openocd/src/target/embeddedice.c
Antonio Borneo 25218e8935 jtag: remove minidriver code and minidriver-dummy
With zy1000 removed, there is no other implementation that uses
the minidriver, apart from the test/example minidriver-dummy.
While the idea of the minidriver is probably still valid (that is
to intercept jtag primitives before serialization), there is no
current use case, no guarantee it is really working, and the way
it was implemented (by macros and #if conditionals) is really hard
to maintain and test.

Let's let it rip in git history, from where it could eventually be
taken back in a more modern implementation.
The entry points of minidriver API are still in the code with the
original names.

Change-Id: I882e32cb26cf5842f9cba14e3badaf8948e3760d
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6091
Tested-by: jenkins
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
2021-03-19 21:56:06 +00:00

662 lines
18 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007-2010 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "embeddedice.h"
#include "register.h"
#include <helper/time_support.h>
/**
* @file
*
* This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
* module found on scan chain 2 in ARM7, ARM9, and some other families
* of ARM cores. The module is called "EmbeddedICE-RT" if it has
* monitor mode support.
*
* EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
* Communications Channel (DCC) used to read or write 32-bit words to
* OpenOCD-aware code running on the target CPU.
* Newer modules also include vector catch hardware. Some versions
* support hardware single-stepping, "monitor mode" debug (which is not
* currently supported by OpenOCD), or extended reporting on why the
* core entered debug mode.
*/
static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
/*
* From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
*/
static const struct {
const char *name;
unsigned short addr;
unsigned short width;
} eice_regs[] = {
[EICE_DBG_CTRL] = {
.name = "debug_ctrl",
.addr = 0,
/* width is assigned based on EICE version */
},
[EICE_DBG_STAT] = {
.name = "debug_status",
.addr = 1,
/* width is assigned based on EICE version */
},
[EICE_COMMS_CTRL] = {
.name = "comms_ctrl",
.addr = 4,
.width = 6,
},
[EICE_COMMS_DATA] = {
.name = "comms_data",
.addr = 5,
.width = 32,
},
[EICE_W0_ADDR_VALUE] = {
.name = "watch_0_addr_value",
.addr = 8,
.width = 32,
},
[EICE_W0_ADDR_MASK] = {
.name = "watch_0_addr_mask",
.addr = 9,
.width = 32,
},
[EICE_W0_DATA_VALUE] = {
.name = "watch_0_data_value",
.addr = 10,
.width = 32,
},
[EICE_W0_DATA_MASK] = {
.name = "watch_0_data_mask",
.addr = 11,
.width = 32,
},
[EICE_W0_CONTROL_VALUE] = {
.name = "watch_0_control_value",
.addr = 12,
.width = 9,
},
[EICE_W0_CONTROL_MASK] = {
.name = "watch_0_control_mask",
.addr = 13,
.width = 8,
},
[EICE_W1_ADDR_VALUE] = {
.name = "watch_1_addr_value",
.addr = 16,
.width = 32,
},
[EICE_W1_ADDR_MASK] = {
.name = "watch_1_addr_mask",
.addr = 17,
.width = 32,
},
[EICE_W1_DATA_VALUE] = {
.name = "watch_1_data_value",
.addr = 18,
.width = 32,
},
[EICE_W1_DATA_MASK] = {
.name = "watch_1_data_mask",
.addr = 19,
.width = 32,
},
[EICE_W1_CONTROL_VALUE] = {
.name = "watch_1_control_value",
.addr = 20,
.width = 9,
},
[EICE_W1_CONTROL_MASK] = {
.name = "watch_1_control_mask",
.addr = 21,
.width = 8,
},
/* vector_catch isn't always present */
[EICE_VEC_CATCH] = {
.name = "vector_catch",
.addr = 2,
.width = 8,
},
};
static int embeddedice_get_reg(struct reg *reg)
{
int retval = embeddedice_read_reg(reg);
if (retval != ERROR_OK) {
LOG_ERROR("error queueing EmbeddedICE register read");
return retval;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK)
LOG_ERROR("EmbeddedICE register read failed");
return retval;
}
static const struct reg_arch_type eice_reg_type = {
.get = embeddedice_get_reg,
.set = embeddedice_set_reg_w_exec,
};
/**
* Probe EmbeddedICE module and set up local records of its registers.
* Different versions of the modules have different capabilities, such as
* hardware support for vector_catch, single stepping, and monitor mode.
*/
struct reg_cache *embeddedice_build_reg_cache(struct target *target,
struct arm7_9_common *arm7_9)
{
int retval;
struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = NULL;
struct embeddedice_reg *arch_info = NULL;
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
int num_regs = ARRAY_SIZE(eice_regs);
int i;
int eice_version = 0;
/* vector_catch isn't always present */
if (!arm7_9->has_vector_catch)
num_regs--;
/* the actual registers are kept in two arrays */
reg_list = calloc(num_regs, sizeof(struct reg));
arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
/* fill in values for the reg cache */
reg_cache->name = "EmbeddedICE registers";
reg_cache->next = NULL;
reg_cache->reg_list = reg_list;
reg_cache->num_regs = num_regs;
/* FIXME the second watchpoint unit on Feroceon and Dragonite
* seems not to work ... we should have a way to not set up
* its four registers here!
