openocd/src/flash/nor/at91sam4.c

3275 lines
77 KiB
C

/* SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-Source-Code) */
/*
* Copyright (C) 2009 by Duane Ellis <openocd@duaneellis.com>
*
* at91sam3s* support
* Copyright (C) 2010 by Olaf Lüke <olaf@uni-paderborn.de>
*
* at91sam3x* & at91sam4 support
* Copyright (C) 2011 by Olivier Schonken, Jim Norris
*
* Some of the lower level code was based on code supplied by
* ATMEL under BSD-Source-Code License and this copyright.
* ATMEL Microcontroller Software Support
* Copyright (c) 2009, Atmel Corporation. All rights reserved.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/time_support.h>
#define REG_NAME_WIDTH (12)
/* at91sam4s/at91sam4e/at91sam4c series (has always one flash bank)*/
#define FLASH_BANK_BASE_S 0x00400000
#define FLASH_BANK_BASE_C 0x01000000
/* at91sam4sd series (two one flash banks), first bank address */
#define FLASH_BANK0_BASE_SD FLASH_BANK_BASE_S
/* at91sam4sd16x, second bank address */
#define FLASH_BANK1_BASE_1024K_SD (FLASH_BANK0_BASE_SD+(1024*1024/2))
/* at91sam4sd32x, second bank address */
#define FLASH_BANK1_BASE_2048K_SD (FLASH_BANK0_BASE_SD+(2048*1024/2))
/* at91sam4c32x, first and second bank address */
#define FLASH_BANK0_BASE_C32 FLASH_BANK_BASE_C
#define FLASH_BANK1_BASE_C32 (FLASH_BANK_BASE_C+(2048*1024/2))
#define AT91C_EFC_FCMD_GETD (0x0) /* (EFC) Get Flash Descriptor */
#define AT91C_EFC_FCMD_WP (0x1) /* (EFC) Write Page */
#define AT91C_EFC_FCMD_WPL (0x2) /* (EFC) Write Page and Lock */
#define AT91C_EFC_FCMD_EWP (0x3) /* (EFC) Erase Page and Write Page */
#define AT91C_EFC_FCMD_EWPL (0x4) /* (EFC) Erase Page and Write Page then Lock */
#define AT91C_EFC_FCMD_EA (0x5) /* (EFC) Erase All */
/* cmd6 is not present in the at91sam4u4/2/1 data sheet table 19-2 */
/* #define AT91C_EFC_FCMD_EPL (0x6) // (EFC) Erase plane? */
#define AT91C_EFC_FCMD_EPA (0x7) /* (EFC) Erase pages */
#define AT91C_EFC_FCMD_SLB (0x8) /* (EFC) Set Lock Bit */
#define AT91C_EFC_FCMD_CLB (0x9) /* (EFC) Clear Lock Bit */
#define AT91C_EFC_FCMD_GLB (0xA) /* (EFC) Get Lock Bit */
#define AT91C_EFC_FCMD_SFB (0xB) /* (EFC) Set Fuse Bit */
#define AT91C_EFC_FCMD_CFB (0xC) /* (EFC) Clear Fuse Bit */
#define AT91C_EFC_FCMD_GFB (0xD) /* (EFC) Get Fuse Bit */
#define AT91C_EFC_FCMD_STUI (0xE) /* (EFC) Start Read Unique ID */
#define AT91C_EFC_FCMD_SPUI (0xF) /* (EFC) Stop Read Unique ID */
#define OFFSET_EFC_FMR 0
#define OFFSET_EFC_FCR 4
#define OFFSET_EFC_FSR 8
#define OFFSET_EFC_FRR 12
extern const struct flash_driver at91sam4_flash;
static float _tomhz(uint32_t freq_hz)
{
float f;
f = ((float)(freq_hz)) / 1000000.0;
return f;
}
/* How the chip is configured. */
struct sam4_cfg {
uint32_t unique_id[4];
uint32_t slow_freq;
uint32_t rc_freq;
uint32_t mainosc_freq;
uint32_t plla_freq;
uint32_t mclk_freq;
uint32_t cpu_freq;
uint32_t fclk_freq;
uint32_t pclk0_freq;
uint32_t pclk1_freq;
uint32_t pclk2_freq;
#define SAM4_CHIPID_CIDR (0x400E0740)
uint32_t CHIPID_CIDR;
#define SAM4_CHIPID_EXID (0x400E0744)
uint32_t CHIPID_EXID;
#define SAM4_PMC_BASE (0x400E0400)
#define SAM4_PMC_SCSR (SAM4_PMC_BASE + 0x0008)
uint32_t PMC_SCSR;
#define SAM4_PMC_PCSR (SAM4_PMC_BASE + 0x0018)
uint32_t PMC_PCSR;
#define SAM4_CKGR_UCKR (SAM4_PMC_BASE + 0x001c)
uint32_t CKGR_UCKR;
#define SAM4_CKGR_MOR (SAM4_PMC_BASE + 0x0020)
uint32_t CKGR_MOR;
#define SAM4_CKGR_MCFR (SAM4_PMC_BASE + 0x0024)
uint32_t CKGR_MCFR;
#define SAM4_CKGR_PLLAR (SAM4_PMC_BASE + 0x0028)
uint32_t CKGR_PLLAR;
#define SAM4_PMC_MCKR (SAM4_PMC_BASE + 0x0030)
uint32_t PMC_MCKR;
#define SAM4_PMC_PCK0 (SAM4_PMC_BASE + 0x0040)
uint32_t PMC_PCK0;
#define SAM4_PMC_PCK1 (SAM4_PMC_BASE + 0x0044)
uint32_t PMC_PCK1;
#define SAM4_PMC_PCK2 (SAM4_PMC_BASE + 0x0048)
uint32_t PMC_PCK2;
#define SAM4_PMC_SR (SAM4_PMC_BASE + 0x0068)
uint32_t PMC_SR;
#define SAM4_PMC_IMR (SAM4_PMC_BASE + 0x006c)
uint32_t PMC_IMR;
#define SAM4_PMC_FSMR (SAM4_PMC_BASE + 0x0070)
uint32_t PMC_FSMR;
#define SAM4_PMC_FSPR (SAM4_PMC_BASE + 0x0074)
uint32_t PMC_FSPR;
};
struct sam4_bank_private {
bool probed;
/* DANGER: THERE ARE DRAGONS HERE.. */
/* NOTE: If you add more 'ghost' pointers */
/* be aware that you must *manually* update */
/* these pointers in the function sam4_get_details() */
/* See the comment "Here there be dragons" */
/* so we can find the chip we belong to */
struct sam4_chip *chip;
/* so we can find the original bank pointer */
struct flash_bank *bank;
unsigned bank_number;
uint32_t controller_address;
uint32_t base_address;
uint32_t flash_wait_states;
bool present;
unsigned size_bytes;
unsigned nsectors;
unsigned sector_size;
unsigned page_size;
};
struct sam4_chip_details {
/* THERE ARE DRAGONS HERE.. */
/* note: If you add pointers here */
/* be careful about them as they */
/* may need to be updated inside */
/* the function: "sam4_get_details() */
/* which copy/overwrites the */
/* 'runtime' copy of this structure */
uint32_t chipid_cidr;
const char *name;
unsigned n_gpnvms;
#define SAM4_N_NVM_BITS 3
unsigned gpnvm[SAM4_N_NVM_BITS];
unsigned total_flash_size;
unsigned total_sram_size;
unsigned n_banks;
#define SAM4_MAX_FLASH_BANKS 2
/* these are "initialized" from the global const data */
struct sam4_bank_private bank[SAM4_MAX_FLASH_BANKS];
};
struct sam4_chip {
struct sam4_chip *next;
bool probed;
/* this is "initialized" from the global const structure */
struct sam4_chip_details details;
struct target *target;
struct sam4_cfg cfg;
};
struct sam4_reg_list {
uint32_t address; size_t struct_offset; const char *name;
void (*explain_func)(struct sam4_chip *chip);
};
static struct sam4_chip *all_sam4_chips;
static struct sam4_chip *get_current_sam4(struct command_invocation *cmd)
{
struct target *t;
static struct sam4_chip *p;
t = get_current_target(cmd->ctx);
if (!t) {
command_print_sameline(cmd, "No current target?\n");
return NULL;
}
p = all_sam4_chips;
if (!p) {
/* this should not happen */
/* the command is not registered until the chip is created? */
command_print_sameline(cmd, "No SAM4 chips exist?\n");
return NULL;
}
while (p) {
if (p->target == t)
return p;
p = p->next;
}
command_print_sameline(cmd, "Cannot find SAM4 chip?\n");
return NULL;
}
/*The actual sector size of the SAM4S flash memory is 65536 bytes. 16 sectors for a 1024KB device*/
/*The lockregions are 8KB per lock region, with a 1024KB device having 128 lock regions. */
/*For the best results, nsectors are thus set to the amount of lock regions, and the sector_size*/
/*set to the lock region size. Page erases are used to erase 8KB sections when programming*/
/* these are used to *initialize* the "chip->details" structure. */
static const struct sam4_chip_details all_sam4_details[] = {
/* Start at91sam4c* series */
/* at91sam4c32e - LQFP144 */
{
.chipid_cidr = 0xA66D0EE0,
.name = "at91sam4c32e",
.total_flash_size = 2024 * 1024,
.total_sram_size = 256 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE_C32,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = { */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE_C32,
.controller_address = 0x400e0c00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
},
},
/* at91sam4c32c - LQFP100 */
{
.chipid_cidr = 0xA64D0EE0,
.name = "at91sam4c32c",
.total_flash_size = 2024 * 1024,
.total_sram_size = 256 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE_C32,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = { */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE_C32,
.controller_address = 0x400e0c00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
},
},
/* at91sam4c16c - LQFP100 */
{
.chipid_cidr = 0xA64C0CE0,
.name = "at91sam4c16c",
.total_flash_size = 1024 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_C,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/* at91sam4c8c - LQFP100 */
{
.chipid_cidr = 0xA64C0AE0,
.name = "at91sam4c8c",
.total_flash_size = 512 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_C,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/* at91sam4c4c (rev B) - LQFP100 */
