openocd/src/flash/nor/kinetis.c

3224 lines
94 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2011 by Mathias Kuester *
* kesmtp@freenet.de *
* *
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* Copyright (C) 2013 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* Copyright (C) 2015 Tomas Vanek *
* vanekt@fbl.cz *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "imp.h"
#include <helper/binarybuffer.h>
#include <helper/time_support.h>
#include <target/target_type.h>
#include <target/algorithm.h>
#include <target/arm_adi_v5.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/*
* Implementation Notes
*
* The persistent memories in the Kinetis chip families K10 through
* K70 are all manipulated with the Flash Memory Module. Some
* variants call this module the FTFE, others call it the FTFL. To
* indicate that both are considered here, we use FTFX.
*
* Within the module, according to the chip variant, the persistent
* memory is divided into what Freescale terms Program Flash, FlexNVM,
* and FlexRAM. All chip variants have Program Flash. Some chip
* variants also have FlexNVM and FlexRAM, which always appear
* together.
*
* A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
* each block to a separate bank. Each block size varies by chip and
* may be determined by the read-only SIM_FCFG1 register. The sector
* size within each bank/block varies by chip, and may be 1, 2 or 4k.
* The sector size may be different for flash and FlexNVM.
*
* The first half of the flash (1 or 2 blocks) is always Program Flash
* and always starts at address 0x00000000. The "PFLSH" flag, bit 23
* of the read-only SIM_FCFG2 register, determines whether the second
* half of the flash is also Program Flash or FlexNVM+FlexRAM. When
* PFLSH is set, the second from the first half. When PFLSH is clear,
* the second half of flash is FlexNVM and always starts at address
* 0x10000000. FlexRAM, which is also present when PFLSH is clear,
* always starts at address 0x14000000.
*
* The Flash Memory Module provides a register set where flash
* commands are loaded to perform flash operations like erase and
* program. Different commands are available depending on whether
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
* the commands used are quite consistent between flash blocks, the
* parameters they accept differ according to the flash sector size.
*
*/
/* Addresses */
#define FCF_ADDRESS 0x00000400
#define FCF_FPROT 0x8
#define FCF_FSEC 0xc
#define FCF_FOPT 0xd
#define FCF_FDPROT 0xf
#define FCF_SIZE 0x10
#define FLEXRAM 0x14000000
#define MSCM_OCMDR0 0x40001400
#define FMC_PFB01CR 0x4001f004
#define FTFX_FSTAT 0x40020000
#define FTFX_FCNFG 0x40020001
#define FTFX_FCCOB3 0x40020004
#define FTFX_FPROT3 0x40020010
#define FTFX_FDPROT 0x40020017
#define SIM_BASE 0x40047000
#define SIM_BASE_KL28 0x40074000
#define SIM_COPC 0x40048100
/* SIM_COPC does not exist on devices with changed SIM_BASE */
#define WDOG_BASE 0x40052000
#define WDOG32_KE1X 0x40052000
#define WDOG32_KL28 0x40076000
#define SMC_PMCTRL 0x4007E001
#define SMC_PMSTAT 0x4007E003
#define SMC32_PMCTRL 0x4007E00C
#define SMC32_PMSTAT 0x4007E014
#define PMC_REGSC 0x4007D002
#define MC_PMCTRL 0x4007E003
#define MCM_PLACR 0xF000300C
/* Offsets */
#define SIM_SOPT1_OFFSET 0x0000
#define SIM_SDID_OFFSET 0x1024
#define SIM_FCFG1_OFFSET 0x104c
#define SIM_FCFG2_OFFSET 0x1050
#define WDOG_STCTRLH_OFFSET 0
#define WDOG32_CS_OFFSET 0
/* Values */
#define PM_STAT_RUN 0x01
#define PM_STAT_VLPR 0x04
#define PM_CTRL_RUNM_RUN 0x00
/* Commands */
#define FTFX_CMD_BLOCKSTAT 0x00
#define FTFX_CMD_SECTSTAT 0x01
#define FTFX_CMD_LWORDPROG 0x06
#define FTFX_CMD_SECTERASE 0x09
#define FTFX_CMD_SECTWRITE 0x0b
#define FTFX_CMD_MASSERASE 0x44
#define FTFX_CMD_PGMPART 0x80
#define FTFX_CMD_SETFLEXRAM 0x81
/* The older Kinetis K series uses the following SDID layout :
* Bit 31-16 : 0
* Bit 15-12 : REVID
* Bit 11-7 : DIEID
* Bit 6-4 : FAMID
* Bit 3-0 : PINID
*
* The newer Kinetis series uses the following SDID layout :
* Bit 31-28 : FAMID
* Bit 27-24 : SUBFAMID
* Bit 23-20 : SERIESID
* Bit 19-16 : SRAMSIZE
* Bit 15-12 : REVID
* Bit 6-4 : Reserved (0)
* Bit 3-0 : PINID
*
* We assume that if bits 31-16 are 0 then it's an older
* K-series MCU.
*/
#define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
#define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
#define KINETIS_SDID_DIEID_MASK 0x00000F80
#define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
#define KINETIS_SDID_DIEID_K22FN256 0x00000A80
#define KINETIS_SDID_DIEID_K22FN512 0x00000E80
#define KINETIS_SDID_DIEID_K24FN256 0x00000700
#define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
/* We can't rely solely on the FAMID field to determine the MCU
* type since some FAMID values identify multiple MCUs with
* different flash sector sizes (K20 and K22 for instance).