*/
/* set up registers */
for (i = 0; i < num_regs; i++) {
reg_list[i].name = eice_regs[i].name;
reg_list[i].size = eice_regs[i].width;
reg_list[i].dirty = false;
reg_list[i].valid = false;
reg_list[i].value = calloc(1, 4);
reg_list[i].arch_info = &arch_info[i];
reg_list[i].type = &eice_reg_type;
arch_info[i].addr = eice_regs[i].addr;
arch_info[i].jtag_info = jtag_info;
}
/* identify EmbeddedICE version by reading DCC control register */
embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
for (i = 0; i < num_regs; i++)
free(reg_list[i].value);
free(reg_list);
free(reg_cache);
free(arch_info);
return NULL;
}
eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
LOG_INFO("Embedded ICE version %d", eice_version);
switch (eice_version) {
case 1:
/* ARM7TDMI r3, ARM7TDMI-S r3
*
* REVISIT docs say ARM7TDMI-S r4 uses version 1 but
* that it has 6-bit CTRL and 5-bit STAT... doc bug?
* ARM7TDMI r4 docs say EICE v4.
*/
reg_list[EICE_DBG_CTRL].size = 3;
reg_list[EICE_DBG_STAT].size = 5;
break;
case 2:
/* ARM9TDMI */
reg_list[EICE_DBG_CTRL].size = 4;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_single_step = 1;
break;
case 3:
LOG_ERROR("EmbeddedICE v%d handling might be broken",
eice_version);
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_single_step = 1;
arm7_9->has_monitor_mode = 1;
break;
case 4:
/* ARM7TDMI r4 */
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_monitor_mode = 1;
break;
case 5:
/* ARM9E-S rev 1 */
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_single_step = 1;
arm7_9->has_monitor_mode = 1;
break;
case 6:
/* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 10;
/* DBG_STAT has MOE bits */
arm7_9->has_monitor_mode = 1;
break;
case 7:
LOG_ERROR("EmbeddedICE v%d handling might be broken",
eice_version);
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_monitor_mode = 1;
break;
default:
/*
* The Feroceon implementation has the version number
* in some unusual bits. Let feroceon.c validate it
* and do the appropriate setup itself.
*/
if (strcmp(target_type_name(target), "feroceon") == 0 ||
strcmp(target_type_name(target), "dragonite") == 0)
break;
LOG_ERROR("unknown EmbeddedICE version "
"(comms ctrl: 0x%8.8" PRIx32 ")",
buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
}
/* On Feroceon and Dragonite the second unit is seemingly missing. */
LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
target_name(target), arm7_9->wp_available_max,
(arm7_9->wp_available_max != 1) ? "s" : "");
return reg_cache;
}
/**
* Free all memory allocated for EmbeddedICE register cache
*/
void embeddedice_free_reg_cache(struct reg_cache *reg_cache)
{
if (!reg_cache)
return;
for (unsigned int i = 0; i < reg_cache->num_regs; i++)
free(reg_cache->reg_list[i].value);
free(reg_cache->reg_list[0].arch_info);
free(reg_cache->reg_list);
free(reg_cache);
}
/**
* Initialize EmbeddedICE module, if needed.
*/
int embeddedice_setup(struct target *target)
{
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
/* Explicitly disable monitor mode. For now we only support halting
* debug ... we don't know how to talk with a resident debug monitor
* that manages break requests. ARM's "Angel Debug Monitor" is one
* common example of such code.
*/
if (arm7_9->has_monitor_mode) {
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
embeddedice_read_reg(dbg_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
buf_set_u32(dbg_ctrl->value, 4, 1, 0);
embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
}
return jtag_execute_queue();
}
/**
* Queue a read for an EmbeddedICE register into the register cache,
* optionally checking the value read.
* Note that at this level, all registers are 32 bits wide.
*/
int embeddedice_read_reg_w_check(struct reg *reg,
uint8_t *check_value, uint8_t *check_mask)
{
struct embeddedice_reg *ice_reg = reg->arch_info;
uint8_t reg_addr = ice_reg->addr & 0x1f;
struct scan_field fields[3];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
retval = arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(ice_reg->jtag_info->tap,
ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
/* bits 31:0 -- data (ignored here) */
fields[0].num_bits = 32;
fields[0].out_value = reg->value;
fields[0].in_value = NULL;
fields[0].check_value = NULL;
fields[0].check_mask = NULL;
/* bits 36:32 -- register */
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = reg_addr;
fields[1].in_value = NULL;
fields[1].check_value = NULL;
fields[1].check_mask = NULL;
/* bit 37 -- 0/read */
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 0;
fields[2].in_value = NULL;
fields[2].check_value = NULL;
fields[2].check_mask = NULL;
/* traverse Update-DR, setting address for the next read */
jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
/* bits 31:0 -- the data we're reading (and maybe checking) */
fields[0].in_value = reg->value;
fields[0].check_value = check_value;
fields[0].check_mask = check_mask;
/* when reading the DCC data register, leaving the address field set to
* EICE_COMMS_DATA would read the register twice
* reading the control register is safe
*/
field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
/* traverse Update-DR, reading but with no other side effects */
jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
return ERROR_OK;
}
/**
* Receive a block of size 32-bit words from the DCC.