{
.chipid_cidr = 0xA64C0CE5,
.name = "at91sam4c4c",
.total_flash_size = 256 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_C,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 256 * 1024,
.nsectors = 32,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/* Start at91sam4e* series */
/*atsam4e16e - LQFP144/LFBGA144*/
{
.chipid_cidr = 0xA3CC0CE0,
.name = "at91sam4e16e",
.total_flash_size = 1024 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/* Start at91sam4n* series */
/*atsam4n8a - LQFP48/QFN48*/
{
.chipid_cidr = 0x293B0AE0,
.name = "at91sam4n8a",
.total_flash_size = 512 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4n8b - LQFP64/QFN64*/
{
.chipid_cidr = 0x294B0AE0,
.name = "at91sam4n8b",
.total_flash_size = 512 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4n8c - LQFP100/TFBGA100/VFBGA100*/
{
.chipid_cidr = 0x295B0AE0,
.name = "at91sam4n8c",
.total_flash_size = 512 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4n16b - LQFP64/QFN64*/
{
.chipid_cidr = 0x29460CE0,
.name = "at91sam4n16b",
.total_flash_size = 1024 * 1024,
.total_sram_size = 80 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4n16c - LQFP100/TFBGA100/VFBGA100*/
{
.chipid_cidr = 0x29560CE0,
.name = "at91sam4n16c",
.total_flash_size = 1024 * 1024,
.total_sram_size = 80 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/* Start at91sam4s* series */
/*atsam4s16c - LQFP100/BGA100*/
{
.chipid_cidr = 0x28AC0CE0,
.name = "at91sam4s16c",
.total_flash_size = 1024 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*at91sam4sa16c - TFBGA100/VFBGA100/LQFP100*/
{
.chipid_cidr = 0x28a70ce0,
.name = "at91sam4sa16c",
.total_flash_size = 1024 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s16b - LQFP64/QFN64/WLCSP64*/
{
.chipid_cidr = 0x289C0CE0,
.name = "at91sam4s16b",
.total_flash_size = 1024 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4sa16b - LQFP64/QFN64*/
{
.chipid_cidr = 0x28970CE0,
.name = "at91sam4sa16b",
.total_flash_size = 1024 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s16a - LQFP48/QFN48*/
{
.chipid_cidr = 0x288C0CE0,
.name = "at91sam4s16a",
.total_flash_size = 1024 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s8c - LQFP100/BGA100*/
{
.chipid_cidr = 0x28AC0AE0,
.name = "at91sam4s8c",
.total_flash_size = 512 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s8b - LQFP64/QFN64/WLCSP64*/
{
.chipid_cidr = 0x289C0AE0,
.name = "at91sam4s8b",
.total_flash_size = 512 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s8a - LQFP48/BGA48*/
{
.chipid_cidr = 0x288C0AE0,
.name = "at91sam4s8a",
.total_flash_size = 512 * 1024,
.total_sram_size = 128 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s4c - LQFP100/BGA100*/
{
.chipid_cidr = 0x28ab09e0,
.name = "at91sam4s4c",
.total_flash_size = 256 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 256 * 1024,
.nsectors = 32,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s4b - LQFP64/QFN64/WLCSP64*/
{
.chipid_cidr = 0x289b09e0,
.name = "at91sam4s4b",
.total_flash_size = 256 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 256 * 1024,
.nsectors = 32,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s4a - LQFP48/QFN48*/
{
.chipid_cidr = 0x288b09e0,
.name = "at91sam4s4a",
.total_flash_size = 256 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 256 * 1024,
.nsectors = 32,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s2c - LQFP100/BGA100*/
{
.chipid_cidr = 0x28ab07e0,
.name = "at91sam4s2c",
.total_flash_size = 128 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s2b - LQPF64/QFN64/WLCSP64*/
{
.chipid_cidr = 0x289b07e0,
.name = "at91sam4s2b",
.total_flash_size = 128 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*atsam4s2a - LQFP48/QFN48*/
{
.chipid_cidr = 0x288b07e0,
.name = "at91sam4s2a",
.total_flash_size = 128 * 1024,
.total_sram_size = 64 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = {*/
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
},
},
/*at91sam4sd32c - LQFP100/BGA100*/
{
.chipid_cidr = 0x29a70ee0,
.name = "at91sam4sd32c",
.total_flash_size = 2048 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE_SD,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = { */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE_2048K_SD,
.controller_address = 0x400e0c00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
},
},
/*at91sam4sd32b - LQFP64/BGA64*/
{
.chipid_cidr = 0x29970ee0,
.name = "at91sam4sd32b",
.total_flash_size = 2048 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE_SD,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = { */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE_2048K_SD,
.controller_address = 0x400e0c00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 1024 * 1024,
.nsectors = 128,
.sector_size = 8192,
.page_size = 512,
},
},
},
/*at91sam4sd16c - LQFP100/BGA100*/
{
.chipid_cidr = 0x29a70ce0,
.name = "at91sam4sd16c",
.total_flash_size = 1024 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE_SD,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = { */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE_1024K_SD,
.controller_address = 0x400e0c00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
},
},
/*at91sam4sd16b - LQFP64/BGA64*/
{
.chipid_cidr = 0x29970ce0,
.name = "at91sam4sd16b",
.total_flash_size = 1024 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
/* .bank[0] = { */
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE_SD,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = { */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE_1024K_SD,
.controller_address = 0x400e0c00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
},
},
/* atsamg53n19 */
{
.chipid_cidr = 0x247e0ae0,
.name = "atsamg53n19",
.total_flash_size = 512 * 1024,
.total_sram_size = 96 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
/* .bank[0] = {*/
{
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = {*/
{
.present = false,
.probed = false,
.bank_number = 1,
},
}
},
/* atsamg55g19 Rev.A */
{
.chipid_cidr = 0x24470ae0,
.name = "atsamg55g19",
.total_flash_size = 512 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = */
{
.present = false,
.probed = false,
.bank_number = 1,
},
}
},
/* atsamg55g19 Rev.B */
{
.chipid_cidr = 0x24470ae1,
.name = "atsamg55g19b",
.total_flash_size = 512 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = */
{
.present = false,
.probed = false,
.bank_number = 1,
},
}
},
/* atsamg55j19 Rev.A */
{
.chipid_cidr = 0x24570ae0,
.name = "atsamg55j19",
.total_flash_size = 512 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = */
{
.present = false,
.probed = false,
.bank_number = 1,
},
}
},
/* atsamg55j19 Rev.B */
{
.chipid_cidr = 0x24570ae1,
.name = "atsamg55j19b",
.total_flash_size = 512 * 1024,
.total_sram_size = 160 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
{
/* .bank[0] = */
{
.probed = false,
.chip = NULL,
.bank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK_BASE_S,
.controller_address = 0x400e0a00,
.flash_wait_states = 5,
.present = true,
.size_bytes = 512 * 1024,
.nsectors = 64,
.sector_size = 8192,
.page_size = 512,
},
/* .bank[1] = */
{
.present = false,
.probed = false,
.bank_number = 1,
},
}
},
/* terminate */
{
.chipid_cidr = 0,
.name = NULL,
}
};
/* Globals above */
/***********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************/
/* *ATMEL* style code - from the SAM4 driver code */
/**
* Get the current status of the EEFC and
* the value of some status bits (LOCKE, PROGE).
* @param private - info about the bank
* @param v - result goes here
*/
static int efc_get_status(struct sam4_bank_private *private, uint32_t *v)
{
int r;
r = target_read_u32(private->chip->target,
private->controller_address + OFFSET_EFC_FSR,
v);
LOG_DEBUG("Status: 0x%08x (lockerror: %d, cmderror: %d, ready: %d)",
(unsigned int)(*v),
((unsigned int)((*v >> 2) & 1)),
((unsigned int)((*v >> 1) & 1)),
((unsigned int)((*v >> 0) & 1)));
return r;
}
/**
* Get the result of the last executed command.
