openocd/src/flash/nor/core.c

1030 lines
28 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath <Dominic.Rath@gmx.de> *
* Copyright (C) 2007-2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
* Copyright (C) 2008 by Spencer Oliver <spen@spen-soft.co.uk> *
* Copyright (C) 2009 Zachary T Welch <zw@superlucidity.net> *
* Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
* Copyright (C) 2017-2018 Tomas Vanek <vanekt@fbl.cz> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <flash/common.h>
#include <flash/nor/core.h>
#include <flash/nor/imp.h>
#include <target/image.h>
/**
* @file
* Upper level of NOR flash framework.
* The lower level interfaces are to drivers. These upper level ones
* primarily support access from Tcl scripts or from GDB.
*/
static struct flash_bank *flash_banks;
int flash_driver_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int retval;
retval = bank->driver->erase(bank, first, last);
if (retval != ERROR_OK)
LOG_ERROR("failed erasing sectors %u to %u", first, last);
return retval;
}
int flash_driver_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
int retval;
unsigned int num_blocks;
if (bank->num_prot_blocks)
num_blocks = bank->num_prot_blocks;
else
num_blocks = bank->num_sectors;
/* callers may not supply illegal parameters ... */
if (first > last || last >= num_blocks) {
LOG_ERROR("illegal protection block range");
return ERROR_FAIL;
}
/* force "set" to 0/1 */
set = !!set;
if (!bank->driver->protect) {
LOG_ERROR("Flash protection is not supported.");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
/* DANGER!
*
* We must not use any cached information about protection state!!!!
*
* There are a million things that could change the protect state:
*
* the target could have reset, power cycled, been hot plugged,
* the application could have run, etc.
*
* Drivers only receive valid protection block range.
*/
retval = bank->driver->protect(bank, set, first, last);
if (retval != ERROR_OK)
LOG_ERROR("failed setting protection for blocks %u to %u", first, last);
return retval;
}
int flash_driver_write(struct flash_bank *bank,
const uint8_t *buffer, uint32_t offset, uint32_t count)
{
int retval;
retval = bank->driver->write(bank, buffer, offset, count);
if (retval != ERROR_OK) {
LOG_ERROR(
"error writing to flash at address " TARGET_ADDR_FMT
" at offset 0x%8.8" PRIx32,
bank->base,
offset);
}
return retval;
}
int flash_driver_read(struct flash_bank *bank,
uint8_t *buffer, uint32_t offset, uint32_t count)
{
int retval;
LOG_DEBUG("call flash_driver_read()");
retval = bank->driver->read(bank, buffer, offset, count);
if (retval != ERROR_OK) {
LOG_ERROR(
"error reading to flash at address " TARGET_ADDR_FMT
" at offset 0x%8.8" PRIx32,
bank->base,
offset);
}
return retval;
}
int default_flash_read(struct flash_bank *bank,
uint8_t *buffer, uint32_t offset, uint32_t count)
{
return target_read_buffer(bank->target, offset + bank->base, count, buffer);
}
int flash_driver_verify(struct flash_bank *bank,
const uint8_t *buffer, uint32_t offset, uint32_t count)
{
int retval;
retval = bank->driver->verify ? bank->driver->verify(bank, buffer, offset, count) :
default_flash_verify(bank, buffer, offset, count);
if (retval != ERROR_OK) {
LOG_ERROR("verify failed in bank at " TARGET_ADDR_FMT " starting at 0x%8.8" PRIx32,
bank->base, offset);
}
return retval;
}
int default_flash_verify(struct flash_bank *bank,
const uint8_t *buffer, uint32_t offset, uint32_t count)
{