* We assume the target is always going to be fast enough (relative to
* the JTAG clock) that the debugger won't need to poll the handshake
* bit. The JTAG clock is usually at least six times slower than the
* functional clock, so the 50+ JTAG clocks needed to receive the word
* allow hundreds of instruction cycles (per word) in the target.
*/
int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
{
struct scan_field fields[3];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = NULL;
fields[0].in_value = NULL;
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
fields[1].in_value = NULL;
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 0;
fields[2].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
while (size > 0) {
/* when reading the last item, set the register address to the DCC control reg,
* to avoid reading additional data from the DCC data reg
*/
if (size == 1)
field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
fields[0].in_value = (uint8_t *)data;
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
data++;
size--;
}
return jtag_execute_queue();
}
/**
* Queue a read for an EmbeddedICE register into the register cache,
* not checking the value read.
*/
int embeddedice_read_reg(struct reg *reg)
{
return embeddedice_read_reg_w_check(reg, NULL, NULL);
}
/**
* Queue a write for an EmbeddedICE register, updating the register cache.
* Uses embeddedice_write_reg().
*/
void embeddedice_set_reg(struct reg *reg, uint32_t value)
{
embeddedice_write_reg(reg, value);
buf_set_u32(reg->value, 0, reg->size, value);
reg->valid = true;
reg->dirty = false;
}
/**
* Write an EmbeddedICE register, updating the register cache.
* Uses embeddedice_set_reg(); not queued.
*/
static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
{
int retval;
embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
retval = jtag_execute_queue();
if (retval != ERROR_OK)
LOG_ERROR("register write failed");
return retval;
}
/**
* Queue a write for an EmbeddedICE register, bypassing the register cache.
*/
void embeddedice_write_reg(struct reg *reg, uint32_t value)
{
struct embeddedice_reg *ice_reg = reg->arch_info;
LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
arm_jtag_set_instr(ice_reg->jtag_info->tap, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
uint8_t reg_addr = ice_reg->addr & 0x1f;
embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
}
/**
* Queue a write for an EmbeddedICE register, using cached value.
* Uses embeddedice_write_reg().
*/
void embeddedice_store_reg(struct reg *reg)
{
embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
}
/**
* Send a block of size 32-bit words to the DCC.
* We assume the target is always going to be fast enough (relative to
* the JTAG clock) that the debugger won't need to poll the handshake
* bit. The JTAG clock is usually at least six times slower than the
* functional clock, so the 50+ JTAG clocks needed to receive the word
* allow hundreds of instruction cycles (per word) in the target.
*/
int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
{
struct scan_field fields[3];
uint8_t field0_out[4];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = field0_out;
fields[0].in_value = NULL;
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
fields[1].in_value = NULL;
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 1;
fields[2].in_value = NULL;
while (size > 0) {
buf_set_u32(field0_out, 0, 32, *data);
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
data++;
size--;
}
/* call to jtag_execute_queue() intentionally omitted */
return ERROR_OK;
}
/**
* Poll DCC control register until read or write handshake completes.
*/
int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
{
struct scan_field fields[3];
uint8_t field0_in[4];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
uint32_t hsact;
struct timeval now;
struct timeval timeout_end;
if (hsbit == EICE_COMM_CTRL_WBIT)
hsact = 1;
else if (hsbit == EICE_COMM_CTRL_RBIT)
hsact = 0;
else {
LOG_ERROR("Invalid arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = NULL;
fields[0].in_value = field0_in;
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
fields[1].in_value = NULL;
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 0;
fields[2].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
gettimeofday(&timeout_end, NULL);
timeval_add_time(&timeout_end, 0, timeout * 1000);
do {
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (buf_get_u32(field0_in, hsbit, 1) == hsact)
return ERROR_OK;
gettimeofday(&now, NULL);
} while (timeval_compare(&now, &timeout_end) <= 0);
LOG_ERROR("embeddedice handshake timeout");
return ERROR_TARGET_TIMEOUT;
}
/**
* This is an inner loop of the open loop DCC write of data to target
*/
void embeddedice_write_dcc(struct jtag_tap *tap,
int reg_addr, const uint8_t *buffer, int little, int count)
{
int i;
for (i = 0; i < count; i++) {
embeddedice_write_reg_inner(tap, reg_addr,
fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
}