* @param private - info about the bank
* @param v - result goes here
*/
static int efc_get_result(struct sam4_bank_private *private, uint32_t *v)
{
int r;
uint32_t rv;
r = target_read_u32(private->chip->target,
private->controller_address + OFFSET_EFC_FRR,
&rv);
if (v)
*v = rv;
LOG_DEBUG("Result: 0x%08x", ((unsigned int)(rv)));
return r;
}
static int efc_start_command(struct sam4_bank_private *private,
unsigned command, unsigned argument)
{
uint32_t n, v;
int r;
int retry;
retry = 0;
do_retry:
/* Check command & argument */
switch (command) {
case AT91C_EFC_FCMD_WP:
case AT91C_EFC_FCMD_WPL:
case AT91C_EFC_FCMD_EWP:
case AT91C_EFC_FCMD_EWPL:
/* case AT91C_EFC_FCMD_EPL: */
case AT91C_EFC_FCMD_EPA:
case AT91C_EFC_FCMD_SLB:
case AT91C_EFC_FCMD_CLB:
n = (private->size_bytes / private->page_size);
if (argument >= n)
LOG_ERROR("*BUG*: Embedded flash has only %u pages", (unsigned)(n));
break;
case AT91C_EFC_FCMD_SFB:
case AT91C_EFC_FCMD_CFB:
if (argument >= private->chip->details.n_gpnvms) {
LOG_ERROR("*BUG*: Embedded flash has only %d GPNVMs",
private->chip->details.n_gpnvms);
}
break;
case AT91C_EFC_FCMD_GETD:
case AT91C_EFC_FCMD_EA:
case AT91C_EFC_FCMD_GLB:
case AT91C_EFC_FCMD_GFB:
case AT91C_EFC_FCMD_STUI:
case AT91C_EFC_FCMD_SPUI:
if (argument != 0)
LOG_ERROR("Argument is meaningless for cmd: %d", command);
break;
default:
LOG_ERROR("Unknown command %d", command);
break;
}
if (command == AT91C_EFC_FCMD_SPUI) {
/* this is a very special situation. */
/* Situation (1) - error/retry - see below */
/* And we are being called recursively */
/* Situation (2) - normal, finished reading unique id */
} else {
/* it should be "ready" */
efc_get_status(private, &v);
if (v & 1) {
/* then it is ready */
/* we go on */
} else {
if (retry) {
/* we have done this before */
/* the controller is not responding. */
LOG_ERROR("flash controller(%d) is not ready! Error",
private->bank_number);
return ERROR_FAIL;
} else {
retry++;
LOG_ERROR("Flash controller(%d) is not ready, attempting reset",
private->bank_number);
/* we do that by issuing the *STOP* command */
efc_start_command(private, AT91C_EFC_FCMD_SPUI, 0);
/* above is recursive, and further recursion is blocked by */
/* if (command == AT91C_EFC_FCMD_SPUI) above */
goto do_retry;
}
}
}
v = (0x5A << 24) | (argument << 8) | command;
LOG_DEBUG("Command: 0x%08x", ((unsigned int)(v)));
r = target_write_u32(private->bank->target,
private->controller_address + OFFSET_EFC_FCR, v);
if (r != ERROR_OK)
LOG_DEBUG("Error Write failed");
return r;
}
/**
* Performs the given command and wait until its completion (or an error).
* @param private - info about the bank
* @param command - Command to perform.
* @param argument - Optional command argument.
* @param status - put command status bits here
*/
static int efc_perform_command(struct sam4_bank_private *private,
unsigned command,
unsigned argument,
uint32_t *status)
{
int r;
uint32_t v;
int64_t ms_now, ms_end;
/* default */
if (status)
*status = 0;
r = efc_start_command(private, command, argument);
if (r != ERROR_OK)
return r;
ms_end = 10000 + timeval_ms();
do {
r = efc_get_status(private, &v);
if (r != ERROR_OK)
return r;
ms_now = timeval_ms();
if (ms_now > ms_end) {
/* error */
LOG_ERROR("Command timeout");
return ERROR_FAIL;
}
} while ((v & 1) == 0);
/* error bits.. */
if (status)
*status = (v & 0x6);
return ERROR_OK;
}
/**
* Read the unique ID.
* @param private - info about the bank
* The unique ID is stored in the 'private' structure.
*/
static int flashd_read_uid(struct sam4_bank_private *private)
{
int r;
uint32_t v;
int x;
/* assume 0 */
private->chip->cfg.unique_id[0] = 0;
private->chip->cfg.unique_id[1] = 0;
private->chip->cfg.unique_id[2] = 0;
private->chip->cfg.unique_id[3] = 0;
LOG_DEBUG("Begin");
r = efc_start_command(private, AT91C_EFC_FCMD_STUI, 0);
if (r < 0)
return r;
for (x = 0; x < 4; x++) {
r = target_read_u32(private->chip->target,
private->bank->base + (x * 4),
&v);
if (r < 0)
return r;
private->chip->cfg.unique_id[x] = v;
}
r = efc_perform_command(private, AT91C_EFC_FCMD_SPUI, 0, NULL);
LOG_DEBUG("End: R=%d, id = 0x%08x, 0x%08x, 0x%08x, 0x%08x",
r,
(unsigned int)(private->chip->cfg.unique_id[0]),
(unsigned int)(private->chip->cfg.unique_id[1]),
(unsigned int)(private->chip->cfg.unique_id[2]),
(unsigned int)(private->chip->cfg.unique_id[3]));
return r;
}
/**
* Erases the entire flash.
* @param private - the info about the bank.
*/
static int flashd_erase_entire_bank(struct sam4_bank_private *private)
{
LOG_DEBUG("Here");
return efc_perform_command(private, AT91C_EFC_FCMD_EA, 0, NULL);
}
/**
* Erases the entire flash.
* @param private - the info about the bank.
* @param first_page
* @param num_pages
* @param status
*/
static int flashd_erase_pages(struct sam4_bank_private *private,
int first_page,
int num_pages,
uint32_t *status)
{
LOG_DEBUG("Here");
uint8_t erase_pages;
switch (num_pages) {
case 4:
erase_pages = 0x00;
break;
case 8:
erase_pages = 0x01;
break;
case 16:
erase_pages = 0x02;
break;
case 32:
erase_pages = 0x03;
break;
default:
erase_pages = 0x00;
break;
}
/* AT91C_EFC_FCMD_EPA
* According to the datasheet FARG[15:2] defines the page from which
* the erase will start.This page must be modulo 4, 8, 16 or 32
* according to the number of pages to erase. FARG[1:0] defines the
* number of pages to be erased. Previously (firstpage << 2) was used
* to conform to this, seems it should not be shifted...
*/
return efc_perform_command(private,
/* send Erase Page */
AT91C_EFC_FCMD_EPA,
(first_page) | erase_pages,
status);
}
/**
* Gets current GPNVM state.
* @param private - info about the bank.
* @param gpnvm - GPNVM bit index.
* @param puthere - result stored here.
*/
/* ------------------------------------------------------------------------------ */
static int flashd_get_gpnvm(struct sam4_bank_private *private, unsigned gpnvm, unsigned *puthere)
{
uint32_t v;
int r;
LOG_DEBUG("Here");
if (private->bank_number != 0) {
LOG_ERROR("GPNVM only works with Bank0");
return ERROR_FAIL;
}
if (gpnvm >= private->chip->details.n_gpnvms) {
LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
gpnvm, private->chip->details.n_gpnvms);
return ERROR_FAIL;
}
/* Get GPNVMs status */
r = efc_perform_command(private, AT91C_EFC_FCMD_GFB, 0, NULL);
if (r != ERROR_OK) {
LOG_ERROR("Failed");
return r;
}
r = efc_get_result(private, &v);
if (puthere) {
/* Check if GPNVM is set */
/* get the bit and make it a 0/1 */
*puthere = (v >> gpnvm) & 1;
}
return r;
}
/**
* Clears the selected GPNVM bit.
* @param private info about the bank
* @param gpnvm GPNVM index.
* @returns 0 if successful; otherwise returns an error code.
*/
static int flashd_clr_gpnvm(struct sam4_bank_private *private, unsigned gpnvm)
{
int r;
unsigned v;
LOG_DEBUG("Here");
if (private->bank_number != 0) {
LOG_ERROR("GPNVM only works with Bank0");
return ERROR_FAIL;
}
if (gpnvm >= private->chip->details.n_gpnvms) {
LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
gpnvm, private->chip->details.n_gpnvms);
return ERROR_FAIL;
}
r = flashd_get_gpnvm(private, gpnvm, &v);
if (r != ERROR_OK) {
LOG_DEBUG("Failed: %d", r);
return r;
}
r = efc_perform_command(private, AT91C_EFC_FCMD_CFB, gpnvm, NULL);
LOG_DEBUG("End: %d", r);
return r;
}
/**
* Sets the selected GPNVM bit.
