_ap_select(dap, 1);
/* first check mdm-ap id register */
retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
if (val != 0x001C0000) {
LOG_DEBUG("id doesn't match %08X != 0x001C0000", val);
dap_ap_select(dap, 0);
return ERROR_FAIL;
}
/* read and parse status register
* it's important that the device is out of
* reset here
*/
retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_STAT %08X", val);
if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) {
LOG_DEBUG("MDMAP: system is secured, masserase needed");
if (!(val & MDM_STAT_FMEEN))
LOG_DEBUG("MDMAP: masserase is disabled");
else {
/* we need to assert reset */
if (jtag_reset_config & RESET_HAS_SRST) {
/* default to asserting srst */
adapter_assert_reset();
} else {
LOG_DEBUG("SRST not configured");
dap_ap_select(dap, 0);
return ERROR_FAIL;
}
while (1) {
retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
/* read status register and wait for ready */
retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_STAT %08X", val);
if ((val & 1))
break;
}
while (1) {
retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
/* read status register */
retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_STAT %08X", val);
/* read control register and wait for ready */
retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_CTRL %08X", val);
if (val == 0x00)
break;
}
}
}
dap_ap_select(dap, 0);
return ERROR_OK;
}
/** */
struct dap_syssec_filter {
/** */
uint32_t idcode;
/** */
int (*dap_init)(struct adiv5_dap *dap);
};
/** */
static struct dap_syssec_filter dap_syssec_filter_data[] = {
{ 0x4BA00477, dap_syssec_kinetis_mdmap }
};
/**
*
*/
int dap_syssec(struct adiv5_dap *dap)
{
unsigned int i;
struct jtag_tap *tap;
for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
tap = dap->jtag_info->tap;
while (tap != NULL) {
if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode);
dap_syssec_filter_data[i].dap_init(dap);
}
tap = tap->next_tap;
}
}
return ERROR_OK;
}
/*--------------------------------------------------------------------------*/
/* FIXME don't import ... just initialize as
* part of DAP transport setup
*/
extern const struct dap_ops jtag_dp_ops;
/*--------------------------------------------------------------------------*/
/**
* Initialize a DAP. This sets up the power domains, prepares the DP
* for further use, and arranges to use AP #0 for all AP operations
* until dap_ap-select() changes that policy.
*
* @param dap The DAP being initialized.
*
* @todo Rename this. We also need an initialization scheme which account
* for SWD transports not just JTAG; that will need to address differences
* in layering. (JTAG is useful without any debug target; but not SWD.)
* And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
*/
int ahbap_debugport_init(struct adiv5_dap *dap)
{
uint32_t ctrlstat;
int cnt = 0;
int retval;
LOG_DEBUG(" ");
/* JTAG-DP or SWJ-DP, in JTAG mode
* ... for SWD mode this is patched as part
* of link switchover
*/
if (!dap->ops)
dap->ops = &jtag_dp_ops;
/* Default MEM-AP setup.
*
* REVISIT AP #0 may be an inappropriate default for this.
* Should we probe, or take a hint from the caller?
* Presumably we can ignore the possibility of multiple APs.
*/
dap->ap_current = !0;
dap_ap_select(dap, 0);
/* DP initialization */
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
/* Check that we have debug power domains activated */
while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
LOG_DEBUG("DAP: wait CDBGPWRUPACK");
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
alive_sleep(10);
}
while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
LOG_DEBUG("DAP: wait CSYSPWRUPACK");
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
alive_sleep(10);
}
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
/* With debug power on we can activate OVERRUN checking */
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
dap_syssec(dap);
return ERROR_OK;
}
/* CID interpretation -- see ARM IHI 0029B section 3
* and ARM IHI 0031A table 13-3.
*/
static const char *class_description[16] = {
"Reserved", "ROM table", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
"Reserved", "OptimoDE DESS",
"Generic IP component", "PrimeCell or System component"
};
static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
{
return cid3 == 0xb1 && cid2 == 0x05
&& ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
}
/*
* This function checks the ID for each access port to find the requested Access Port type
*/
int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
{
int ap;
/* Maximum AP number is 255 since the SELECT register is 8 bits */
for (ap = 0; ap <= 255; ap++) {
/* read the IDR register of the Access Port */
uint32_t id_val = 0;
dap_ap_select(dap, ap);
int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
/* IDR bits:
* 31-28 : Revision
* 27-24 : JEDEC bank (0x4 for ARM)
* 23-17 : JEDEC code (0x3B for ARM)
* 16 : Mem-AP
* 15-8 : Reserved
* 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
*/
/* Reading register for a non-existant AP should not cause an error,
* but just to be sure, try to continue searching if an error does happen.