uint32_t target_crc, image_crc;
int retval;
retval = image_calculate_checksum(buffer, count, &image_crc);
if (retval != ERROR_OK)
return retval;
retval = target_checksum_memory(bank->target, offset + bank->base, count, &target_crc);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("addr " TARGET_ADDR_FMT ", len 0x%08" PRIx32 ", crc 0x%08" PRIx32 " 0x%08" PRIx32,
offset + bank->base, count, ~image_crc, ~target_crc);
if (target_crc == image_crc)
return ERROR_OK;
else
return ERROR_FAIL;
}
void flash_bank_add(struct flash_bank *bank)
{
/* put flash bank in linked list */
unsigned bank_num = 0;
if (flash_banks) {
/* find last flash bank */
struct flash_bank *p = flash_banks;
while (p->next) {
bank_num += 1;
p = p->next;
}
p->next = bank;
bank_num += 1;
} else
flash_banks = bank;
bank->bank_number = bank_num;
}
struct flash_bank *flash_bank_list(void)
{
return flash_banks;
}
struct flash_bank *get_flash_bank_by_num_noprobe(unsigned int num)
{
struct flash_bank *p;
unsigned int i = 0;
for (p = flash_banks; p; p = p->next) {
if (i++ == num)
return p;
}
LOG_ERROR("flash bank %d does not exist", num);
return NULL;
}
unsigned int flash_get_bank_count(void)
{
struct flash_bank *p;
unsigned int i = 0;
for (p = flash_banks; p; p = p->next)
i++;
return i;
}
void default_flash_free_driver_priv(struct flash_bank *bank)
{
free(bank->driver_priv);
bank->driver_priv = NULL;
}
void flash_free_all_banks(void)
{
struct flash_bank *bank = flash_banks;
while (bank) {
struct flash_bank *next = bank->next;
if (bank->driver->free_driver_priv)
bank->driver->free_driver_priv(bank);
else
LOG_WARNING("Flash driver of %s does not support free_driver_priv()", bank->name);
/* For 'virtual' flash driver bank->sectors and bank->prot_blocks pointers are copied from
* master flash_bank structure. They point to memory locations allocated by master flash driver
* so master driver is responsible for releasing them.
* Avoid UB caused by double-free memory corruption if flash bank is 'virtual'. */
if (strcmp(bank->driver->name, "virtual") != 0) {
free(bank->sectors);
free(bank->prot_blocks);
}
free(bank->name);
free(bank);
bank = next;
}
flash_banks = NULL;
}
struct flash_bank *get_flash_bank_by_name_noprobe(const char *name)
{
unsigned requested = get_flash_name_index(name);
unsigned found = 0;
struct flash_bank *bank;
for (bank = flash_banks; bank; bank = bank->next) {
if (strcmp(bank->name, name) == 0)
return bank;
if (!flash_driver_name_matches(bank->driver->name, name))
continue;
if (++found < requested)
continue;
return bank;
}
return NULL;
}
int get_flash_bank_by_name(const char *name, struct flash_bank **bank_result)
{
struct flash_bank *bank;
int retval;
bank = get_flash_bank_by_name_noprobe(name);
if (bank) {
retval = bank->driver->auto_probe(bank);
if (retval != ERROR_OK) {
LOG_ERROR("auto_probe failed");
return retval;
}
}
*bank_result = bank;
return ERROR_OK;
}
int get_flash_bank_by_num(unsigned int num, struct flash_bank **bank)
{
struct flash_bank *p = get_flash_bank_by_num_noprobe(num);
int retval;
if (!p)
return ERROR_FAIL;
retval = p->driver->auto_probe(p);
if (retval != ERROR_OK) {
LOG_ERROR("auto_probe failed");
return retval;
}
*bank = p;
return ERROR_OK;
}
/* lookup flash bank by address, bank not found is success, but
* result_bank is set to NULL. */
int get_flash_bank_by_addr(struct target *target,
target_addr_t addr,
bool check,
struct flash_bank **result_bank)
{
struct flash_bank *c;