* @param private info about the bank
* @param gpnvm GPNVM index.
*/
static int flashd_set_gpnvm(struct sam4_bank_private *private, unsigned gpnvm)
{
int r;
unsigned v;
if (private->bank_number != 0) {
LOG_ERROR("GPNVM only works with Bank0");
return ERROR_FAIL;
}
if (gpnvm >= private->chip->details.n_gpnvms) {
LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
gpnvm, private->chip->details.n_gpnvms);
return ERROR_FAIL;
}
r = flashd_get_gpnvm(private, gpnvm, &v);
if (r != ERROR_OK)
return r;
if (v) {
/* already set */
r = ERROR_OK;
} else {
/* set it */
r = efc_perform_command(private, AT91C_EFC_FCMD_SFB, gpnvm, NULL);
}
return r;
}
/**
* Returns a bit field (at most 64) of locked regions within a page.
* @param private info about the bank
* @param v where to store locked bits
*/
static int flashd_get_lock_bits(struct sam4_bank_private *private, uint32_t *v)
{
int r;
LOG_DEBUG("Here");
r = efc_perform_command(private, AT91C_EFC_FCMD_GLB, 0, NULL);
if (r == ERROR_OK) {
efc_get_result(private, v);
efc_get_result(private, v);
efc_get_result(private, v);
r = efc_get_result(private, v);
}
LOG_DEBUG("End: %d", r);
return r;
}
/**
* Unlocks all the regions in the given address range.
* @param private info about the bank
* @param start_sector first sector to unlock
* @param end_sector last (inclusive) to unlock
*/
static int flashd_unlock(struct sam4_bank_private *private,
unsigned start_sector,
unsigned end_sector)
{
int r;
uint32_t status;
uint32_t pg;
uint32_t pages_per_sector;
pages_per_sector = private->sector_size / private->page_size;
/* Unlock all pages */
while (start_sector <= end_sector) {
pg = start_sector * pages_per_sector;
r = efc_perform_command(private, AT91C_EFC_FCMD_CLB, pg, &status);
if (r != ERROR_OK)
return r;
start_sector++;
}
return ERROR_OK;
}
/**
* Locks regions
* @param private - info about the bank
* @param start_sector - first sector to lock
* @param end_sector - last sector (inclusive) to lock
*/
static int flashd_lock(struct sam4_bank_private *private,
unsigned start_sector,
unsigned end_sector)
{
uint32_t status;
uint32_t pg;
uint32_t pages_per_sector;
int r;
pages_per_sector = private->sector_size / private->page_size;
/* Lock all pages */
while (start_sector <= end_sector) {
pg = start_sector * pages_per_sector;
r = efc_perform_command(private, AT91C_EFC_FCMD_SLB, pg, &status);
if (r != ERROR_OK)
return r;
start_sector++;
}
return ERROR_OK;
}
/****** END SAM4 CODE ********/
/* begin helpful debug code */
/* print the fieldname, the field value, in dec & hex, and return field value */
static uint32_t sam4_reg_fieldname(struct sam4_chip *chip,
const char *regname,
uint32_t value,
unsigned shift,
unsigned width)
{
uint32_t v;
int hwidth, dwidth;
/* extract the field */
v = value >> shift;
v = v & ((1 << width)-1);
if (width <= 16) {
hwidth = 4;
dwidth = 5;
} else {
hwidth = 8;
dwidth = 12;
}
/* show the basics */
LOG_USER_N("\t%*s: %*" PRIu32 " [0x%0*" PRIx32 "] ",
REG_NAME_WIDTH, regname,
dwidth, v,
hwidth, v);
return v;
}
static const char _unknown[] = "unknown";
static const char *const eproc_names[] = {
"Cortex-M7", /* 0 */
"arm946es", /* 1 */
"arm7tdmi", /* 2 */
"Cortex-M3", /* 3 */
"arm920t", /* 4 */
"arm926ejs", /* 5 */
"Cortex-A5", /* 6 */
"Cortex-M4", /* 7 */
_unknown, /* 8 */
_unknown, /* 9 */
_unknown, /* 10 */
_unknown, /* 11 */
_unknown, /* 12 */
_unknown, /* 13 */
_unknown, /* 14 */
_unknown, /* 15 */
};
#define nvpsize2 nvpsize /* these two tables are identical */
static const char *const nvpsize[] = {
"none", /* 0 */
"8K bytes", /* 1 */
"16K bytes", /* 2 */
"32K bytes", /* 3 */
_unknown, /* 4 */
"64K bytes", /* 5 */
_unknown, /* 6 */
"128K bytes", /* 7 */
"160K bytes", /* 8 */
"256K bytes", /* 9 */
"512K bytes", /* 10 */
_unknown, /* 11 */
"1024K bytes", /* 12 */
_unknown, /* 13 */
"2048K bytes", /* 14 */
_unknown, /* 15 */
};
static const char *const sramsize[] = {
"48K Bytes", /* 0 */
"1K Bytes", /* 1 */
"2K Bytes", /* 2 */
"6K Bytes", /* 3 */
"112K Bytes", /* 4 */
"4K Bytes", /* 5 */
"80K Bytes", /* 6 */
"160K Bytes", /* 7 */
"8K Bytes", /* 8 */
"16K Bytes", /* 9 */
"32K Bytes", /* 10 */
"64K Bytes", /* 11 */
"128K Bytes", /* 12 */
"256K Bytes", /* 13 */
"96K Bytes", /* 14 */
"512K Bytes", /* 15 */
};
static const struct archnames { unsigned value; const char *name; } archnames[] = {
{ 0x19, "AT91SAM9xx Series" },
{ 0x29, "AT91SAM9XExx Series" },
{ 0x34, "AT91x34 Series" },
{ 0x37, "CAP7 Series" },
{ 0x39, "CAP9 Series" },
{ 0x3B, "CAP11 Series" },
{ 0x3C, "ATSAM4E" },
{ 0x40, "AT91x40 Series" },
{ 0x42, "AT91x42 Series" },
{ 0x43, "SAMG51 Series"
},
{ 0x44, "SAMG55 Series (49-pin WLCSP)" },
{ 0x45, "SAMG55 Series (64-pin)" },
{ 0x47, "SAMG53 Series"
},
{ 0x55, "AT91x55 Series" },
{ 0x60, "AT91SAM7Axx Series" },
{ 0x61, "AT91SAM7AQxx Series" },
{ 0x63, "AT91x63 Series" },
{ 0x64, "SAM4CxxC (100-pin version)" },
{ 0x66, "SAM4CxxE (144-pin version)" },
{ 0x70, "AT91SAM7Sxx Series" },
{ 0x71, "AT91SAM7XCxx Series" },
{ 0x72, "AT91SAM7SExx Series" },
{ 0x73, "AT91SAM7Lxx Series" },
{ 0x75, "AT91SAM7Xxx Series" },
{ 0x76, "AT91SAM7SLxx Series" },
{ 0x80, "ATSAM3UxC Series (100-pin version)" },
{ 0x81, "ATSAM3UxE Series (144-pin version)" },
{ 0x83, "ATSAM3A/SAM4A xC Series (100-pin version)"},
{ 0x84, "ATSAM3X/SAM4X xC Series (100-pin version)"},
{ 0x85, "ATSAM3X/SAM4X xE Series (144-pin version)"},
{ 0x86, "ATSAM3X/SAM4X xG Series (208/217-pin version)" },
{ 0x88, "ATSAM3S/SAM4S xA Series (48-pin version)" },
{ 0x89, "ATSAM3S/SAM4S xB Series (64-pin version)" },
{ 0x8A, "ATSAM3S/SAM4S xC Series (100-pin version)"},
{ 0x92, "AT91x92 Series" },
{ 0x93, "ATSAM3NxA Series (48-pin version)" },
{ 0x94, "ATSAM3NxB Series (64-pin version)" },
{ 0x95, "ATSAM3NxC Series (100-pin version)" },
{ 0x98, "ATSAM3SDxA Series (48-pin version)" },
{ 0x99, "ATSAM3SDxB Series (64-pin version)" },
{ 0x9A, "ATSAM3SDxC Series (100-pin version)" },
{ 0xA5, "ATSAM5A" },
{ 0xF0, "AT75Cxx Series" },
{ -1, NULL },
};
static const char *const nvptype[] = {
"rom", /* 0 */
"romless or onchip flash", /* 1 */
"embedded flash memory",/* 2 */
"rom(nvpsiz) + embedded flash (nvpsiz2)", /* 3 */
"sram emulating flash", /* 4 */
_unknown, /* 5 */
_unknown, /* 6 */
_unknown, /* 7 */
};
static const char *_yes_or_no(uint32_t v)
{
if (v)
return "YES";
else
return "NO";
}
static const char *const _rc_freq[] = {