*/
if ((retval == ERROR_OK) && /* Register read success */
((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
((id_val & 0xFF) == type_to_find)) { /* type matches*/
LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08X)",
(type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
(type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
(type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
ap, id_val);
*ap_num_out = ap;
return ERROR_OK;
}
}
LOG_DEBUG("No %s found",
(type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
(type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
(type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
return ERROR_FAIL;
}
int dap_get_debugbase(struct adiv5_dap *dap, int ap,
uint32_t *out_dbgbase, uint32_t *out_apid)
{
uint32_t ap_old;
int retval;
uint32_t dbgbase, apid;
/* AP address is in bits 31:24 of DP_SELECT */
if (ap >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
ap_old = dap->ap_current;
dap_ap_select(dap, ap);
retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
/* Excavate the device ID code */
struct jtag_tap *tap = dap->jtag_info->tap;
while (tap != NULL) {
if (tap->hasidcode)
break;
tap = tap->next_tap;
}
if (tap == NULL || !tap->hasidcode)
return ERROR_OK;
dap_ap_select(dap, ap_old);
/* The asignment happens only here to prevent modification of these
* values before they are certain. */
*out_dbgbase = dbgbase;
*out_apid = apid;
return ERROR_OK;
}
int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
uint32_t dbgbase, uint8_t type, uint32_t *addr)
{
uint32_t ap_old;
uint32_t romentry, entry_offset = 0, component_base, devtype;
int retval = ERROR_FAIL;
if (ap >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
ap_old = dap->ap_current;
dap_ap_select(dap, ap);
do {
retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
entry_offset, &romentry);
if (retval != ERROR_OK)
return retval;
component_base = (dbgbase & 0xFFFFF000)
+ (romentry & 0xFFFFF000);
if (romentry & 0x1) {
retval = mem_ap_read_atomic_u32(dap,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
if (retval != ERROR_OK)
return retval;
if ((devtype & 0xff) == type) {
*addr = component_base;
retval = ERROR_OK;
break;
}
}
entry_offset += 4;
} while (romentry > 0);
dap_ap_select(dap, ap_old);
return retval;
}
static int dap_info_command(struct command_context *cmd_ctx,
struct adiv5_dap *dap, int ap)
{
int retval;
uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
int romtable_present = 0;
uint8_t mem_ap;
uint32_t ap_old;
retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
if (retval != ERROR_OK)
return retval;
ap_old = dap->ap_current;
dap_ap_select(dap, ap);
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
if (apid) {
switch (apid&0x0F) {
case 0:
command_print(cmd_ctx, "\tType is JTAG-AP");
break;
case 1:
command_print(cmd_ctx, "\tType is MEM-AP AHB");
break;
case 2:
command_print(cmd_ctx, "\tType is MEM-AP APB");
break;
default:
command_print(cmd_ctx, "\tUnknown AP type");
break;
}
/* NOTE: a MEM-AP may have a single CoreSight component that's
* not a ROM table ... or have no such components at all.