/* cycle through bank list */
for (c = flash_banks; c; c = c->next) {
if (c->target != target)
continue;
int retval;
retval = c->driver->auto_probe(c);
if (retval != ERROR_OK) {
LOG_ERROR("auto_probe failed");
return retval;
}
/* check whether address belongs to this flash bank */
if ((addr >= c->base) && (addr <= c->base + (c->size - 1))) {
*result_bank = c;
return ERROR_OK;
}
}
*result_bank = NULL;
if (check) {
LOG_ERROR("No flash at address " TARGET_ADDR_FMT, addr);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int default_flash_mem_blank_check(struct flash_bank *bank)
{
struct target *target = bank->target;
const int buffer_size = 1024;
uint32_t n_bytes;
int retval = ERROR_OK;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint8_t *buffer = malloc(buffer_size);
for (unsigned int i = 0; i < bank->num_sectors; i++) {
uint32_t j;
bank->sectors[i].is_erased = 1;
for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
uint32_t chunk;
chunk = buffer_size;
if (chunk > (bank->sectors[i].size - j))
chunk = (bank->sectors[i].size - j);
retval = target_read_memory(target,
bank->base + bank->sectors[i].offset + j,
4,
chunk/4,
buffer);
if (retval != ERROR_OK)
goto done;
for (n_bytes = 0; n_bytes < chunk; n_bytes++) {
if (buffer[n_bytes] != bank->erased_value) {
bank->sectors[i].is_erased = 0;
break;
}
}
}
}
done:
free(buffer);
return retval;
}
int default_flash_blank_check(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct target_memory_check_block *block_array;
block_array = malloc(bank->num_sectors * sizeof(struct target_memory_check_block));
if (!block_array)
return default_flash_mem_blank_check(bank);
for (unsigned int i = 0; i < bank->num_sectors; i++) {
block_array[i].address = bank->base + bank->sectors[i].offset;
block_array[i].size = bank->sectors[i].size;
block_array[i].result = UINT32_MAX; /* erase state unknown */
}
bool fast_check = true;
for (unsigned int i = 0; i < bank->num_sectors; ) {
retval = target_blank_check_memory(target,
block_array + i, bank->num_sectors - i,
bank->erased_value);
if (retval < 1) {
/* Run slow fallback if the first run gives no result
* otherwise use possibly incomplete results */
if (i == 0)
fast_check = false;
break;
}
i += retval; /* add number of blocks done this round */
}
if (fast_check) {
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = block_array[i].result;
retval = ERROR_OK;
} else {
if (retval == ERROR_NOT_IMPLEMENTED)
LOG_USER("Running slow fallback erase check");
else
LOG_USER("Running slow fallback erase check - add working memory");
retval = default_flash_mem_blank_check(bank);
}
free(block_array);
return retval;
}
/* Manipulate given flash region, selecting the bank according to target
* and address. Maps an address range to a set of sectors, and issues
* the callback() on that set ... e.g. to erase or unprotect its members.
*
* Parameter iterate_protect_blocks switches iteration of protect block
* instead of erase sectors. If there is no protect blocks array, sectors
* are used in iteration, so compatibility for old flash drivers is retained.
*
* The "pad_reason" parameter is a kind of boolean: when it's NULL, the
* range must fit those sectors exactly. This is clearly safe; it can't
* erase data which the caller said to leave alone, for example. If it's
* non-NULL, rather than failing, extra data in the first and/or last
* sectors will be added to the range, and that reason string is used when
* warning about those additions.