"4 MHz", "8 MHz", "12 MHz", "reserved"
};
static void sam4_explain_ckgr_mor(struct sam4_chip *chip)
{
uint32_t v;
uint32_t rcen;
v = sam4_reg_fieldname(chip, "MOSCXTEN", chip->cfg.CKGR_MOR, 0, 1);
LOG_USER("(main xtal enabled: %s)", _yes_or_no(v));
v = sam4_reg_fieldname(chip, "MOSCXTBY", chip->cfg.CKGR_MOR, 1, 1);
LOG_USER("(main osc bypass: %s)", _yes_or_no(v));
rcen = sam4_reg_fieldname(chip, "MOSCRCEN", chip->cfg.CKGR_MOR, 3, 1);
LOG_USER("(onchip RC-OSC enabled: %s)", _yes_or_no(rcen));
v = sam4_reg_fieldname(chip, "MOSCRCF", chip->cfg.CKGR_MOR, 4, 3);
LOG_USER("(onchip RC-OSC freq: %s)", _rc_freq[v]);
chip->cfg.rc_freq = 0;
if (rcen) {
switch (v) {
default:
chip->cfg.rc_freq = 0;
break;
case 0:
chip->cfg.rc_freq = 4 * 1000 * 1000;
break;
case 1:
chip->cfg.rc_freq = 8 * 1000 * 1000;
break;
case 2:
chip->cfg.rc_freq = 12 * 1000 * 1000;
break;
}
}
v = sam4_reg_fieldname(chip, "MOSCXTST", chip->cfg.CKGR_MOR, 8, 8);
LOG_USER("(startup clks, time= %f uSecs)",
((float)(v * 1000000)) / ((float)(chip->cfg.slow_freq)));
v = sam4_reg_fieldname(chip, "MOSCSEL", chip->cfg.CKGR_MOR, 24, 1);
LOG_USER("(mainosc source: %s)",
v ? "external xtal" : "internal RC");
v = sam4_reg_fieldname(chip, "CFDEN", chip->cfg.CKGR_MOR, 25, 1);
LOG_USER("(clock failure enabled: %s)",
_yes_or_no(v));
}
static void sam4_explain_chipid_cidr(struct sam4_chip *chip)
{
int x;
uint32_t v;
const char *cp;
sam4_reg_fieldname(chip, "Version", chip->cfg.CHIPID_CIDR, 0, 5);
LOG_USER_N("\n");
v = sam4_reg_fieldname(chip, "EPROC", chip->cfg.CHIPID_CIDR, 5, 3);
LOG_USER("%s", eproc_names[v]);
v = sam4_reg_fieldname(chip, "NVPSIZE", chip->cfg.CHIPID_CIDR, 8, 4);
LOG_USER("%s", nvpsize[v]);
v = sam4_reg_fieldname(chip, "NVPSIZE2", chip->cfg.CHIPID_CIDR, 12, 4);
LOG_USER("%s", nvpsize2[v]);
v = sam4_reg_fieldname(chip, "SRAMSIZE", chip->cfg.CHIPID_CIDR, 16, 4);
LOG_USER("%s", sramsize[v]);
v = sam4_reg_fieldname(chip, "ARCH", chip->cfg.CHIPID_CIDR, 20, 8);
cp = _unknown;
for (x = 0; archnames[x].name; x++) {
if (v == archnames[x].value) {
cp = archnames[x].name;
break;
}
}
LOG_USER("%s", cp);
v = sam4_reg_fieldname(chip, "NVPTYP", chip->cfg.CHIPID_CIDR, 28, 3);
LOG_USER("%s", nvptype[v]);
v = sam4_reg_fieldname(chip, "EXTID", chip->cfg.CHIPID_CIDR, 31, 1);
LOG_USER("(exists: %s)", _yes_or_no(v));
}
static void sam4_explain_ckgr_mcfr(struct sam4_chip *chip)
{
uint32_t v;
v = sam4_reg_fieldname(chip, "MAINFRDY", chip->cfg.CKGR_MCFR, 16, 1);
LOG_USER("(main ready: %s)", _yes_or_no(v));
v = sam4_reg_fieldname(chip, "MAINF", chip->cfg.CKGR_MCFR, 0, 16);
v = (v * chip->cfg.slow_freq) / 16;
chip->cfg.mainosc_freq = v;
LOG_USER("(%3.03f Mhz (%" PRIu32 ".%03" PRIu32 "khz slowclk)",
_tomhz(v),
(uint32_t)(chip->cfg.slow_freq / 1000),
(uint32_t)(chip->cfg.slow_freq % 1000));
}
static void sam4_explain_ckgr_plla(struct sam4_chip *chip)
{
uint32_t mula, diva;
diva = sam4_reg_fieldname(chip, "DIVA", chip->cfg.CKGR_PLLAR, 0, 8);
LOG_USER_N("\n");
mula = sam4_reg_fieldname(chip, "MULA", chip->cfg.CKGR_PLLAR, 16, 11);
LOG_USER_N("\n");
chip->cfg.plla_freq = 0;
if (mula == 0)
LOG_USER("\tPLLA Freq: (Disabled,mula = 0)");
else if (diva == 0)
LOG_USER("\tPLLA Freq: (Disabled,diva = 0)");
else if (diva >= 1) {
chip->cfg.plla_freq = (chip->cfg.mainosc_freq * (mula + 1) / diva);
LOG_USER("\tPLLA Freq: %3.03f MHz",
_tomhz(chip->cfg.plla_freq));
}
}
static void sam4_explain_mckr(struct sam4_chip *chip)
{
uint32_t css, pres, fin = 0;
int pdiv = 0;
const char *cp = NULL;
css = sam4_reg_fieldname(chip, "CSS", chip->cfg.PMC_MCKR, 0, 2);
switch (css & 3) {
case 0:
fin = chip->cfg.slow_freq;
cp = "slowclk";
break;
case 1:
fin = chip->cfg.mainosc_freq;
cp = "mainosc";
break;
case 2:
fin = chip->cfg.plla_freq;
cp = "plla";
break;
case 3:
if (chip->cfg.CKGR_UCKR & (1 << 16)) {
fin = 480 * 1000 * 1000;
cp = "upll";
} else {
fin = 0;
cp = "upll (*ERROR* UPLL is disabled)";
}
break;
default:
assert(0);
break;
}
LOG_USER("%s (%3.03f Mhz)",
cp,
_tomhz(fin));
pres = sam4_reg_fieldname(chip, "PRES", chip->cfg.PMC_MCKR, 4, 3);
switch (pres & 0x07) {
case 0:
pdiv = 1;
cp = "selected clock";
break;
case 1:
pdiv = 2;
cp = "clock/2";
break;
case 2:
pdiv = 4;
cp = "clock/4";
break;
case 3:
pdiv = 8;
cp = "clock/8";
break;
case 4:
pdiv = 16;
cp = "clock/16";
break;
case 5:
pdiv = 32;
cp = "clock/32";
break;
case 6:
pdiv = 64;
cp = "clock/64";
break;
case 7:
pdiv = 6;
cp = "clock/6";
break;
default:
assert(0);
break;
}
LOG_USER("(%s)", cp);
fin = fin / pdiv;
/* sam4 has a *SINGLE* clock - */
/* other at91 series parts have divisors for these. */
chip->cfg.cpu_freq = fin;
chip->cfg.mclk_freq = fin;
chip->cfg.fclk_freq = fin;
LOG_USER("\t\tResult CPU Freq: %3.03f",
_tomhz(fin));
}
#if 0
static struct sam4_chip *target2sam4(struct target *target)
{
struct sam4_chip *chip;
if (!target)
return NULL;
chip = all_sam4_chips;
while (chip) {
if (chip->target == target)
break; /* return below */
else
chip = chip->next;
}
return chip;
}
#endif
static uint32_t *sam4_get_reg_ptr(struct sam4_cfg *cfg, const struct sam4_reg_list *list)
{
/* this function exists to help */
/* keep funky offsetof() errors */
/* and casting from causing bugs */
/* By using prototypes - we can detect what would */
/* be casting errors. */
return (uint32_t *)(void *)(((char *)(cfg)) + list->struct_offset);
}
#define SAM4_ENTRY(NAME, FUNC) { .address = SAM4_ ## NAME, .struct_offset = offsetof( \
struct sam4_cfg, \
NAME), # NAME, FUNC }
static const struct sam4_reg_list sam4_all_regs[] = {
SAM4_ENTRY(CKGR_MOR, sam4_explain_ckgr_mor),
SAM4_ENTRY(CKGR_MCFR, sam4_explain_ckgr_mcfr),
SAM4_ENTRY(CKGR_PLLAR, sam4_explain_ckgr_plla),
SAM4_ENTRY(CKGR_UCKR, NULL),
SAM4_ENTRY(PMC_FSMR, NULL),
SAM4_ENTRY(PMC_FSPR, NULL),
SAM4_ENTRY(PMC_IMR, NULL),
SAM4_ENTRY(PMC_MCKR, sam4_explain_mckr),
SAM4_ENTRY(PMC_PCK0, NULL),
SAM4_ENTRY(PMC_PCK1, NULL),
SAM4_ENTRY(PMC_PCK2, NULL),
SAM4_ENTRY(PMC_PCSR, NULL),
SAM4_ENTRY(PMC_SCSR, NULL),
SAM4_ENTRY(PMC_SR, NULL),
SAM4_ENTRY(CHIPID_CIDR, sam4_explain_chipid_cidr),
SAM4_ENTRY(CHIPID_EXID, NULL),
/* TERMINATE THE LIST */
{ .name = NULL }
};
#undef SAM4_ENTRY
static struct sam4_bank_private *get_sam4_bank_private(struct flash_bank *bank)
{
return bank->driver_priv;
}
/**
* Given a pointer to where it goes in the structure,
* determine the register name, address from the all registers table.