* Therefore we combine it with the DIEID bits which may possibly
* break if Freescale bumps the DIEID for a particular MCU. */
#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
#define KINETIS_K_SDID_K10_M50 0x00000000
#define KINETIS_K_SDID_K10_M72 0x00000080
#define KINETIS_K_SDID_K10_M100 0x00000100
#define KINETIS_K_SDID_K10_M120 0x00000180
#define KINETIS_K_SDID_K11 0x00000220
#define KINETIS_K_SDID_K12 0x00000200
#define KINETIS_K_SDID_K20_M50 0x00000010
#define KINETIS_K_SDID_K20_M72 0x00000090
#define KINETIS_K_SDID_K20_M100 0x00000110
#define KINETIS_K_SDID_K20_M120 0x00000190
#define KINETIS_K_SDID_K21_M50 0x00000230
#define KINETIS_K_SDID_K21_M120 0x00000330
#define KINETIS_K_SDID_K22_M50 0x00000210
#define KINETIS_K_SDID_K22_M120 0x00000310
#define KINETIS_K_SDID_K30_M72 0x000000A0
#define KINETIS_K_SDID_K30_M100 0x00000120
#define KINETIS_K_SDID_K40_M72 0x000000B0
#define KINETIS_K_SDID_K40_M100 0x00000130
#define KINETIS_K_SDID_K50_M72 0x000000E0
#define KINETIS_K_SDID_K51_M72 0x000000F0
#define KINETIS_K_SDID_K53 0x00000170
#define KINETIS_K_SDID_K60_M100 0x00000140
#define KINETIS_K_SDID_K60_M150 0x000001C0
#define KINETIS_K_SDID_K70_M150 0x000001D0
#define KINETIS_K_REVID_MASK 0x0000F000
#define KINETIS_K_REVID_SHIFT 12
#define KINETIS_SDID_SERIESID_MASK 0x00F00000
#define KINETIS_SDID_SERIESID_K 0x00000000
#define KINETIS_SDID_SERIESID_KL 0x00100000
#define KINETIS_SDID_SERIESID_KE 0x00200000
#define KINETIS_SDID_SERIESID_KW 0x00500000
#define KINETIS_SDID_SERIESID_KV 0x00600000
#define KINETIS_SDID_SUBFAMID_SHIFT 24
#define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
#define KINETIS_SDID_SUBFAMID_KX0 0x00000000
#define KINETIS_SDID_SUBFAMID_KX1 0x01000000
#define KINETIS_SDID_SUBFAMID_KX2 0x02000000
#define KINETIS_SDID_SUBFAMID_KX3 0x03000000
#define KINETIS_SDID_SUBFAMID_KX4 0x04000000
#define KINETIS_SDID_SUBFAMID_KX5 0x05000000
#define KINETIS_SDID_SUBFAMID_KX6 0x06000000
#define KINETIS_SDID_SUBFAMID_KX7 0x07000000
#define KINETIS_SDID_SUBFAMID_KX8 0x08000000
#define KINETIS_SDID_FAMILYID_SHIFT 28
#define KINETIS_SDID_FAMILYID_MASK 0xF0000000
#define KINETIS_SDID_FAMILYID_K0X 0x00000000
#define KINETIS_SDID_FAMILYID_K1X 0x10000000
#define KINETIS_SDID_FAMILYID_K2X 0x20000000
#define KINETIS_SDID_FAMILYID_K3X 0x30000000
#define KINETIS_SDID_FAMILYID_K4X 0x40000000
#define KINETIS_SDID_FAMILYID_K5X 0x50000000
#define KINETIS_SDID_FAMILYID_K6X 0x60000000
#define KINETIS_SDID_FAMILYID_K7X 0x70000000
#define KINETIS_SDID_FAMILYID_K8X 0x80000000
#define KINETIS_SDID_FAMILYID_KL8X 0x90000000
/* The field originally named DIEID has new name/meaning on KE1x */
#define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
#define KINETIS_SDID_PROJECTID_KE1XF 0x00000080
#define KINETIS_SDID_PROJECTID_KE1XZ 0x00000100
struct kinetis_flash_bank {
struct kinetis_chip *k_chip;
bool probed;
unsigned bank_number; /* bank number in particular chip */
struct flash_bank *bank;
uint32_t sector_size;
uint32_t protection_size;
uint32_t prog_base; /* base address for FTFx operations */
/* usually same as bank->base for pflash, differs for FlexNVM */
uint32_t protection_block; /* number of first protection block in this bank */
enum {
FC_AUTO = 0,
FC_PFLASH,
FC_FLEX_NVM,
FC_FLEX_RAM,
} flash_class;
};
#define KINETIS_MAX_BANKS 4u
struct kinetis_chip {
struct target *target;
bool probed;
uint32_t sim_sdid;
uint32_t sim_fcfg1;
uint32_t sim_fcfg2;
uint32_t fcfg2_maxaddr0_shifted;
uint32_t fcfg2_maxaddr1_shifted;
unsigned num_pflash_blocks, num_nvm_blocks;
unsigned pflash_sector_size, nvm_sector_size;
unsigned max_flash_prog_size;
uint32_t pflash_base;
uint32_t pflash_size;
uint32_t nvm_base;
uint32_t nvm_size; /* whole FlexNVM */
uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
uint32_t progr_accel_ram;
uint32_t sim_base;
enum {
FS_PROGRAM_SECTOR = 1,
FS_PROGRAM_LONGWORD = 2,
FS_PROGRAM_PHRASE = 4, /* Unsupported */
FS_NO_CMD_BLOCKSTAT = 0x40,
FS_WIDTH_256BIT = 0x80,
FS_ECC = 0x100,
} flash_support;
enum {
KINETIS_CACHE_NONE,
KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
} cache_type;
enum {
KINETIS_WDOG_NONE,
KINETIS_WDOG_K,
KINETIS_WDOG_COP,
KINETIS_WDOG32_KE1X,
KINETIS_WDOG32_KL28,
} watchdog_type;
enum {
KINETIS_SMC,
KINETIS_SMC32,
KINETIS_MC,
} sysmodectrlr_type;
char name[40];
unsigned num_banks;
struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
};
struct kinetis_type {
uint32_t sdid;
char *name;
};
static const struct kinetis_type kinetis_types_old[] = {
{ KINETIS_K_SDID_K10_M50, "MK10D%s5" },
{ KINETIS_K_SDID_K10_M72, "MK10D%s7" },
{ KINETIS_K_SDID_K10_M100, "MK10D%s10" },
{ KINETIS_K_SDID_K10_M120, "MK10F%s12" },
{ KINETIS_K_SDID_K11, "MK11D%s5" },
{ KINETIS_K_SDID_K12, "MK12D%s5" },
{ KINETIS_K_SDID_K20_M50, "MK20D%s5" },
{ KINETIS_K_SDID_K20_M72, "MK20D%s7" },
{ KINETIS_K_SDID_K20_M100, "MK20D%s10" },
{ KINETIS_K_SDID_K20_M120, "MK20F%s12" },
{ KINETIS_K_SDID_K21_M50, "MK21D%s5" },
{ KINETIS_K_SDID_K21_M120, "MK21F%s12" },
{ KINETIS_K_SDID_K22_M50, "MK22D%s5" },
{ KINETIS_K_SDID_K22_M120, "MK22F%s12" },
{ KINETIS_K_SDID_K30_M72, "MK30D%s7" },
{ KINETIS_K_SDID_K30_M100, "MK30D%s10" },
{ KINETIS_K_SDID_K40_M72, "MK40D%s7" },
{ KINETIS_K_SDID_K40_M100, "MK40D%s10" },
{ KINETIS_K_SDID_K50_M72, "MK50D%s7" },
{ KINETIS_K_SDID_K51_M72, "MK51D%s7" },
{ KINETIS_K_SDID_K53, "MK53D%s10" },
{ KINETIS_K_SDID_K60_M100, "MK60D%s10" },
{ KINETIS_K_SDID_K60_M150, "MK60F%s15" },
{ KINETIS_K_SDID_K70_M150, "MK70F%s15" },
};
#define MDM_AP 1
#define MDM_REG_STAT 0x00
#define MDM_REG_CTRL 0x04
#define MDM_REG_ID 0xfc
#define MDM_STAT_FMEACK (1<<0)
#define MDM_STAT_FREADY (1<<1)
#define MDM_STAT_SYSSEC (1<<2)
#define MDM_STAT_SYSRES (1<<3)
#define MDM_STAT_FMEEN (1<<5)
#define MDM_STAT_BACKDOOREN (1<<6)
#define MDM_STAT_LPEN (1<<7)
#define MDM_STAT_VLPEN (1<<8)
#define MDM_STAT_LLSMODEXIT (1<<9)
#define MDM_STAT_VLLSXMODEXIT (1<<10)
#define MDM_STAT_CORE_HALTED (1<<16)
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
#define MDM_STAT_CORESLEEPING (1<<18)
#define MDM_CTRL_FMEIP (1<<0)
#define MDM_CTRL_DBG_DIS (1<<1)
#define MDM_CTRL_DBG_REQ (1<<2)
#define MDM_CTRL_SYS_RES_REQ (1<<3)
#define MDM_CTRL_CORE_HOLD_RES (1<<4)
#define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
#define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
#define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
#define MDM_ACCESS_TIMEOUT 500 /* msec */
static bool allow_fcf_writes;
static uint8_t fcf_fopt = 0xff;
static bool create_banks;
const struct flash_driver kinetis_flash;
static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count);
static int kinetis_probe_chip(struct kinetis_chip *k_chip);
static int kinetis_auto_probe(struct flash_bank *bank);
static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
{
LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
if (!ap) {
LOG_DEBUG("MDM: failed to get AP");
return ERROR_FAIL;
}
int retval = dap_queue_ap_write(ap, reg, value);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a write request");
dap_put_ap(ap);
return retval;
}
retval = dap_run(dap);
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
return ERROR_OK;
}
static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
{
struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
if (!ap) {
LOG_DEBUG("MDM: failed to get AP");
return ERROR_FAIL;
}
int retval = dap_queue_ap_read(ap, reg, result);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a read request");
dap_put_ap(ap);
return retval;
}
retval = dap_run(dap);
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
return ERROR_OK;
}
static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
uint32_t mask, uint32_t value, uint32_t timeout_ms)
{
uint32_t val;
int retval;
int64_t ms_timeout = timeval_ms() + timeout_ms;
do {
retval = kinetis_mdm_read_register(dap, reg, &val);
if (retval != ERROR_OK || (val & mask) == value)
return retval;
alive_sleep(1);
} while (timeval_ms() < ms_timeout);
LOG_DEBUG("MDM: polling timed out");
return ERROR_FAIL;
}
/*
* This command can be used to break a watchdog reset loop when
* connecting to an unsecured target. Unlike other commands, halt will
* automatically retry as it does not know how far into the boot process
* it is when the command is called.