*/
static int flash_iterate_address_range_inner(struct target *target,
char *pad_reason, target_addr_t addr, uint32_t length,
bool iterate_protect_blocks,
int (*callback)(struct flash_bank *bank, unsigned int first,
unsigned int last))
{
struct flash_bank *c;
struct flash_sector *block_array;
target_addr_t last_addr = addr + length - 1; /* the last address of range */
int first = -1;
int last = -1;
int i;
int num_blocks;
int retval = get_flash_bank_by_addr(target, addr, true, &c);
if (retval != ERROR_OK)
return retval;
if (c->size == 0 || c->num_sectors == 0) {
LOG_ERROR("Bank is invalid");
return ERROR_FLASH_BANK_INVALID;
}
if (length == 0) {
/* special case, erase whole bank when length is zero */
if (addr != c->base) {
LOG_ERROR("Whole bank access must start at beginning of bank.");
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
return callback(c, 0, c->num_sectors - 1);
}
/* check whether it all fits in this bank */
if (last_addr > c->base + c->size - 1) {
LOG_ERROR("Flash access does not fit into bank.");
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (!c->prot_blocks || c->num_prot_blocks == 0) {
/* flash driver does not define protect blocks, use sectors instead */
iterate_protect_blocks = false;
}
if (iterate_protect_blocks) {
block_array = c->prot_blocks;
num_blocks = c->num_prot_blocks;
} else {
block_array = c->sectors;
num_blocks = c->num_sectors;
}
for (i = 0; i < num_blocks; i++) {
struct flash_sector *f = &block_array[i];
target_addr_t sector_addr = c->base + f->offset;
target_addr_t sector_last_addr = sector_addr + f->size - 1;
/* start only on a sector boundary */
if (first < 0) {
/* scanned past the first sector? */
if (addr < sector_addr)
break;
/* is this the first sector? */
if (addr == sector_addr)
first = i;
/* Does this need head-padding? If so, pad and warn;
* or else force an error.
*
* Such padding can make trouble, since *WE* can't
* ever know if that data was in use. The warning
* should help users sort out messes later.
*/
else if (addr <= sector_last_addr && pad_reason) {
/* FIXME say how many bytes (e.g. 80 KB) */
LOG_WARNING("Adding extra %s range, "
TARGET_ADDR_FMT " .. " TARGET_ADDR_FMT,
pad_reason,
sector_addr,
addr - 1);
first = i;
} else
continue;
}
/* is this (also?) the last sector? */
if (last_addr == sector_last_addr) {
last = i;
break;
}
/* Does this need tail-padding? If so, pad and warn;
* or else force an error.
*/
if (last_addr < sector_last_addr && pad_reason) {
/* FIXME say how many bytes (e.g. 80 KB) */
LOG_WARNING("Adding extra %s range, "
TARGET_ADDR_FMT " .. " TARGET_ADDR_FMT,
pad_reason,
last_addr + 1,
sector_last_addr);
last = i;
break;
}
/* MUST finish on a sector boundary */
if (last_addr < sector_addr)
break;
}
/* invalid start or end address? */
if (first == -1 || last == -1) {
LOG_ERROR("address range " TARGET_ADDR_FMT " .. " TARGET_ADDR_FMT
" is not sector-aligned",
addr,
last_addr);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* The NOR driver may trim this range down, based on what
* sectors are already erased/unprotected. GDB currently
* blocks such optimizations.
*/
return callback(c, first, last);
}
/* The inner fn only handles a single bank, we could be spanning
* multiple chips.
*/
static int flash_iterate_address_range(struct target *target,
char *pad_reason, target_addr_t addr, uint32_t length,
bool iterate_protect_blocks,
int (*callback)(struct flash_bank *bank, unsigned int first,
unsigned int last))
{
struct flash_bank *c;
int retval = ERROR_OK;
/* Danger! zero-length iterations means entire bank! */
do {
retval = get_flash_bank_by_addr(target, addr, true, &c);
if (retval != ERROR_OK)
return retval;
uint32_t cur_length = length;
/* check whether it all fits in this bank */
if (addr + length - 1 > c->base + c->size - 1) {
LOG_DEBUG("iterating over more than one flash bank.");
cur_length = c->base + c->size - addr;
}
retval = flash_iterate_address_range_inner(target,
pad_reason, addr, cur_length,
iterate_protect_blocks,
callback);
if (retval != ERROR_OK)
break;
length -= cur_length;
addr += cur_length;
} while (length > 0);
return retval;
}
int flash_erase_address_range(struct target *target,
bool pad, target_addr_t addr, uint32_t length)
{
return flash_iterate_address_range(target, pad ? "erase" : NULL,
addr, length, false, &flash_driver_erase);
}
static int flash_driver_unprotect(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
return flash_driver_protect(bank, 0, first, last);
}
int flash_unlock_address_range(struct target *target, target_addr_t addr,
uint32_t length)
{
/* By default, pad to sector boundaries ... the real issue here
* is that our (only) caller *permanently* removes protection,
* and doesn't restore it.