*/
static const struct sam4_reg_list *sam4_get_reg(struct sam4_chip *chip, uint32_t *goes_here)
{
const struct sam4_reg_list *reg;
reg = &(sam4_all_regs[0]);
while (reg->name) {
uint32_t *possible;
/* calculate where this one go.. */
/* it is "possibly" this register. */
possible = ((uint32_t *)(void *)(((char *)(&(chip->cfg))) + reg->struct_offset));
/* well? Is it this register */
if (possible == goes_here) {
/* Jump for joy! */
return reg;
}
/* next... */
reg++;
}
/* This is *TOTAL*PANIC* - we are totally screwed. */
LOG_ERROR("INVALID SAM4 REGISTER");
return NULL;
}
static int sam4_read_this_reg(struct sam4_chip *chip, uint32_t *goes_here)
{
const struct sam4_reg_list *reg;
int r;
reg = sam4_get_reg(chip, goes_here);
if (!reg)
return ERROR_FAIL;
r = target_read_u32(chip->target, reg->address, goes_here);
if (r != ERROR_OK) {
LOG_ERROR("Cannot read SAM4 register: %s @ 0x%08x, Err: %d",
reg->name, (unsigned)(reg->address), r);
}
return r;
}
static int sam4_read_all_regs(struct sam4_chip *chip)
{
int r;
const struct sam4_reg_list *reg;
reg = &(sam4_all_regs[0]);
while (reg->name) {
r = sam4_read_this_reg(chip,
sam4_get_reg_ptr(&(chip->cfg), reg));
if (r != ERROR_OK) {
LOG_ERROR("Cannot read SAM4 register: %s @ 0x%08x, Error: %d",
reg->name, ((unsigned)(reg->address)), r);
return r;
}
reg++;
}
return ERROR_OK;
}
static int sam4_get_info(struct sam4_chip *chip)
{
const struct sam4_reg_list *reg;
uint32_t regval;
int r;
r = sam4_read_all_regs(chip);
if (r != ERROR_OK)
return r;
reg = &(sam4_all_regs[0]);
while (reg->name) {
/* display all regs */
LOG_DEBUG("Start: %s", reg->name);
regval = *sam4_get_reg_ptr(&(chip->cfg), reg);
LOG_USER("%*s: [0x%08" PRIx32 "] -> 0x%08" PRIx32,
REG_NAME_WIDTH,
reg->name,
reg->address,
regval);
if (reg->explain_func)
(*(reg->explain_func))(chip);
LOG_DEBUG("End: %s", reg->name);
reg++;
}
LOG_USER(" rc-osc: %3.03f MHz", _tomhz(chip->cfg.rc_freq));
LOG_USER(" mainosc: %3.03f MHz", _tomhz(chip->cfg.mainosc_freq));
LOG_USER(" plla: %3.03f MHz", _tomhz(chip->cfg.plla_freq));
LOG_USER(" cpu-freq: %3.03f MHz", _tomhz(chip->cfg.cpu_freq));
LOG_USER("mclk-freq: %3.03f MHz", _tomhz(chip->cfg.mclk_freq));
LOG_USER(" UniqueId: 0x%08" PRIx32 " 0x%08" PRIx32 " 0x%08" PRIx32 " 0x%08"PRIx32,
chip->cfg.unique_id[0],
chip->cfg.unique_id[1],
chip->cfg.unique_id[2],
chip->cfg.unique_id[3]);
return ERROR_OK;
}
static int sam4_protect_check(struct flash_bank *bank)
{
int r;
uint32_t v[4] = {0};
unsigned x;
struct sam4_bank_private *private;
LOG_DEBUG("Begin");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
private = get_sam4_bank_private(bank);
if (!private) {
LOG_ERROR("no private for this bank?");
return ERROR_FAIL;
}
if (!(private->probed))
return ERROR_FLASH_BANK_NOT_PROBED;
r = flashd_get_lock_bits(private, v);
if (r != ERROR_OK) {
LOG_DEBUG("Failed: %d", r);
return r;
}
for (x = 0; x < private->nsectors; x++)
bank->sectors[x].is_protected = (!!(v[x >> 5] & (1 << (x % 32))));
LOG_DEBUG("Done");
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(sam4_flash_bank_command)
{
struct sam4_chip *chip;
chip = all_sam4_chips;
/* is this an existing chip? */
while (chip) {
if (chip->target == bank->target)
break;
chip = chip->next;
}
if (!chip) {
/* this is a *NEW* chip */
chip = calloc(1, sizeof(struct sam4_chip));
if (!chip) {
LOG_ERROR("NO RAM!");
return ERROR_FAIL;
}
chip->target = bank->target;
/* insert at head */
chip->next = all_sam4_chips;
all_sam4_chips = chip;
chip->target = bank->target;
/* assumption is this runs at 32khz */
chip->cfg.slow_freq = 32768;
chip->probed = false;
}
switch (bank->base) {
default:
LOG_ERROR("Address 0x%08x invalid bank address (try 0x%08x"
"[at91sam4s series] )",
((unsigned int)(bank->base)),
((unsigned int)(FLASH_BANK_BASE_S)));
return ERROR_FAIL;
/* at91sam4s series only has bank 0*/
/* at91sam4sd series has the same address for bank 0 (FLASH_BANK0_BASE_SD)*/
case FLASH_BANK_BASE_S:
case FLASH_BANK_BASE_C:
bank->driver_priv = &(chip->details.bank[0]);
bank->bank_number = 0;
chip->details.bank[0].chip = chip;
chip->details.bank[0].bank = bank;
break;
/* Bank 1 of at91sam4sd/at91sam4c32 series */
case FLASH_BANK1_BASE_1024K_SD:
case FLASH_BANK1_BASE_2048K_SD:
case FLASH_BANK1_BASE_C32:
bank->driver_priv = &(chip->details.bank[1]);
bank->bank_number = 1;
chip->details.bank[1].chip = chip;
chip->details.bank[1].bank = bank;
break;
}
/* we initialize after probing. */
return ERROR_OK;
}
/**
* Remove all chips from the internal list without distinguishing which one
* is owned by this bank. This simplification works only for one shot
* deallocation like current flash_free_all_banks()
*/
static void sam4_free_driver_priv(struct flash_bank *bank)
{
struct sam4_chip *chip = all_sam4_chips;
while (chip) {
struct sam4_chip *next = chip->next;
free(chip);
chip = next;
}
all_sam4_chips = NULL;
}
static int sam4_get_details(struct sam4_bank_private *private)
{
const struct sam4_chip_details *details;
struct sam4_chip *chip;
struct flash_bank *saved_banks[SAM4_MAX_FLASH_BANKS];
unsigned x;
LOG_DEBUG("Begin");
details = all_sam4_details;
while (details->name) {
/* Compare cidr without version bits */
if (details->chipid_cidr == (private->chip->cfg.CHIPID_CIDR & 0xFFFFFFE0))
break;
else
details++;
}
if (!details->name) {
LOG_ERROR("SAM4 ChipID 0x%08x not found in table (perhaps you can ID this chip?)",
(unsigned int)(private->chip->cfg.CHIPID_CIDR));
/* Help the victim, print details about the chip */
LOG_INFO("SAM4 CHIPID_CIDR: 0x%08" PRIx32 " decodes as follows",
private->chip->cfg.CHIPID_CIDR);
sam4_explain_chipid_cidr(private->chip);
return ERROR_FAIL;
} else {
LOG_DEBUG("SAM4 Found chip %s, CIDR 0x%08" PRIx32, details->name, details->chipid_cidr);
}
/* DANGER: THERE ARE DRAGONS HERE */
/* get our chip - it is going */
/* to be over-written shortly */
chip = private->chip;
/* Note that, in reality: */
/* */
/* private = &(chip->details.bank[0]) */
/* or private = &(chip->details.bank[1]) */
/* */
/* save the "bank" pointers */
for (x = 0; x < SAM4_MAX_FLASH_BANKS; x++)
saved_banks[x] = chip->details.bank[x].bank;
/* Overwrite the "details" structure. */
memcpy(&(private->chip->details),
details,
sizeof(private->chip->details));
/* now fix the ghosted pointers */
for (x = 0; x < SAM4_MAX_FLASH_BANKS; x++) {
chip->details.bank[x].chip = chip;
chip->details.bank[x].bank = saved_banks[x];
}
/* update the *BANK*SIZE* */
LOG_DEBUG("End");
return ERROR_OK;
}
static int sam4_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct sam4_bank_private *private;
int k = bank->size / 1024;
private = get_sam4_bank_private(bank);
if (!private)
return ERROR_FAIL;
command_print_sameline(cmd, "%s bank %d: %d kB at " TARGET_ADDR_FMT,
private->chip->details.name,
private->bank_number,
k,
bank->base);
return ERROR_OK;
}
static int sam4_probe(struct flash_bank *bank)
{
int r;
struct sam4_bank_private *private;
LOG_DEBUG("Begin: Bank: %u", bank->bank_number);
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
private = get_sam4_bank_private(bank);
if (!private) {
LOG_ERROR("Invalid/unknown bank number");
return ERROR_FAIL;