*/
COMMAND_HANDLER(kinetis_mdm_halt)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
int retval;
int tries = 0;
uint32_t stat;
int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
if (!dap) {
LOG_ERROR("Cannot perform halt with a high-level adapter");
return ERROR_FAIL;
}
while (true) {
tries++;
kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
alive_sleep(1);
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
continue;
}
/* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
* reset with flash ready and without security
*/
if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
== (MDM_STAT_FREADY | MDM_STAT_SYSRES))
break;
if (timeval_ms() >= ms_timeout) {
LOG_ERROR("MDM: halt timed out");
return ERROR_FAIL;
}
}
LOG_DEBUG("MDM: halt succeeded after %d attempts.", tries);
target_poll(target);
/* enable polling in case kinetis_check_flash_security_status disabled it */
jtag_poll_set_enabled(true);
alive_sleep(100);
target->reset_halt = true;
target->type->assert_reset(target);
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
return retval;
}
target->type->deassert_reset(target);
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_mdm_reset)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
int retval;
if (!dap) {
LOG_ERROR("Cannot perform reset with a high-level adapter");
return ERROR_FAIL;
}
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
return retval;
}
retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to assert reset");
return retval;
}
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
return retval;
}
return ERROR_OK;
}
/*
* This function implements the procedure to mass erase the flash via
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
* the core remains halted after this function completes as suggested
* by the application note.
*/
COMMAND_HANDLER(kinetis_mdm_mass_erase)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_ERROR("Cannot perform mass erase with a high-level adapter");
return ERROR_FAIL;
}
int retval;
/*
* ... Power on the processor, or if power has already been
* applied, assert the RESET pin to reset the processor. For
* devices that do not have a RESET pin, write the System
* Reset Request bit in the MDM-AP control register after
* establishing communication...
*/
/* assert SRST if configured */
bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
if (has_srst)
adapter_assert_reset();
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK && !has_srst) {
LOG_ERROR("MDM: failed to assert reset");
goto deassert_reset_and_exit;
}
/*
* ... Read the MDM-AP status register repeatedly and wait for
* stable conditions suitable for mass erase:
* - mass erase is enabled
* - flash is ready
* - reset is finished
*
* Mass erase is started as soon as all conditions are met in 32
* subsequent status reads.
*
* In case of not stable conditions (RESET/WDOG loop in secured device)
* the user is asked for manual pressing of RESET button
* as a last resort.
*/
int cnt_mass_erase_disabled = 0;
int cnt_ready = 0;
int64_t ms_start = timeval_ms();
bool man_reset_requested = false;
do {
uint32_t stat = 0;
int64_t ms_elapsed = timeval_ms() - ms_start;
if (!man_reset_requested && ms_elapsed > 100) {
LOG_INFO("MDM: Press RESET button now if possible.");
man_reset_requested = true;
}
if (ms_elapsed > 3000) {
LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
goto deassert_reset_and_exit;
}
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
if (retval != ERROR_OK) {
cnt_ready = 0;
continue;
}
if (!(stat & MDM_STAT_FMEEN)) {
cnt_ready = 0;
cnt_mass_erase_disabled++;
if (cnt_mass_erase_disabled > 10) {
LOG_ERROR("MDM: mass erase is disabled");
goto deassert_reset_and_exit;
}
continue;
}
if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
cnt_ready++;
else
cnt_ready = 0;
} while (cnt_ready < 32);
/*
* ... Write the MDM-AP control register to set the Flash Mass
* Erase in Progress bit. This will start the mass erase
* process...
*/
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to start mass erase");
goto deassert_reset_and_exit;
}
/*
* ... Read the MDM-AP control register until the Flash Mass
* Erase in Progress bit clears...
* Data sheed defines erase time <3.6 sec/512kB flash block.
* The biggest device has 4 pflash blocks => timeout 16 sec.
*/
retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: mass erase timeout");
goto deassert_reset_and_exit;
}
target_poll(target);
/* enable polling in case kinetis_check_flash_security_status disabled it */
jtag_poll_set_enabled(true);
alive_sleep(100);
target->reset_halt = true;
target->type->assert_reset(target);
/*
* ... Negate the RESET signal or clear the System Reset Request
* bit in the MDM-AP control register.
*/
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK)
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
target->type->deassert_reset(target);
return retval;
deassert_reset_and_exit:
kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (has_srst)
adapter_deassert_reset();
return retval;
}
static const uint32_t kinetis_known_mdm_ids[] = {
0x001C0000, /* Kinetis-K Series */
0x001C0020, /* Kinetis-L/M/V/E Series */
0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
};
/*
* This function implements the procedure to connect to
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.1.1
*/
COMMAND_HANDLER(kinetis_check_flash_security_status)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_WARNING("Cannot check flash security status with a high-level adapter");
return ERROR_OK;
}
if (!dap->ops)
return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
uint32_t val;
int retval;
/*
* ... The MDM-AP ID register can be read to verify that the
* connection is working correctly...
*/
retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read ID register");
return ERROR_OK;
}
if (val == 0)
return ERROR_OK; /* dap not yet initialised */
bool found = false;
for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
if (val == kinetis_known_mdm_ids[i]) {
found = true;
break;
}
}
if (!found)
LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
/*
* ... Read the System Security bit to determine if security is enabled.
* If System Security = 0, then proceed. If System Security = 1, then
* communication with the internals of the processor, including the
* flash, will not be possible without issuing a mass erase command or
* unsecuring the part through other means (backdoor key unlock)...
*/
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read MDM_REG_STAT");
return ERROR_OK;
}
/*
* System Security bit is also active for short time during reset.
* If a MCU has blank flash and runs in RESET/WDOG loop,
* System Security bit is active most of time!
