openocd/src/flash/arm_nandio.c
Dean Glazeski cf2cb0fc84 Make ARM NAND I/O operations aware of last op
Updates the ARM NAND I/O code to look at and update the op
field of arm_nand_data to reflect the last operation performed.
It uses this field to copy the correct code to the target in the
case where the struct is used for reads and writes.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
2009-12-03 17:29:42 -08:00

247 lines
7.7 KiB
C

/*
* Copyright (C) 2009 by Marvell Semiconductors, Inc.
* Written by Nicolas Pitre <nico at marvell.com>
*
* Copyright (C) 2009 by David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm_nandio.h"
#include <target/armv4_5.h>
#include <target/algorithm.h>
/**
* Copies code to a working area. This will allocate room for the code plus the
* additional amount requested if the working area pointer is null.
*
* @param target Pointer to the target to copy code to
* @param code Pointer to the code area to be copied
* @param code_size Size of the code being copied
* @param additional Size of the additional area to be allocated in addition to
* code
* @param area Pointer to a pointer to a working area to copy code to
* @return Success or failure of the operation
*/
int arm_code_to_working_area(struct target *target,
const uint32_t *code, unsigned code_size,
unsigned additional, struct working_area **area)
{
uint8_t code_buf[code_size];
unsigned i;
int retval;
unsigned size = code_size + additional;
/* REVISIT this assumes size doesn't ever change.
* That's usually correct; but there are boards with
* both large and small page chips, where it won't be...
*/
/* make sure we have a working area */
if (NULL == *area) {
retval = target_alloc_working_area(target, size, area);
if (retval != ERROR_OK) {
LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) size);
return ERROR_NAND_NO_BUFFER;
}
}
/* buffer code in target endianness */
for (i = 0; i < code_size / 4; i++)
target_buffer_set_u32(target, code_buf + i * 4, code[i]);
/* copy code to work area */
retval = target_write_memory(target, (*area)->address,
4, code_size / 4, code_buf);
return retval;
}
/**
* ARM-specific bulk write from buffer to address of 8-bit wide NAND.
* For now this only supports ARMv4 and ARMv5 cores.
*
* Enhancements to target_run_algorithm() could enable:
* - ARMv6 and ARMv7 cores in ARM mode
*
* Different code fragments could handle:
* - Thumb2 cores like Cortex-M (needs different byteswapping)
* - 16-bit wide data (needs different setup too)
*
* @param nand Pointer to the arm_nand_data struct that defines the I/O
* @param data Pointer to the data to be copied to flash
* @param size Size of the data being copied
* @return Success or failure of the operation
*/
int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
{
struct target *target = nand->target;
struct armv4_5_algorithm algo;
struct arm *armv4_5 = target->arch_info;
struct reg_param reg_params[3];
uint32_t target_buf;
uint32_t exit = 0;
int retval;
/* Inputs:
* r0 NAND data address (byte wide)
* r1 buffer address
* r2 buffer length
*/
static const uint32_t code[] = {
0xe4d13001, /* s: ldrb r3, [r1], #1 */
0xe5c03000, /* strb r3, [r0] */
0xe2522001, /* subs r2, r2, #1 */
0x1afffffb, /* bne s */
/* exit: ARMv4 needs hardware breakpoint */
0xe1200070, /* e: bkpt #0 */
};
if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
retval = arm_code_to_working_area(target, code, sizeof(code),
nand->chunk_size, &nand->copy_area);
if (retval != ERROR_OK) {
return retval;
}
}
nand->op = ARM_NAND_WRITE;
/* copy data to work area */
target_buf = nand->copy_area->address + sizeof(code);
retval = target_bulk_write_memory(target, target_buf, size / 4, data);
if (retval == ERROR_OK && (size & 3) != 0)
retval = target_write_memory(target,
target_buf + (size & ~3),
1, size & 3, data + (size & ~3));
if (retval != ERROR_OK)
return retval;
/* set up algorithm and parameters */
algo.common_magic = ARMV4_5_COMMON_MAGIC;
algo.core_mode = ARMV4_5_MODE_SVC;
algo.core_state = ARMV4_5_STATE_ARM;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
buf_set_u32(reg_params[0].value, 0, 32, nand->data);
buf_set_u32(reg_params[1].value, 0, 32, target_buf);
buf_set_u32(reg_params[2].value, 0, 32, size);
/* armv4 must exit using a hardware breakpoint */
if (armv4_5->is_armv4)
exit = nand->copy_area->address + sizeof(code) - 4;
/* use alg to write data from work area to NAND chip */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
nand->copy_area->address, exit, 1000, &algo);
if (retval != ERROR_OK)
LOG_ERROR("error executing hosted NAND write");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
return retval;
}
/**
* Uses an on-chip algorithm for an ARM device to read from a NAND device and
* store the data into the host machine's memory.
*
* @param nand Pointer to the arm_nand_data struct that defines the I/O
* @param data Pointer to the data buffer to store the read data
* @param size Amount of data to be stored to the buffer.
* @return Success or failure of the operation
*/
int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
{
struct target *target = nand->target;
struct armv4_5_algorithm algo;
struct arm *armv4_5 = target->arch_info;
struct reg_param reg_params[3];
uint32_t target_buf;
uint32_t exit = 0;
int retval;
/* Inputs:
* r0 buffer address
* r1 NAND data address (byte wide)
* r2 buffer length
*/
static const uint32_t code[] = {
0xe5d13000, /* s: ldrb r3, [r1] */
0xe4c03001, /* strb r3, [r0], #1 */
0xe2522001, /* subs r2, r2, #1 */
0x1afffffb, /* bne s */
/* exit: ARMv4 needs hardware breakpoint */
0xe1200070, /* e: bkpt #0 */
};
/* create the copy area if not yet available */
if (nand->op != ARM_NAND_READ || !nand->copy_area) {
retval = arm_code_to_working_area(target, code, sizeof(code),
nand->chunk_size, &nand->copy_area);
if (retval != ERROR_OK) {
return retval;
}
}
nand->op = ARM_NAND_READ;
target_buf = nand->copy_area->address + sizeof(code);
/* set up algorithm and parameters */
algo.common_magic = ARMV4_5_COMMON_MAGIC;
algo.core_mode = ARMV4_5_MODE_SVC;
algo.core_state = ARMV4_5_STATE_ARM;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
buf_set_u32(reg_params[0].value, 0, 32, target_buf);
buf_set_u32(reg_params[1].value, 0, 32, nand->data);
buf_set_u32(reg_params[2].value, 0, 32, size);
/* armv4 must exit using a hardware breakpoint */
if (armv4_5->is_armv4)
exit = nand->copy_area->address + sizeof(code) - 4;
/* use alg to write data from NAND chip to work area */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
nand->copy_area->address, exit, 1000, &algo);
if (retval != ERROR_OK)
LOG_ERROR("error executing hosted NAND read");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
/* read from work area to the host's memory */
retval = target_read_buffer(target, target_buf, size, data);
return retval;
}