*/
return flash_iterate_address_range(target, "unprotect",
addr, length, true, &flash_driver_unprotect);
}
static int compare_section(const void *a, const void *b)
{
struct imagesection *b1, *b2;
b1 = *((struct imagesection **)a);
b2 = *((struct imagesection **)b);
if (b1->base_address == b2->base_address)
return 0;
else if (b1->base_address > b2->base_address)
return 1;
else
return -1;
}
/**
* Get aligned start address of a flash write region
*/
target_addr_t flash_write_align_start(struct flash_bank *bank, target_addr_t addr)
{
if (addr < bank->base || addr >= bank->base + bank->size
|| bank->write_start_alignment <= 1)
return addr;
if (bank->write_start_alignment == FLASH_WRITE_ALIGN_SECTOR) {
uint32_t offset = addr - bank->base;
uint32_t aligned = 0;
for (unsigned int sect = 0; sect < bank->num_sectors; sect++) {
if (bank->sectors[sect].offset > offset)
break;
aligned = bank->sectors[sect].offset;
}
return bank->base + aligned;
}
return addr & ~(bank->write_start_alignment - 1);
}
/**
* Get aligned end address of a flash write region
*/
target_addr_t flash_write_align_end(struct flash_bank *bank, target_addr_t addr)
{
if (addr < bank->base || addr >= bank->base + bank->size
|| bank->write_end_alignment <= 1)
return addr;
if (bank->write_end_alignment == FLASH_WRITE_ALIGN_SECTOR) {
uint32_t offset = addr - bank->base;
uint32_t aligned = 0;
for (unsigned int sect = 0; sect < bank->num_sectors; sect++) {
aligned = bank->sectors[sect].offset + bank->sectors[sect].size - 1;
if (aligned >= offset)
break;
}
return bank->base + aligned;
}
return addr | (bank->write_end_alignment - 1);
}
/**
* Check if gap between sections is bigger than minimum required to discontinue flash write
*/
static bool flash_write_check_gap(struct flash_bank *bank,
target_addr_t addr1, target_addr_t addr2)
{
if (bank->minimal_write_gap == FLASH_WRITE_CONTINUOUS
|| addr1 < bank->base || addr1 >= bank->base + bank->size
|| addr2 < bank->base || addr2 >= bank->base + bank->size)
return false;
if (bank->minimal_write_gap == FLASH_WRITE_GAP_SECTOR) {
unsigned int sect;
uint32_t offset1 = addr1 - bank->base;
/* find the sector following the one containing addr1 */
for (sect = 0; sect < bank->num_sectors; sect++) {
if (bank->sectors[sect].offset > offset1)
break;
}
if (sect >= bank->num_sectors)
return false;
uint32_t offset2 = addr2 - bank->base;
return bank->sectors[sect].offset + bank->sectors[sect].size <= offset2;
}
target_addr_t aligned1 = flash_write_align_end(bank, addr1);
target_addr_t aligned2 = flash_write_align_start(bank, addr2);
return aligned1 + bank->minimal_write_gap < aligned2;
}
int flash_write_unlock_verify(struct target *target, struct image *image,
uint32_t *written, bool erase, bool unlock, bool write, bool verify)
{
int retval = ERROR_OK;
unsigned int section;
uint32_t section_offset;
struct flash_bank *c;
int *padding;
section = 0;
section_offset = 0;
if (written)
*written = 0;
if (erase) {
/* assume all sectors need erasing - stops any problems
* when flash_write is called multiple times */
flash_set_dirty();
}
/* allocate padding array */
padding = calloc(image->num_sections, sizeof(*padding));
/* This fn requires all sections to be in ascending order of addresses,
* whereas an image can have sections out of order. */
struct imagesection **sections = malloc(sizeof(struct imagesection *) *
image->num_sections);
for (unsigned int i = 0; i < image->num_sections; i++)
sections[i] = &image->sections[i];
qsort(sections, image->num_sections, sizeof(struct imagesection *),
compare_section);
/* loop until we reach end of the image */