* We should observe Flash Ready bit and read status several times
* to avoid false detection of secured MCU
*/
int secured_score = 0, flash_not_ready_score = 0;
if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
uint32_t stats[32];
struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
if (!ap) {
LOG_ERROR("MDM: failed to get AP");
return ERROR_OK;
}
for (unsigned int i = 0; i < 32; i++) {
stats[i] = MDM_STAT_FREADY;
dap_queue_ap_read(ap, MDM_REG_STAT, &stats[i]);
}
retval = dap_run(dap);
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed when validating secured state");
return ERROR_OK;
}
for (unsigned int i = 0; i < 32; i++) {
if (stats[i] & MDM_STAT_SYSSEC)
secured_score++;
if (!(stats[i] & MDM_STAT_FREADY))
flash_not_ready_score++;
}
}
if (flash_not_ready_score <= 8 && secured_score > 24) {
jtag_poll_set_enabled(false);
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
LOG_WARNING("**** ****");
LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
LOG_WARNING("**** interface will NOT work. In order to restore its ****");
LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
LOG_WARNING("**** ****");
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
} else if (flash_not_ready_score > 24) {
jtag_poll_set_enabled(false);
LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
LOG_WARNING("**** and configured, use 'reset halt' ****");
LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
} else {
LOG_INFO("MDM: Chip is unsecured. Continuing.");
jtag_poll_set_enabled(true);
}
return ERROR_OK;
}
static struct kinetis_chip *kinetis_get_chip(struct target *target)
{
struct flash_bank *bank_iter;
struct kinetis_flash_bank *k_bank;
/* iterate over all kinetis banks */
for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
if (bank_iter->driver != &kinetis_flash
|| bank_iter->target != target)
continue;
k_bank = bank_iter->driver_priv;
if (!k_bank)
continue;
if (k_bank->k_chip)
return k_bank->k_chip;
}
return NULL;
}
static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
{
for (int i = 0; i < argc; i++) {
if (strcmp(argv[i], "-sim-base") == 0) {
if (i + 1 < argc)
k_chip->sim_base = strtoul(argv[++i], NULL, 0);
} else
LOG_ERROR("Unsupported flash bank option %s", argv[i]);
}
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
{
struct target *target = bank->target;
struct kinetis_chip *k_chip;
struct kinetis_flash_bank *k_bank;
int retval;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("add flash_bank kinetis %s", bank->name);
k_chip = kinetis_get_chip(target);
if (!k_chip) {
k_chip = calloc(sizeof(struct kinetis_chip), 1);
if (!k_chip) {
LOG_ERROR("No memory");
return ERROR_FAIL;
}
k_chip->target = target;
/* only the first defined bank can define chip options */
retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
if (retval != ERROR_OK)
return retval;
}
if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
return ERROR_FAIL;
}
bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
k_bank->k_chip = k_chip;
k_bank->bank_number = k_chip->num_banks;
k_bank->bank = bank;
k_chip->num_banks++;
return ERROR_OK;
}
static void kinetis_free_driver_priv(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
if (!k_bank)
return;
struct kinetis_chip *k_chip = k_bank->k_chip;
if (!k_chip)
return;
k_chip->num_banks--;
if (k_chip->num_banks == 0)
free(k_chip);
}
static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
{
unsigned num_blocks;
struct kinetis_flash_bank *k_bank;
struct flash_bank *bank;
char base_name[69], name[80], num[4];
char *class, *p;
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
if (num_blocks > KINETIS_MAX_BANKS) {
LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
return ERROR_FAIL;
}
bank = k_chip->banks[0].bank;
if (bank && bank->name) {
strncpy(base_name, bank->name, sizeof(base_name) - 1);
base_name[sizeof(base_name) - 1] = '\0';
p = strstr(base_name, ".pflash");
if (p) {
*p = '\0';
if (k_chip->num_pflash_blocks > 1) {
/* rename first bank if numbering is needed */
snprintf(name, sizeof(name), "%s.pflash0", base_name);
free(bank->name);
bank->name = strdup(name);
}
}
} else {
strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
base_name[sizeof(base_name) - 1] = '\0';
p = strstr(base_name, ".cpu");
if (p)
*p = '\0';
}
for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
k_bank = &(k_chip->banks[bank_idx]);
bank = k_bank->bank;
if (bank)
continue;
num[0] = '\0';
if (bank_idx < k_chip->num_pflash_blocks) {
class = "pflash";
if (k_chip->num_pflash_blocks > 1)
snprintf(num, sizeof(num), "%u", bank_idx);
} else {
class = "flexnvm";
if (k_chip->num_nvm_blocks > 1)
snprintf(num, sizeof(num), "%u",
bank_idx - k_chip->num_pflash_blocks);
}
bank = calloc(sizeof(struct flash_bank), 1);
if (!bank)
return ERROR_FAIL;
bank->target = k_chip->target;
bank->driver = &kinetis_flash;
bank->default_padded_value = bank->erased_value = 0xff;
snprintf(name, sizeof(name), "%s.%s%s",
base_name, class, num);
bank->name = strdup(name);
bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
k_bank->k_chip = k_chip;
k_bank->bank_number = bank_idx;
k_bank->bank = bank;
if (k_chip->num_banks <= bank_idx)
k_chip->num_banks = bank_idx + 1;
flash_bank_add(bank);
}
return ERROR_OK;
}
static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
{
struct working_area *wdog_algorithm;
struct armv7m_algorithm armv7m_info;
struct reg_param reg_params[1];
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target, wdog_algorithm->address,
code_size, code);
if (retval == ERROR_OK) {
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
wdog_algorithm->address,
wdog_algorithm->address + code_size - 2,
500, &armv7m_info);
destroy_reg_param(&reg_params[0]);
if (retval != ERROR_OK)
LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
}
target_free_working_area(target, wdog_algorithm);
return retval;
}
/* Disable the watchdog on Kinetis devices
* Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
*/
static int kinetis_disable_wdog_kx(struct target *target)
{
const uint32_t wdog_base = WDOG_BASE;
uint16_t wdog;
int retval;
static const uint8_t kinetis_unlock_wdog_code[] = {
#include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
};
retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
if (retval != ERROR_OK)
return retval;
if ((wdog & 0x1) == 0) {
/* watchdog already disabled */
return ERROR_OK;
}
LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
if (retval != ERROR_OK)
return retval;
retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
if (retval != ERROR_OK)
return retval;
LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
}
static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
{
uint32_t wdog_cs;
int retval;
static const uint8_t kinetis_unlock_wdog_code[] = {
#include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
};
retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
if (retval != ERROR_OK)
return retval;
if ((wdog_cs & 0x80) == 0)
return ERROR_OK; /* watchdog already disabled */
LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
if (retval != ERROR_OK)
return retval;
if ((wdog_cs & 0x80) == 0)
return ERROR_OK; /* watchdog disabled successfully */
LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
return ERROR_FAIL;
}
static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
{
struct target *target = k_chip->target;
uint8_t sim_copc;
int retval;
if (!k_chip->probed) {
retval = kinetis_probe_chip(k_chip);
if (retval != ERROR_OK)
return retval;
}
switch (k_chip->watchdog_type) {
case KINETIS_WDOG_K:
return kinetis_disable_wdog_kx(target);
case KINETIS_WDOG_COP:
retval = target_read_u8(target, SIM_COPC, &sim_copc);
if (retval != ERROR_OK)
return retval;
if ((sim_copc & 0xc) == 0)
return ERROR_OK; /* watchdog already disabled */
LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
if (retval != ERROR_OK)
return retval;
retval = target_read_u8(target, SIM_COPC, &sim_copc);
if (retval != ERROR_OK)
return retval;
if ((sim_copc & 0xc) == 0)
return ERROR_OK; /* watchdog disabled successfully */
LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
return ERROR_FAIL;
case KINETIS_WDOG32_KE1X:
return kinetis_disable_wdog32(target, WDOG32_KE1X);
case KINETIS_WDOG32_KL28:
return kinetis_disable_wdog32(target, WDOG32_KL28);
default:
return ERROR_OK;
}
}
COMMAND_HANDLER(kinetis_disable_wdog_handler)
{
int result;
struct target *target = get_current_target(CMD_CTX);
struct kinetis_chip *k_chip = kinetis_get_chip(target);
if (!k_chip)
return ERROR_FAIL;
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
result = kinetis_disable_wdog(k_chip);
return result;
}
static int kinetis_ftfx_decode_error(uint8_t fstat)
{
if (fstat & 0x20) {
LOG_ERROR("Flash operation failed, illegal command");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else if (fstat & 0x10)
LOG_ERROR("Flash operation failed, protection violated");