}
r = sam4_read_all_regs(private->chip);
if (r != ERROR_OK)
return r;
LOG_DEBUG("Here");
if (private->chip->probed)
r = sam4_get_info(private->chip);
else
r = sam4_get_details(private);
if (r != ERROR_OK)
return r;
/* update the flash bank size */
for (unsigned int x = 0; x < SAM4_MAX_FLASH_BANKS; x++) {
if (bank->base == private->chip->details.bank[x].base_address) {
bank->size = private->chip->details.bank[x].size_bytes;
LOG_DEBUG("SAM4 Set flash bank to " TARGET_ADDR_FMT " - "
TARGET_ADDR_FMT ", idx %d", bank->base,
bank->base + bank->size, x);
break;
}
}
if (!bank->sectors) {
bank->sectors = calloc(private->nsectors, (sizeof((bank->sectors)[0])));
if (!bank->sectors) {
LOG_ERROR("No memory!");
return ERROR_FAIL;
}
bank->num_sectors = private->nsectors;
for (unsigned int x = 0; x < bank->num_sectors; x++) {
bank->sectors[x].size = private->sector_size;
bank->sectors[x].offset = x * (private->sector_size);
/* mark as unknown */
bank->sectors[x].is_erased = -1;
bank->sectors[x].is_protected = -1;
}
}
private->probed = true;
r = sam4_protect_check(bank);
if (r != ERROR_OK)
return r;
LOG_DEBUG("Bank = %d, nbanks = %d",
private->bank_number, private->chip->details.n_banks);
if ((private->bank_number + 1) == private->chip->details.n_banks) {
/* read unique id, */
/* it appears to be associated with the *last* flash bank. */
flashd_read_uid(private);
}
return r;
}
static int sam4_auto_probe(struct flash_bank *bank)
{
struct sam4_bank_private *private;
private = get_sam4_bank_private(bank);
if (private && private->probed)
return ERROR_OK;
return sam4_probe(bank);
}
static int sam4_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct sam4_bank_private *private;
int r;
int page_count;
/*16 pages equals 8KB - Same size as a lock region*/
page_count = 16;
uint32_t status;
LOG_DEBUG("Here");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
r = sam4_auto_probe(bank);
if (r != ERROR_OK) {
LOG_DEBUG("Here,r=%d", r);
return r;
}
private = get_sam4_bank_private(bank);
if (!(private->probed))
return ERROR_FLASH_BANK_NOT_PROBED;
if ((first == 0) && ((last + 1) == private->nsectors)) {
/* whole chip */
LOG_DEBUG("Here");
return flashd_erase_entire_bank(private);
}
LOG_INFO("sam4 does not auto-erase while programming (Erasing relevant sectors)");
LOG_INFO("sam4 First: 0x%08x Last: 0x%08x", first, last);
for (unsigned int i = first; i <= last; i++) {
/*16 pages equals 8KB - Same size as a lock region*/
r = flashd_erase_pages(private, (i * page_count), page_count, &status);
LOG_INFO("Erasing sector: 0x%08x", i);
if (r != ERROR_OK)
LOG_ERROR("SAM4: Error performing Erase page @ lock region number %u",
i);
if (status & (1 << 2)) {
LOG_ERROR("SAM4: Lock Region %u is locked", i);
return ERROR_FAIL;
}
if (status & (1 << 1)) {
LOG_ERROR("SAM4: Flash Command error @lock region %u", i);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int sam4_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct sam4_bank_private *private;
int r;
LOG_DEBUG("Here");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
private = get_sam4_bank_private(bank);
if (!(private->probed))
return ERROR_FLASH_BANK_NOT_PROBED;
if (set)
r = flashd_lock(private, first, last);
else
r = flashd_unlock(private, first, last);
LOG_DEBUG("End: r=%d", r);
return r;
}
static int sam4_page_read(struct sam4_bank_private *private, unsigned pagenum, uint8_t *buf)
{
uint32_t adr;
int r;
adr = pagenum * private->page_size;
adr = adr + private->base_address;
r = target_read_memory(private->chip->target,
adr,
4, /* THIS*MUST*BE* in 32bit values */
private->page_size / 4,
buf);
if (r != ERROR_OK)
LOG_ERROR("SAM4: Flash program failed to read page phys address: 0x%08x",
(unsigned int)(adr));
return r;
}
static int sam4_set_wait(struct sam4_bank_private *private)
{
uint32_t fmr; /* EEFC Flash Mode Register */
int r;
/* Get flash mode register value */
r = target_read_u32(private->chip->target, private->controller_address, &fmr);
if (r != ERROR_OK) {
LOG_ERROR("Error Read failed: read flash mode register");
return r;
}
/* Clear flash wait state field */
fmr &= 0xfffff0ff;
/* set FWS (flash wait states) field in the FMR (flash mode register) */
fmr |= (private->flash_wait_states << 8);
LOG_DEBUG("Flash Mode: 0x%08x", ((unsigned int)(fmr)));
r = target_write_u32(private->bank->target, private->controller_address, fmr);
if (r != ERROR_OK)
LOG_ERROR("Error Write failed: set flash mode register");
return r;
}
static int sam4_page_write(struct sam4_bank_private *private, unsigned pagenum, const uint8_t *buf)
{
uint32_t adr;
uint32_t status;
int r;
adr = pagenum * private->page_size;
adr = (adr + private->base_address);
/* 1st sector 8kBytes - page 0 - 15*/
/* 2nd sector 8kBytes - page 16 - 30*/
/* 3rd sector 48kBytes - page 31 - 127*/
LOG_DEBUG("Wr Page %u @ phys address: 0x%08x", pagenum, (unsigned int)(adr));
r = target_write_memory(private->chip->target,
adr,
4, /* THIS*MUST*BE* in 32bit values */
private->page_size / 4,
buf);
if (r != ERROR_OK) {
LOG_ERROR("SAM4: Failed to write (buffer) page at phys address 0x%08x",
(unsigned int)(adr));
return r;
}
r = efc_perform_command(private,
/* send Erase & Write Page */
AT91C_EFC_FCMD_WP, /*AT91C_EFC_FCMD_EWP only works on first two 8kb sectors*/
pagenum,
&status);
if (r != ERROR_OK)
LOG_ERROR("SAM4: Error performing Write page @ phys address 0x%08x",
(unsigned int)(adr));
if (status & (1 << 2)) {
LOG_ERROR("SAM4: Page @ Phys address 0x%08x is locked", (unsigned int)(adr));
return ERROR_FAIL;
}
if (status & (1 << 1)) {
LOG_ERROR("SAM4: Flash Command error @phys address 0x%08x", (unsigned int)(adr));
return ERROR_FAIL;
}
return ERROR_OK;
}
static int sam4_write(struct flash_bank *bank,
const uint8_t *buffer,
uint32_t offset,
uint32_t count)
{
int n;
unsigned page_cur;
unsigned page_end;
int r;
unsigned page_offset;
struct sam4_bank_private *private;
uint8_t *pagebuffer;
/* in case we bail further below, set this to null */
pagebuffer = NULL;
/* ignore dumb requests */
if (count == 0) {
r = ERROR_OK;
goto done;
}
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
r = ERROR_TARGET_NOT_HALTED;
goto done;
}
private = get_sam4_bank_private(bank);
if (!(private->probed)) {
r = ERROR_FLASH_BANK_NOT_PROBED;
goto done;
}
if ((offset + count) > private->size_bytes) {
LOG_ERROR("Flash write error - past end of bank");
LOG_ERROR(" offset: 0x%08x, count 0x%08x, BankEnd: 0x%08x",
(unsigned int)(offset),
(unsigned int)(count),
(unsigned int)(private->size_bytes));
r = ERROR_FAIL;
goto done;
}
pagebuffer = malloc(private->page_size);
if (!pagebuffer) {
LOG_ERROR("No memory for %d Byte page buffer", (int)(private->page_size));
r = ERROR_FAIL;
goto done;
}
r = sam4_set_wait(private);
if (r != ERROR_OK)
goto done;
/* what page do we start & end in? */
page_cur = offset / private->page_size;
page_end = (offset + count - 1) / private->page_size;
LOG_DEBUG("Offset: 0x%08x, Count: 0x%08x", (unsigned int)(offset), (unsigned int)(count));
LOG_DEBUG("Page start: %d, Page End: %d", (int)(page_cur), (int)(page_end));
/* Special case: all one page */
/* */
/* Otherwise: */
/* (1) non-aligned start */