*/
if (mem_ap)
command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
} else
command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
if (romtable_present) {
uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
uint16_t entry_offset;
/* bit 16 of apid indicates a memory access port */
if (dbgbase & 0x02)
command_print(cmd_ctx, "\tValid ROM table present");
else
command_print(cmd_ctx, "\tROM table in legacy format");
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\tCID3 0x%2.2x"
", CID2 0x%2.2x"
", CID1 0x%2.2x"
", CID0 0x%2.2x",
(unsigned) cid3, (unsigned)cid2,
(unsigned) cid1, (unsigned) cid0);
if (memtype & 0x01)
command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
else
command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
"Dedicated debug bus.");
/* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
entry_offset = 0;
do {
retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
if (retval != ERROR_OK)
return retval;
command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry);
if (romentry & 0x01) {
uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
uint32_t component_base;
unsigned part_num;
char *type, *full;
component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
/* IDs are in last 4K section */
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
if (retval != ERROR_OK)
return retval;
c_pid0 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
if (retval != ERROR_OK)
return retval;
c_pid1 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
if (retval != ERROR_OK)
return retval;
c_pid2 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
if (retval != ERROR_OK)
return retval;
c_pid3 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
if (retval != ERROR_OK)
return retval;
c_pid4 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
if (retval != ERROR_OK)
return retval;
c_cid0 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
if (retval != ERROR_OK)
return retval;
c_cid1 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
if (retval != ERROR_OK)
return retval;
c_cid2 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
if (retval != ERROR_OK)
return retval;
c_cid3 &= 0xff;
command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ","
"start address 0x%" PRIx32, component_base,
/* component may take multiple 4K pages */
component_base - 0x1000*(c_pid4 >> 4));
command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
(int) (c_cid1 >> 4) & 0xf,
/* See ARM IHI 0029B Table 3-3 */
class_description[(c_cid1 >> 4) & 0xf]);
/* CoreSight component? */
if (((c_cid1 >> 4) & 0x0f) == 9) {
uint32_t devtype;
unsigned minor;
char *major = "Reserved", *subtype = "Reserved";
retval = mem_ap_read_atomic_u32(dap,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
if (retval != ERROR_OK)
return retval;
minor = (devtype >> 4) & 0x0f;
switch (devtype & 0x0f) {
case 0:
major = "Miscellaneous";
switch (minor) {
case 0:
subtype = "other";
break;
case 4:
subtype = "Validation component";
break;
}
break;
case 1:
major = "Trace Sink";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Port";
break;
case 2:
subtype = "Buffer";
break;
}
break;
case 2:
major = "Trace Link";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Funnel, router";
break;
case 2:
subtype = "Filter";
break;
case 3:
subtype = "FIFO, buffer";
break;
}
break;
case 3:
major = "Trace Source";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
}
break;
case 4:
major = "Debug Control";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Trigger Matrix";
break;
case 2:
subtype = "Debug Auth";
break;
}
break;
case 5:
major = "Debug Logic";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
}
break;
}
command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
(unsigned) (devtype & 0xff),
major, subtype);
/* REVISIT also show 0xfc8 DevId */
}
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx,
"\t\tCID3 0%2.2x"
", CID2 0%2.2x"
", CID1 0%2.2x"
", CID0 0%2.2x",
(int) c_cid3,
(int) c_cid2,
(int)c_cid1,
(int)c_cid0);
command_print(cmd_ctx,
"\t\tPeripheral ID[4..0] = hex "
"%2.2x %2.2x %2.2x %2.2x %2.2x",
(int) c_pid4, (int) c_pid3, (int) c_pid2,
(int) c_pid1, (int) c_pid0);
/* Part number interpretations are from Cortex
* core specs, the CoreSight components TRM
* (ARM DDI 0314H), CoreSight System Design
* Guide (ARM DGI 0012D) and ETM specs; also
* from chip observation (e.g. TI SDTI).