else if (fstat & 0x40)
LOG_ERROR("Flash operation failed, read collision");
else if (fstat & 0x80)
return ERROR_OK;
else
LOG_ERROR("Flash operation timed out");
return ERROR_FLASH_OPERATION_FAILED;
}
static int kinetis_ftfx_clear_error(struct target *target)
{
/* reset error flags */
return target_write_u8(target, FTFX_FSTAT, 0x70);
}
static int kinetis_ftfx_prepare(struct target *target)
{
int result;
uint8_t fstat;
/* wait until busy */
for (unsigned int i = 0; i < 50; i++) {
result = target_read_u8(target, FTFX_FSTAT, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & 0x80)
break;
}
if ((fstat & 0x80) == 0) {
LOG_ERROR("Flash controller is busy");
return ERROR_FLASH_OPERATION_FAILED;
}
if (fstat != 0x80) {
/* reset error flags */
result = kinetis_ftfx_clear_error(target);
}
return result;
}
/* Kinetis Program-LongWord Microcodes */
static const uint8_t kinetis_flash_write_code[] = {
#include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
};
/* Program LongWord Block Write */
static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t wcount)
{
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
uint32_t address = k_bank->prog_base + offset;
uint32_t end_address;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval;
uint8_t fstat;
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer, size *must* be multiple of word */
buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
if (buffer_size < 256) {
LOG_WARNING("large enough working area not available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
} else if (buffer_size > 16384) {
/* probably won't benefit from more than 16k ... */
buffer_size = 16384;
}
if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
LOG_ERROR("allocating working area failed");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, wcount);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, FTFX_FSTAT);
retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
end_address = buf_get_u32(reg_params[0].value, 0, 32);
LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
retval = target_read_u8(target, FTFX_FSTAT, &fstat);
if (retval == ERROR_OK) {
retval = kinetis_ftfx_decode_error(fstat);
/* reset error flags */
target_write_u8(target, FTFX_FSTAT, 0x70);
}
} else if (retval != ERROR_OK)
LOG_ERROR("Error executing kinetis Flash programming algorithm");
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
if (allow_fcf_writes) {
LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
return ERROR_FAIL;
}
if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
LOG_ERROR("No protection possible for current bank!");
return ERROR_FLASH_BANK_INVALID;
}
for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
bank->prot_blocks[i].is_protected = set;
LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
LOG_INFO("Do not issue 'flash info' command until protection is written,");
LOG_INFO("doing so would re-read protection status from MCU.");
return ERROR_OK;
}
static int kinetis_protect_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
int result;
int b;
uint32_t fprot;
if (k_bank->flash_class == FC_PFLASH) {
/* read protection register */
result = target_read_u32(bank->target, FTFX_FPROT3, &fprot);
if (result != ERROR_OK)
return result;
/* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
} else if (k_bank->flash_class == FC_FLEX_NVM) {
uint8_t fdprot;
/* read protection register */
result = target_read_u8(bank->target, FTFX_FDPROT, &fdprot);
if (result != ERROR_OK)
return result;
fprot = fdprot;
} else {
LOG_ERROR("Protection checks for FlexRAM not supported");
return ERROR_FLASH_BANK_INVALID;
}
b = k_bank->protection_block;
for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
if ((fprot >> b) & 1)
bank->prot_blocks[i].is_protected = 0;
else
bank->prot_blocks[i].is_protected = 1;
b++;
}
return ERROR_OK;
}
static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
{
uint32_t fprot = 0xffffffff;
uint8_t fsec = 0xfe; /* set MCU unsecure */
uint8_t fdprot = 0xff;
unsigned num_blocks;
uint32_t pflash_bit;
uint8_t dflash_bit;
struct flash_bank *bank_iter;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
memset(fcf, 0xff, FCF_SIZE);
pflash_bit = 1;
dflash_bit = 1;
/* iterate over all kinetis banks */
/* current bank is bank 0, it contains FCF */
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
k_bank = &(k_chip->banks[bank_idx]);
bank_iter = k_bank->bank;
if (!bank_iter) {
LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplete", bank_idx);
continue;
}
kinetis_auto_probe(bank_iter);
assert(bank_iter->prot_blocks);
if (k_bank->flash_class == FC_PFLASH) {
for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
if (bank_iter->prot_blocks[i].is_protected == 1)
fprot &= ~pflash_bit;
pflash_bit <<= 1;
}
} else if (k_bank->flash_class == FC_FLEX_NVM) {
for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
if (bank_iter->prot_blocks[i].is_protected == 1)
fdprot &= ~dflash_bit;
dflash_bit <<= 1;
}
}
}
target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
fcf[FCF_FSEC] = fsec;
fcf[FCF_FOPT] = fcf_fopt;
fcf[FCF_FDPROT] = fdprot;
return ERROR_OK;
}
static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
uint8_t *ftfx_fstat)
{
uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
fccob7, fccob6, fccob5, fccob4,
fccobb, fccoba, fccob9, fccob8};
int result;
uint8_t fstat;
int64_t ms_timeout = timeval_ms() + 250;
result = target_write_memory(target, FTFX_FCCOB3, 4, 3, command);
if (result != ERROR_OK)
return result;
/* start command */
result = target_write_u8(target, FTFX_FSTAT, 0x80);
if (result != ERROR_OK)
return result;
/* wait for done */
do {
result = target_read_u8(target, FTFX_FSTAT, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & 0x80)
break;
} while (timeval_ms() < ms_timeout);
if (ftfx_fstat)
*ftfx_fstat = fstat;
if ((fstat & 0xf0) != 0x80) {
LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
fstat, command[3], command[2], command[1], command[0],
command[7], command[6], command[5], command[4],
command[11], command[10], command[9], command[8]);
return kinetis_ftfx_decode_error(fstat);
}
return ERROR_OK;
}
static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
{
int result;
uint32_t stat32;
struct target *target = k_chip->target;
switch (k_chip->sysmodectrlr_type) {
case KINETIS_SMC:
result = target_read_u8(target, SMC_PMSTAT, pmstat);
return result;
case KINETIS_SMC32:
result = target_read_u32(target, SMC32_PMSTAT, &stat32);
if (result == ERROR_OK)
*pmstat = stat32 & 0xff;
return result;
case KINETIS_MC:
/* emulate SMC by reading PMC_REGSC bit 3 (VLPRS) */
result = target_read_u8(target, PMC_REGSC, pmstat);
if (result == ERROR_OK) {
if (*pmstat & 0x08)
*pmstat = PM_STAT_VLPR;
else
*pmstat = PM_STAT_RUN;
}
return result;
}
return ERROR_FAIL;
}
static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
{
int result;
uint8_t pmstat;
struct target *target;
if (!k_chip) {
LOG_ERROR("Chip not probed.");
return ERROR_FAIL;
}
target = k_chip->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_read_pmstat(k_chip, &pmstat);
if (result != ERROR_OK)
return result;
if (pmstat == PM_STAT_RUN)
return ERROR_OK;
if (pmstat == PM_STAT_VLPR) {
/* It is safe to switch from VLPR to RUN mode without changing clock */
LOG_INFO("Switching from VLPR to RUN mode.");
switch (k_chip->sysmodectrlr_type) {
case KINETIS_SMC:
result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
break;
case KINETIS_SMC32:
result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
break;
case KINETIS_MC:
result = target_write_u32(target, MC_PMCTRL, PM_CTRL_RUNM_RUN);
break;
}
if (result != ERROR_OK)
return result;
for (unsigned int i = 100; i > 0; i--) {
result = kinetis_read_pmstat(k_chip, &pmstat);
if (result != ERROR_OK)
return result;
if (pmstat == PM_STAT_RUN)
return ERROR_OK;
}
}
LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
LOG_ERROR("Issue a 'reset init' command.");
return ERROR_TARGET_NOT_HALTED;
}
static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
{
struct target *target = k_chip->target;
switch (k_chip->cache_type) {
case KINETIS_CACHE_K:
target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
/* Set CINV_WAY bits - request invalidate of all cache ways */
/* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
break;
case KINETIS_CACHE_L:
target_write_u8(target, MCM_PLACR + 1, 0x04);
/* set bit CFCC - Clear Flash Controller Cache */
break;
case KINETIS_CACHE_MSCM:
target_write_u32(target, MSCM_OCMDR0, 0x30);
/* disable data prefetch and flash speculate */
break;
default:
break;
}
}
static int kinetis_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int result;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
/*
* FIXME: TODO: use the 'Erase Flash Block' command if the
* requested erase is PFlash or NVM and encompasses the entire
* block. Should be quicker.