/* (2) body pages */
/* (3) non-aligned end. */
/* Handle special case - all one page. */
if (page_cur == page_end) {
LOG_DEBUG("Special case, all in one page");
r = sam4_page_read(private, page_cur, pagebuffer);
if (r != ERROR_OK)
goto done;
page_offset = (offset & (private->page_size-1));
memcpy(pagebuffer + page_offset,
buffer,
count);
r = sam4_page_write(private, page_cur, pagebuffer);
if (r != ERROR_OK)
goto done;
r = ERROR_OK;
goto done;
}
/* non-aligned start */
page_offset = offset & (private->page_size - 1);
if (page_offset) {
LOG_DEBUG("Not-Aligned start");
/* read the partial */
r = sam4_page_read(private, page_cur, pagebuffer);
if (r != ERROR_OK)
goto done;
/* over-write with new data */
n = (private->page_size - page_offset);
memcpy(pagebuffer + page_offset,
buffer,
n);
r = sam4_page_write(private, page_cur, pagebuffer);
if (r != ERROR_OK)
goto done;
count -= n;
offset += n;
buffer += n;
page_cur++;
}
/* By checking that offset is correct here, we also
fix a clang warning */
assert(offset % private->page_size == 0);
/* intermediate large pages */
/* also - the final *terminal* */
/* if that terminal page is a full page */
LOG_DEBUG("Full Page Loop: cur=%d, end=%d, count = 0x%08x",
(int)page_cur, (int)page_end, (unsigned int)(count));
while ((page_cur < page_end) &&
(count >= private->page_size)) {
r = sam4_page_write(private, page_cur, buffer);
if (r != ERROR_OK)
goto done;
count -= private->page_size;
buffer += private->page_size;
page_cur += 1;
}
/* terminal partial page? */
if (count) {
LOG_DEBUG("Terminal partial page, count = 0x%08x", (unsigned int)(count));
/* we have a partial page */
r = sam4_page_read(private, page_cur, pagebuffer);
if (r != ERROR_OK)
goto done;
/* data goes at start */
memcpy(pagebuffer, buffer, count);
r = sam4_page_write(private, page_cur, pagebuffer);
if (r != ERROR_OK)
goto done;
}
LOG_DEBUG("Done!");
r = ERROR_OK;
done:
free(pagebuffer);
return r;
}
COMMAND_HANDLER(sam4_handle_info_command)
{
struct sam4_chip *chip;
chip = get_current_sam4(CMD);
if (!chip)
return ERROR_OK;
unsigned x;
int r;
/* bank0 must exist before we can do anything */
if (!chip->details.bank[0].bank) {
x = 0;
need_define:
command_print(CMD,
"Please define bank %d via command: flash bank %s ... ",
x,
at91sam4_flash.name);
return ERROR_FAIL;
}
/* if bank 0 is not probed, then probe it */
if (!(chip->details.bank[0].probed)) {
r = sam4_auto_probe(chip->details.bank[0].bank);
if (r != ERROR_OK)
return ERROR_FAIL;
}
/* above guarantees the "chip details" structure is valid */
/* and thus, bank private areas are valid */
/* and we have a SAM4 chip, what a concept! */
/* auto-probe other banks, 0 done above */
for (x = 1; x < SAM4_MAX_FLASH_BANKS; x++) {
/* skip banks not present */
if (!(chip->details.bank[x].present))
continue;
if (!chip->details.bank[x].bank)
goto need_define;
if (chip->details.bank[x].probed)
continue;
r = sam4_auto_probe(chip->details.bank[x].bank);
if (r != ERROR_OK)
return r;
}
r = sam4_get_info(chip);
if (r != ERROR_OK) {
LOG_DEBUG("Sam4Info, Failed %d", r);
return r;
}
return ERROR_OK;
}
COMMAND_HANDLER(sam4_handle_gpnvm_command)
{
unsigned x, v;
int r, who;
struct sam4_chip *chip;
chip = get_current_sam4(CMD);
if (!chip)
return ERROR_OK;
if (chip->target->state != TARGET_HALTED) {
LOG_ERROR("sam4 - target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->details.bank[0].bank) {
command_print(CMD, "Bank0 must be defined first via: flash bank %s ...",
at91sam4_flash.name);
return ERROR_FAIL;
}
if (!chip->details.bank[0].probed) {
r = sam4_auto_probe(chip->details.bank[0].bank);
if (r != ERROR_OK)
return r;
}
switch (CMD_ARGC) {
default:
return ERROR_COMMAND_SYNTAX_ERROR;
case 0:
goto showall;
case 1:
who = -1;
break;
case 2:
if ((strcmp(CMD_ARGV[0], "show") == 0) && (strcmp(CMD_ARGV[1], "all") == 0))
who = -1;
else {
uint32_t v32;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], v32);
who = v32;
}
break;
}
if (strcmp("show", CMD_ARGV[0]) == 0) {
if (who == -1) {
showall:
r = ERROR_OK;
for (x = 0; x < chip->details.n_gpnvms; x++) {
r = flashd_get_gpnvm(&(chip->details.bank[0]), x, &v);
if (r != ERROR_OK)
break;
command_print(CMD, "sam4-gpnvm%u: %u", x, v);
}
return r;
}
if ((who >= 0) && (((unsigned)(who)) < chip->details.n_gpnvms)) {
r = flashd_get_gpnvm(&(chip->details.bank[0]), who, &v);
if (r == ERROR_OK)
command_print(CMD, "sam4-gpnvm%u: %u", who, v);
return r;
} else {
command_print(CMD, "sam4-gpnvm invalid GPNVM: %u", who);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
if (who == -1) {
command_print(CMD, "Missing GPNVM number");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (strcmp("set", CMD_ARGV[0]) == 0)
r = flashd_set_gpnvm(&(chip->details.bank[0]), who);
else if ((strcmp("clr", CMD_ARGV[0]) == 0) ||
(strcmp("clear", CMD_ARGV[0]) == 0)) /* quietly accept both */
r = flashd_clr_gpnvm(&(chip->details.bank[0]), who);
else {
command_print(CMD, "Unknown command: %s", CMD_ARGV[0]);
r = ERROR_COMMAND_SYNTAX_ERROR;
}
return r;
}
COMMAND_HANDLER(sam4_handle_slowclk_command)
{
struct sam4_chip *chip;
chip = get_current_sam4(CMD);
if (!chip)
return ERROR_OK;
switch (CMD_ARGC) {
case 0:
/* show */
break;
case 1:
{
/* set */
uint32_t v;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], v);
if (v > 200000) {
/* absurd slow clock of 200Khz? */
command_print(CMD, "Absurd/illegal slow clock freq: %d\n", (int)(v));
return ERROR_COMMAND_SYNTAX_ERROR;
}
chip->cfg.slow_freq = v;
break;
}
default:
/* error */
command_print(CMD, "Too many parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
}
command_print(CMD, "Slowclk freq: %d.%03dkhz",
(int)(chip->cfg.slow_freq / 1000),
(int)(chip->cfg.slow_freq % 1000));
return ERROR_OK;
}
static const struct command_registration at91sam4_exec_command_handlers[] = {
{
.name = "gpnvm",
.handler = sam4_handle_gpnvm_command,
.mode = COMMAND_EXEC,
.usage = "[('clr'|'set'|'show') bitnum]",
.help = "Without arguments, shows all bits in the gpnvm "
"register. Otherwise, clears, sets, or shows one "
"General Purpose Non-Volatile Memory (gpnvm) bit.",
},
{
.name = "info",
.handler = sam4_handle_info_command,
.mode = COMMAND_EXEC,
.help = "Print information about the current at91sam4 chip "
"and its flash configuration.",
.usage = "",
},
{
.name = "slowclk",
.handler = sam4_handle_slowclk_command,
.mode = COMMAND_EXEC,
.usage = "[clock_hz]",
.help = "Display or set the slowclock frequency "
"(default 32768 Hz).",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration at91sam4_command_handlers[] = {
{
.name = "at91sam4",
.mode = COMMAND_ANY,
.help = "at91sam4 flash command group",
.usage = "",
.chain = at91sam4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver at91sam4_flash = {
.name = "at91sam4",
.commands = at91sam4_command_handlers,
.flash_bank_command = sam4_flash_bank_command,
.erase = sam4_erase,
.protect = sam4_protect,
.write = sam4_write,
.read = default_flash_read,
.probe = sam4_probe,
.auto_probe = sam4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = sam4_protect_check,
.info = sam4_info,
.free_driver_priv = sam4_free_driver_priv,
};