while (section < image->num_sections) {
uint32_t buffer_idx;
uint8_t *buffer;
unsigned int section_last;
target_addr_t run_address = sections[section]->base_address + section_offset;
uint32_t run_size = sections[section]->size - section_offset;
int pad_bytes = 0;
if (sections[section]->size == 0) {
LOG_WARNING("empty section %d", section);
section++;
section_offset = 0;
continue;
}
/* find the corresponding flash bank */
retval = get_flash_bank_by_addr(target, run_address, false, &c);
if (retval != ERROR_OK)
goto done;
if (!c) {
LOG_WARNING("no flash bank found for address " TARGET_ADDR_FMT, run_address);
section++; /* and skip it */
section_offset = 0;
continue;
}
/* collect consecutive sections which fall into the same bank */
section_last = section;
padding[section] = 0;
while ((run_address + run_size - 1 < c->base + c->size - 1) &&
(section_last + 1 < image->num_sections)) {
/* sections are sorted */
assert(sections[section_last + 1]->base_address >= c->base);
if (sections[section_last + 1]->base_address >= (c->base + c->size)) {
/* Done with this bank */
break;
}
/* if we have multiple sections within our image,
* flash programming could fail due to alignment issues
* attempt to rebuild a consecutive buffer for the flash loader */
target_addr_t run_next_addr = run_address + run_size;
target_addr_t next_section_base = sections[section_last + 1]->base_address;
if (next_section_base < run_next_addr) {
LOG_ERROR("Section at " TARGET_ADDR_FMT
" overlaps section ending at " TARGET_ADDR_FMT,
next_section_base, run_next_addr);
LOG_ERROR("Flash write aborted.");
retval = ERROR_FAIL;
goto done;
}
pad_bytes = next_section_base - run_next_addr;
if (pad_bytes) {
if (flash_write_check_gap(c, run_next_addr - 1, next_section_base)) {
LOG_INFO("Flash write discontinued at " TARGET_ADDR_FMT
", next section at " TARGET_ADDR_FMT,
run_next_addr, next_section_base);
break;
}
}
if (pad_bytes > 0)
LOG_INFO("Padding image section %d at " TARGET_ADDR_FMT
" with %d bytes",
section_last, run_next_addr, pad_bytes);
padding[section_last] = pad_bytes;
run_size += pad_bytes;
run_size += sections[++section_last]->size;
}
if (run_address + run_size - 1 > c->base + c->size - 1) {
/* If we have more than one flash chip back to back, then we limit
* the current write operation to the current chip.
*/
LOG_DEBUG("Truncate flash run size to the current flash chip.");
run_size = c->base + c->size - run_address;
assert(run_size > 0);
}
uint32_t padding_at_start = 0;
if (c->write_start_alignment || c->write_end_alignment) {
/* align write region according to bank requirements */
target_addr_t aligned_start = flash_write_align_start(c, run_address);
padding_at_start = run_address - aligned_start;
if (padding_at_start > 0) {
LOG_WARNING("Section start address " TARGET_ADDR_FMT
" breaks the required alignment of flash bank %s",
run_address, c->name);
LOG_WARNING("Padding %" PRIu32 " bytes from " TARGET_ADDR_FMT,
padding_at_start, aligned_start);
run_address -= padding_at_start;
run_size += padding_at_start;
}
target_addr_t run_end = run_address + run_size - 1;
target_addr_t aligned_end = flash_write_align_end(c, run_end);
pad_bytes = aligned_end - run_end;
if (pad_bytes > 0) {
LOG_INFO("Padding image section %d at " TARGET_ADDR_FMT
" with %d bytes (bank write end alignment)",
section_last, run_end + 1, pad_bytes);
padding[section_last] += pad_bytes;
run_size += pad_bytes;
}
} else if (unlock || erase) {
/* If we're applying any sector automagic, then pad this
* (maybe-combined) segment to the end of its last sector.