*/
for (unsigned int i = first; i <= last; i++) {
/* set command and sector address */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
0, 0, 0, 0, 0, 0, 0, 0, NULL);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %u failed", i);
return ERROR_FLASH_OPERATION_FAILED;
}
if (k_bank->prog_base == 0
&& bank->sectors[i].offset <= FCF_ADDRESS
&& bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
if (allow_fcf_writes) {
LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
} else {
uint8_t fcf_buffer[FCF_SIZE];
kinetis_fill_fcf(bank, fcf_buffer);
result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
if (result != ERROR_OK)
LOG_WARNING("Flash Configuration Field write failed");
else
LOG_DEBUG("Generated FCF written");
}
}
}
kinetis_invalidate_flash_cache(k_bank->k_chip);
return ERROR_OK;
}
static int kinetis_make_ram_ready(struct target *target)
{
int result;
uint8_t ftfx_fcnfg;
/* check if ram ready */
result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
if (result != ERROR_OK)
return result;
if (ftfx_fcnfg & (1 << 1))
return ERROR_OK; /* ram ready */
/* make flex ram available */
result = kinetis_ftfx_command(target, FTFX_CMD_SETFLEXRAM, 0x00ff0000,
0, 0, 0, 0, 0, 0, 0, 0, NULL);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* check again */
result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
if (result != ERROR_OK)
return result;
if (ftfx_fcnfg & (1 << 1))
return ERROR_OK; /* ram ready */
return ERROR_FLASH_OPERATION_FAILED;
}
static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result = ERROR_OK;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
uint8_t *buffer_aligned = NULL;
/*
* Kinetis uses different terms for the granularity of
* sector writes, e.g. "phrase" or "128 bits". We use
* the generic term "chunk". The largest possible
* Kinetis "chunk" is 16 bytes (128 bits).
*/
uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
while (count > 0) {
uint32_t size = prog_size_bytes - offset % prog_size_bytes;
uint32_t align_begin = offset % prog_section_chunk_bytes;
uint32_t align_end;
uint32_t size_aligned;
uint16_t chunk_count;
uint8_t ftfx_fstat;
if (size > count)
size = count;
align_end = (align_begin + size) % prog_section_chunk_bytes;
if (align_end)
align_end = prog_section_chunk_bytes - align_end;
size_aligned = align_begin + size + align_end;
chunk_count = size_aligned / prog_section_chunk_bytes;
if (size != size_aligned) {
/* aligned section: the first, the last or the only */
if (!buffer_aligned)
buffer_aligned = malloc(prog_size_bytes);
memset(buffer_aligned, 0xff, size_aligned);
memcpy(buffer_aligned + align_begin, buffer, size);
result = target_write_memory(bank->target, k_chip->progr_accel_ram,
4, size_aligned / 4, buffer_aligned);
LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
", end %" PRIu32,
bank->base + offset, align_begin, align_end);
} else
result = target_write_memory(bank->target, k_chip->progr_accel_ram,
4, size_aligned / 4, buffer);
LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
" bytes",
bank->base + offset, size);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
break;
}
/* execute section-write command */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTWRITE,
k_bank->prog_base + offset - align_begin,
chunk_count>>8, chunk_count, 0, 0,
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
bank->base + offset);
break;
}
if (ftfx_fstat & 0x01) {
LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
bank->base + offset);
if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
&& (k_chip->flash_support & FS_WIDTH_256BIT)) {
LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
LOG_ERROR("or set 'kinetis fcf_source write'");
}
}
buffer += size;
offset += size;
count -= size;
keep_alive();
}
free(buffer_aligned);
return result;
}
static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result;
bool fallback = false;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
/* fallback to longword write */
fallback = true;
LOG_INFO("This device supports Program Longword execution only.");
} else {
result = kinetis_make_ram_ready(bank->target);
if (result != ERROR_OK) {
fallback = true;
LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
}
}
LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
if (!fallback) {
/* program section command */
kinetis_write_sections(bank, buffer, offset, count);
} else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
/* program longword command, not supported in FTFE */
uint8_t *new_buffer = NULL;
/* check word alignment */
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (!new_buffer) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(new_buffer + old_count, 0xff, count - old_count);
buffer = memcpy(new_buffer, buffer, old_count);
}
uint32_t words_remaining = count / 4;
kinetis_disable_wdog(k_chip);
/* try using a block write */
result = kinetis_write_block(bank, buffer, offset, words_remaining);
if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");
while (words_remaining) {
uint8_t ftfx_fstat;
LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
result = kinetis_ftfx_command(bank->target, FTFX_CMD_LWORDPROG, k_bank->prog_base + offset,
buffer[3], buffer[2], buffer[1], buffer[0],
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
bank->base + offset);
break;
}
if (ftfx_fstat & 0x01)
LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
bank->base + offset);
buffer += 4;
offset += 4;
words_remaining--;
keep_alive();
}
}
free(new_buffer);
} else {
LOG_ERROR("Flash write strategy not implemented");
return ERROR_FLASH_OPERATION_FAILED;
}
kinetis_invalidate_flash_cache(k_chip);
return result;
}
static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result;
bool set_fcf = false;
bool fcf_in_data_valid = false;
bool fcf_differs = false;
int sect = 0;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
uint8_t fcf_buffer[FCF_SIZE];
uint8_t fcf_current[FCF_SIZE];
uint8_t fcf_in_data[FCF_SIZE];
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if (k_bank->prog_base == 0 && !allow_fcf_writes) {
if (bank->sectors[1].offset <= FCF_ADDRESS)
sect = 1; /* 1kb sector, FCF in 2nd sector */
if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
&& offset + count > bank->sectors[sect].offset)
set_fcf = true; /* write to any part of sector with FCF */
}
if (set_fcf) {
kinetis_fill_fcf(bank, fcf_buffer);
fcf_in_data_valid = offset <= FCF_ADDRESS
&& offset + count >= FCF_ADDRESS + FCF_SIZE;
if (fcf_in_data_valid) {
memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
if (memcmp(fcf_in_data, fcf_buffer, 8)) {
fcf_differs = true;
LOG_INFO("Setting of backdoor key is not supported in mode 'kinetis fcf_source protection'.");
}
if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer + FCF_FPROT, 4)) {
fcf_differs = true;
LOG_INFO("Flash protection requested in the programmed file differs from current setting.");
}
if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
fcf_differs = true;
LOG_INFO("Data flash protection requested in the programmed file differs from current setting.");
}
if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
fcf_in_data_valid = false;
LOG_INFO("Device security requested in the programmed file! Write denied.");
} else if (fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
fcf_differs = true;
LOG_INFO("Strange unsecure mode 0x%02" PRIx8
" requested in the programmed file, set FSEC = 0x%02" PRIx8
" in the startup code!",
fcf_in_data[FCF_FSEC], fcf_buffer[FCF_FSEC]);
}
if (fcf_in_data[FCF_FOPT] != fcf_buffer[FCF_FOPT]) {
fcf_differs = true;
LOG_INFO("FOPT requested in the programmed file differs from current setting, set 'kinetis fopt 0x%02"
PRIx8 "'.", fcf_in_data[FCF_FOPT]);
}
/* If the device has ECC flash, then we cannot re-program FCF */
if (fcf_differs) {
if (k_chip->flash_support & FS_ECC) {
fcf_in_data_valid = false;
LOG_INFO("Cannot re-program FCF. Expect verify errors at FCF (0x400-0x40f).");
} else {
LOG_INFO("Trying to re-program FCF.");
if (!(k_chip->flash_support & FS_PROGRAM_LONGWORD))
LOG_INFO("Flash re-programming may fail on this device!");
}
}
}
}
if (set_fcf && !fcf_in_data_valid) {
if (offset < FCF_ADDRESS) {
/* write part preceding FCF */
result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
if (result != ERROR_OK)
return result;
}
result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
set_fcf = false;
if (set_fcf) {
/* write FCF if differs from flash - eliminate multiple writes */
result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
if (result != ERROR_OK)
return result;
}
LOG_WARNING("Flash Configuration Field written.");
LOG_WARNING("Reset or power off the device to make settings effective.");