*/
part_num = (c_pid0 & 0xff);
part_num |= (c_pid1 & 0x0f) << 8;
switch (part_num) {
case 0x000:
type = "Cortex-M3 NVIC";
full = "(Interrupt Controller)";
break;
case 0x001:
type = "Cortex-M3 ITM";
full = "(Instrumentation Trace Module)";
break;
case 0x002:
type = "Cortex-M3 DWT";
full = "(Data Watchpoint and Trace)";
break;
case 0x003:
type = "Cortex-M3 FBP";
full = "(Flash Patch and Breakpoint)";
break;
case 0x00c:
type = "Cortex-M4 SCS";
full = "(System Control Space)";
break;
case 0x00d:
type = "CoreSight ETM11";
full = "(Embedded Trace)";
break;
/* case 0x113: what? */
case 0x120: /* from OMAP3 memmap */
type = "TI SDTI";
full = "(System Debug Trace Interface)";
break;
case 0x343: /* from OMAP3 memmap */
type = "TI DAPCTL";
full = "";
break;
case 0x906:
type = "Coresight CTI";
full = "(Cross Trigger)";
break;
case 0x907:
type = "Coresight ETB";
full = "(Trace Buffer)";
break;
case 0x908:
type = "Coresight CSTF";
full = "(Trace Funnel)";
break;
case 0x910:
type = "CoreSight ETM9";
full = "(Embedded Trace)";
break;
case 0x912:
type = "Coresight TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x921:
type = "Cortex-A8 ETM";
full = "(Embedded Trace)";
break;
case 0x922:
type = "Cortex-A8 CTI";
full = "(Cross Trigger)";
break;
case 0x923:
type = "Cortex-M3 TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x924:
type = "Cortex-M3 ETM";
full = "(Embedded Trace)";
break;
case 0x925:
type = "Cortex-M4 ETM";
full = "(Embedded Trace)";
break;
case 0x930:
type = "Cortex-R4 ETM";
full = "(Embedded Trace)";
break;
case 0x9a1:
type = "Cortex-M4 TPUI";
full = "(Trace Port Interface Unit)";
break;
case 0xc08:
type = "Cortex-A8 Debug";
full = "(Debug Unit)";
break;
default:
type = "-*- unrecognized -*-";
full = "";
break;
}
command_print(cmd_ctx, "\t\tPart is %s %s",
type, full);
} else {
if (romentry)
command_print(cmd_ctx, "\t\tComponent not present");
else
command_print(cmd_ctx, "\t\tEnd of ROM table");
}
entry_offset += 4;
} while (romentry > 0);
} else
command_print(cmd_ctx, "\tNo ROM table present");
dap_ap_select(dap, ap_old);
return ERROR_OK;
}
COMMAND_HANDLER(handle_dap_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return dap_info_command(CMD_CTX, dap, apsel);
}
COMMAND_HANDLER(dap_baseaddr_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, baseaddr;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap_ap_select(dap, apsel);
/* NOTE: assumes we're talking to a MEM-AP, which
* has a base address. There are other kinds of AP,
* though they're not common for now. This should
* use the ID register to verify it's a MEM-AP.
*/
retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
return retval;
}
COMMAND_HANDLER(dap_memaccess_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t memaccess_tck;
switch (CMD_ARGC) {
case 0:
memaccess_tck = dap->memaccess_tck;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->memaccess_tck = memaccess_tck;
command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
dap->memaccess_tck);
return ERROR_OK;
}
COMMAND_HANDLER(dap_apsel_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = 0;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->apsel = apsel;
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
apsel, apid);
return retval;
}
COMMAND_HANDLER(dap_apcsw_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
switch (CMD_ARGC) {
case 0:
command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
(dap->apsel), apcsw);
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
/* AP address is in bits 31:24 of DP_SELECT */
if (sprot > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (sprot)
apcsw |= CSW_SPROT;
else
apcsw &= ~CSW_SPROT;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->apcsw[dap->apsel] = apcsw;
return 0;
}
COMMAND_HANDLER(dap_apid_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
return retval;
}
static const struct command_registration dap_commands[] = {
{
.name = "info",
.handler = handle_dap_info_command,
.mode = COMMAND_EXEC,
.help = "display ROM table for MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "apsel",
.handler = dap_apsel_command,
.mode = COMMAND_EXEC,
.help = "Set the currently selected AP (default 0) "
"and display the result",
.usage = "[ap_num]",
},
{
.name = "apcsw",
.handler = dap_apcsw_command,
.mode = COMMAND_EXEC,
.help = "Set csw access bit ",
.usage = "[sprot]",
},
{
.name = "apid",
.handler = dap_apid_command,
.mode = COMMAND_EXEC,
.help = "return ID register from AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "baseaddr",
.handler = dap_baseaddr_command,
.mode = COMMAND_EXEC,
.help = "return debug base address from MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "memaccess",
.handler = dap_memaccess_command,
.mode = COMMAND_EXEC,
.help = "set/get number of extra tck for MEM-AP memory "
"bus access [0-255]",
.usage = "[cycles]",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration dap_command_handlers[] = {
{
.name = "dap",
.mode = COMMAND_EXEC,
.help = "DAP command group",
.usage = "",
.chain = dap_commands,
},
COMMAND_REGISTRATION_DONE
};