*/
uint32_t offset_start = run_address - c->base;
uint32_t offset_end = offset_start + run_size;
uint32_t end = offset_end, delta;
for (unsigned int sector = 0; sector < c->num_sectors; sector++) {
end = c->sectors[sector].offset
+ c->sectors[sector].size;
if (offset_end <= end)
break;
}
delta = end - offset_end;
padding[section_last] += delta;
run_size += delta;
}
/* allocate buffer */
buffer = malloc(run_size);
if (!buffer) {
LOG_ERROR("Out of memory for flash bank buffer");
retval = ERROR_FAIL;
goto done;
}
if (padding_at_start)
memset(buffer, c->default_padded_value, padding_at_start);
buffer_idx = padding_at_start;
/* read sections to the buffer */
while (buffer_idx < run_size) {
size_t size_read;
size_read = run_size - buffer_idx;
if (size_read > sections[section]->size - section_offset)
size_read = sections[section]->size - section_offset;
/* KLUDGE!
*
* #¤%#"%¤% we have to figure out the section # from the sorted
* list of pointers to sections to invoke image_read_section()...
*/
intptr_t diff = (intptr_t)sections[section] - (intptr_t)image->sections;
int t_section_num = diff / sizeof(struct imagesection);
LOG_DEBUG("image_read_section: section = %d, t_section_num = %d, "
"section_offset = %"PRIu32", buffer_idx = %"PRIu32", size_read = %zu",
section, t_section_num, section_offset,
buffer_idx, size_read);
retval = image_read_section(image, t_section_num, section_offset,
size_read, buffer + buffer_idx, &size_read);
if (retval != ERROR_OK || size_read == 0) {
free(buffer);
goto done;
}
buffer_idx += size_read;
section_offset += size_read;
/* see if we need to pad the section */
if (padding[section]) {
memset(buffer + buffer_idx, c->default_padded_value, padding[section]);
buffer_idx += padding[section];
}
if (section_offset >= sections[section]->size) {
section++;
section_offset = 0;
}
}
retval = ERROR_OK;
if (unlock)
retval = flash_unlock_address_range(target, run_address, run_size);
if (retval == ERROR_OK) {
if (erase) {
/* calculate and erase sectors */
retval = flash_erase_address_range(target,
true, run_address, run_size);
}
}
if (retval == ERROR_OK) {
if (write) {
/* write flash sectors */
retval = flash_driver_write(c, buffer, run_address - c->base, run_size);
}
}
if (retval == ERROR_OK) {
if (verify) {
/* verify flash sectors */
retval = flash_driver_verify(c, buffer, run_address - c->base, run_size);
}
}
free(buffer);
if (retval != ERROR_OK) {
/* abort operation */
goto done;
}
if (written)
*written += run_size; /* add run size to total written counter */
}
done:
free(sections);
free(padding);
return retval;
}
int flash_write(struct target *target, struct image *image,
uint32_t *written, bool erase)
{
return flash_write_unlock_verify(target, image, written, erase, false, true, false);
}
struct flash_sector *alloc_block_array(uint32_t offset, uint32_t size,
unsigned int num_blocks)
{
struct flash_sector *array = calloc(num_blocks, sizeof(struct flash_sector));
if (!array)
return NULL;
for (unsigned int i = 0; i < num_blocks; i++) {
array[i].offset = offset;
array[i].size = size;
array[i].is_erased = -1;
array[i].is_protected = -1;
offset += size;
}
return array;
}