if (offset + count > FCF_ADDRESS + FCF_SIZE) {
uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
/* write part after FCF */
result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
}
return result;
} else {
/* no FCF fiddling, normal write */
return kinetis_write_inner(bank, buffer, offset, count);
}
}
static int kinetis_probe_chip(struct kinetis_chip *k_chip)
{
int result;
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
uint8_t fcfg2_pflsh;
uint32_t ee_size = 0;
uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
uint32_t pflash_size_m;
unsigned num_blocks = 0;
unsigned maxaddr_shift = 13;
struct target *target = k_chip->target;
unsigned familyid = 0, subfamid = 0;
unsigned cpu_mhz = 120;
bool use_nvm_marking = false;
char flash_marking[12], nvm_marking[2];
char name[40];
k_chip->probed = false;
k_chip->pflash_sector_size = 0;
k_chip->pflash_base = 0;
k_chip->nvm_base = 0x10000000;
k_chip->progr_accel_ram = FLEXRAM;
name[0] = '\0';
if (k_chip->sim_base)
result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
else {
result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
if (result == ERROR_OK)
k_chip->sim_base = SIM_BASE;
else {
result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
if (result == ERROR_OK)
k_chip->sim_base = SIM_BASE_KL28;
}
}
if (result != ERROR_OK)
return result;
if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
/* older K-series MCU */
uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
k_chip->cache_type = KINETIS_CACHE_K;
k_chip->watchdog_type = KINETIS_WDOG_K;
switch (mcu_type) {
case KINETIS_K_SDID_K10_M50:
case KINETIS_K_SDID_K20_M50:
/* 1kB sectors */
k_chip->pflash_sector_size = 1<<10;
k_chip->nvm_sector_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
break;
case KINETIS_K_SDID_K10_M72:
case KINETIS_K_SDID_K20_M72:
case KINETIS_K_SDID_K30_M72:
case KINETIS_K_SDID_K30_M100:
case KINETIS_K_SDID_K40_M72:
case KINETIS_K_SDID_K40_M100:
case KINETIS_K_SDID_K50_M72:
/* 2kB sectors, 1kB FlexNVM sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
k_chip->max_flash_prog_size = 1<<10;
break;
case KINETIS_K_SDID_K10_M100:
case KINETIS_K_SDID_K20_M100:
case KINETIS_K_SDID_K11:
case KINETIS_K_SDID_K12:
case KINETIS_K_SDID_K21_M50:
case KINETIS_K_SDID_K22_M50:
case KINETIS_K_SDID_K51_M72:
case KINETIS_K_SDID_K53:
case KINETIS_K_SDID_K60_M100:
/* 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 2<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
break;
case KINETIS_K_SDID_K21_M120:
case KINETIS_K_SDID_K22_M120:
/* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
k_chip->pflash_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
k_chip->nvm_sector_size = 4<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
break;
case KINETIS_K_SDID_K10_M120:
case KINETIS_K_SDID_K20_M120:
case KINETIS_K_SDID_K60_M150:
case KINETIS_K_SDID_K70_M150:
/* 4kB sectors */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 4<<10;
num_blocks = 4;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
break;
default:
LOG_ERROR("Unsupported K-family FAMID");
}
for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
if (kinetis_types_old[idx].sdid == mcu_type) {
strcpy(name, kinetis_types_old[idx].name);
use_nvm_marking = true;
break;
}
}
/* first revision of some devices has no SMC */
switch (mcu_type) {
case KINETIS_K_SDID_K10_M100:
case KINETIS_K_SDID_K20_M100:
case KINETIS_K_SDID_K30_M100:
case KINETIS_K_SDID_K40_M100:
case KINETIS_K_SDID_K60_M100:
{
uint32_t revid = (k_chip->sim_sdid & KINETIS_K_REVID_MASK) >> KINETIS_K_REVID_SHIFT;
/* highest bit set corresponds to rev 2.x */
if (revid <= 7) {
k_chip->sysmodectrlr_type = KINETIS_MC;
strcat(name, " Rev 1.x");
}
}
break;
}
} else {
/* Newer K-series or KL series MCU */
familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
case KINETIS_SDID_SERIESID_K:
use_nvm_marking = true;
k_chip->cache_type = KINETIS_CACHE_K;
k_chip->watchdog_type = KINETIS_WDOG_K;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
/* K02FN64, K02FN128: FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
cpu_mhz = 100;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
/* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
uint32_t sopt1;
result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
if (result != ERROR_OK)
return result;
if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
/* MK24FN1M */
k_chip->pflash_sector_size = 4<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->max_flash_prog_size = 1<<10;
subfamid = 4; /* errata 1N83J fix */
break;
}
if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
|| (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
|| (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
/* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
break;
}
LOG_ERROR("Unsupported Kinetis K22 DIEID");
break;
}
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
k_chip->pflash_sector_size = 4<<10;
if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
/* K24FN256 - smaller pflash with FTFA */
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
break;
}
/* K24FN1M without errata 7534 */
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->max_flash_prog_size = 1<<10;
break;
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
subfamid += 2; /* errata 7534 fix */
/* fallthrough */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
/* K63FN1M0 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
/* K64FN1M0, K64FX512 */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
/* K26FN2M0 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
/* K66FN2M0, K66FX1M0 */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 4;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
cpu_mhz = 180;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
/* K27FN2M0 */
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
/* K28FN2M0 */
k_chip->pflash_sector_size = 4<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 4;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
cpu_mhz = 150;
break;
case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
/* K80FN256, K81FN256, K82FN256 */
k_chip->pflash_sector_size = 4<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
cpu_mhz = 150;
break;
case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
/* KL81Z128, KL82Z128 */
k_chip->pflash_sector_size = 2<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
k_chip->cache_type = KINETIS_CACHE_L;
use_nvm_marking = false;
snprintf(name, sizeof(name), "MKL8%uZ%%s7",
subfamid);
break;
default:
LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
}
if (name[0] == '\0')
snprintf(name, sizeof(name), "MK%u%uF%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KL:
/* KL-series */
k_chip->pflash_sector_size = 1<<10;
k_chip->nvm_sector_size = 1<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
k_chip->watchdog_type = KINETIS_WDOG_COP;
cpu_mhz = 48;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
subfamid = 7;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
cpu_mhz = 72;
k_chip->pflash_sector_size = 2<<10;
num_blocks = 2;
k_chip->watchdog_type = KINETIS_WDOG32_KL28;
k_chip->sysmodectrlr_type = KINETIS_SMC32;
break;
}
snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KW:
/* Newer KW-series (all KW series except KW2xD, KW01Z) */
cpu_mhz = 48;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
/* KW40Z */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
/* KW30Z */
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
/* KW20Z */
/* FTFA, 1kB sectors */
k_chip->pflash_sector_size = 1<<10;
k_chip->nvm_sector_size = 1<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
k_chip->watchdog_type = KINETIS_WDOG_COP;
break;
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
/* KW41Z */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
/* KW31Z */
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
/* KW21Z */
/* FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 2<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
k_chip->watchdog_type = KINETIS_WDOG_COP;
break;
default:
LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
}
snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KV:
/* KV-series */
k_chip->watchdog_type = KINETIS_WDOG_K;
switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
/* KV10: FTFA, 1kB sectors */
k_chip->pflash_sector_size = 1<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
strcpy(name, "MKV10Z%s7");
break;
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
/* KV11: FTFA, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_L;
strcpy(name, "MKV11Z%s7");
break;
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
/* KV30: FTFA, 2kB sectors, 1 block */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
/* KV31: FTFA, 2kB sectors, 2 blocks */
k_chip->pflash_sector_size = 2<<10;
/* autodetect 1 or 2 blocks */
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_K;
break;
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
/* KV4x: FTFA, 4kB sectors */
k_chip->pflash_sector_size = 4<<10;
num_blocks = 1;
k_chip->flash_support = FS_PROGRAM_LONGWORD;
k_chip->cache_type = KINETIS_CACHE_K;
cpu_mhz = 168;
break;
case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
/* KV5x: FTFE, 8kB sectors */
k_chip->pflash_sector_size = 8<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 1;
maxaddr_shift = 14;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
k_chip->pflash_base = 0x10000000;
k_chip->progr_accel_ram = 0x18000000;
cpu_mhz = 240;
break;
default:
LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
}
if (name[0] == '\0')
snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_SERIESID_KE:
/* KE1x-series */
k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
switch (k_chip->sim_sdid &
(KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XZ:
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1XZ:
/* KE1xZ: FTFE, 2kB sectors */
k_chip->pflash_sector_size = 2<<10;
k_chip->nvm_sector_size = 2<<10;
k_chip->max_flash_prog_size = 1<<9;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->cache_type = KINETIS_CACHE_L;
cpu_mhz = 72;
snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XF:
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1XF:
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1XF:
/* KE1xF: FTFE, 4kB sectors */
k_chip->pflash_sector_size = 4<<10;
k_chip->nvm_sector_size = 2<<10;
k_chip->max_flash_prog_size = 1<<10;
num_blocks = 2;
k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
k_chip->cache_type = KINETIS_CACHE_MSCM;
cpu_mhz = 168;
snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
familyid, subfamid, cpu_mhz / 10);
break;
default:
LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
}
break;
default:
LOG_ERROR("Unsupported K-series");
}
}
if (k_chip->pflash_sector_size == 0) {
LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
return ERROR_FLASH_OPER_UNSUPPORTED;
}
result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
if (result != ERROR_OK)
return result;
result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
if (result != ERROR_OK)
return result;
LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
k_chip->sim_fcfg1, k_chip->sim_fcfg2);
fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
if (num_blocks == 0)
num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
/* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
* Do not adjust block count in this case! */
num_blocks = 1;
LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
} else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
num_blocks = 2;
LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
}
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
if (!fcfg2_pflsh) {
switch (fcfg1_nvmsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
break;
case 0x0f:
if (k_chip->pflash_sector_size >= 4<<10)
k_chip->nvm_size = 512<<10;
else
/* K20_100 */
k_chip->nvm_size = 256<<10;
break;
default:
k_chip->nvm_size = 0;
break;
}
switch (fcfg1_eesize) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
ee_size = (16 << (10 - fcfg1_eesize));
break;
default:
ee_size = 0;
break;
}
switch (fcfg1_depart) {
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
break;
case 0x07:
case 0x08:
k_chip->dflash_size = 0;
break;
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
break;
default:
k_chip->dflash_size = k_chip->nvm_size;
break;
}
}
switch (fcfg1_pfsize) {
case 0x00:
k_chip->pflash_size = 8192;
break;
case 0x01:
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
case 0x0d:
k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
break;
case 0x0f:
/* a peculiar case: Freescale states different sizes for 0xf
* KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
* K02P64M100SFARM 128 KB ... duplicate of code 0x7
* K22P121M120SF8RM 256 KB ... duplicate of code 0x9
* K22P121M120SF7RM 512 KB ... duplicate of code 0xb
* K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
* K26P169M180SF5RM 2048 KB ... the only unique value
* fcfg2_maxaddr0 seems to be the only clue to pflash_size
* Checking fcfg2_maxaddr0 in bank probe is pointless then
*/
if (fcfg2_pflsh)
k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
else
k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
if (k_chip->pflash_size != 2048<<10)
LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %" PRIu32 " KB", k_chip->pflash_size>>10);
break;
default:
k_chip->pflash_size = 0;
break;
}
if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
/* Program section size is equal to sector size by default */
}
if (fcfg2_pflsh) {
k_chip->num_pflash_blocks = num_blocks;
k_chip->num_nvm_blocks = 0;
} else {
k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
}
if (use_nvm_marking) {
nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
nvm_marking[1] = '\0';
} else
nvm_marking[0] = '\0';
pflash_size_k = k_chip->pflash_size / 1024;
pflash_size_m = pflash_size_k / 1024;
if (pflash_size_m)
snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
else
snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
if (k_chip->num_nvm_blocks) {
nvm_size_k = k_chip->nvm_size / 1024;
dflash_size_k = k_chip->dflash_size / 1024;
LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
}
k_chip->probed = true;
if (create_banks)
kinetis_create_missing_banks(k_chip);
return ERROR_OK;
}
static int kinetis_probe(struct flash_bank *bank)
{
int result;
uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
unsigned num_blocks, first_nvm_bank;
uint32_t size_k;
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip;
assert(k_bank);
k_chip = k_bank->k_chip;
k_bank->probed = false;
if (!k_chip->probed) {
result = kinetis_probe_chip(k_chip);
if (result != ERROR_OK)
return result;
}
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
first_nvm_bank = k_chip->num_pflash_blocks;
if (k_bank->bank_number < k_chip->num_pflash_blocks) {
/* pflash, banks start at address zero */
k_bank->flash_class = FC_PFLASH;
bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
k_bank->sector_size = k_chip->pflash_sector_size;
/* pflash is divided into 32 protection areas for
* parts with more than 32K of PFlash. For parts with
* less the protection unit is set to 1024 bytes */
k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
bank->num_prot_blocks = bank->size / k_bank->protection_size;
k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
size_k = bank->size / 1024;
LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
} else if (k_bank->bank_number < num_blocks) {
/* nvm, banks start at address 0x10000000 */
unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
uint32_t limit;
k_bank->flash_class = FC_FLEX_NVM;
bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
bank->base = k_chip->nvm_base + bank->size * nvm_ord;
k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
k_bank->sector_size = k_chip->nvm_sector_size;
if (k_chip->dflash_size == 0) {
k_bank->protection_size = 0;
} else {
int i;
for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
;
if (i == 1)
k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
else
k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
}
bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
/* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
if (k_chip->dflash_size > bank->size * nvm_ord)
limit = k_chip->dflash_size - bank->size * nvm_ord;
else
limit = 0;
if (bank->size > limit) {
bank->size = limit;
LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
k_bank->bank_number, limit);
}
size_k = bank->size / 1024;
LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
} else {
LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
k_bank->bank_number, num_blocks);
return ERROR_FLASH_BANK_INVALID;
}
fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr0);
if (fcfg2_pflsh) {
if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr1);
} else {
if (k_bank->bank_number == first_nvm_bank
&& k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr1);
}
free(bank->sectors);
bank->sectors = NULL;
free(bank->prot_blocks);
bank->prot_blocks = NULL;
if (k_bank->sector_size == 0) {
LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
return ERROR_FLASH_BANK_INVALID;
}
bank->num_sectors = bank->size / k_bank->sector_size;
if (bank->num_sectors > 0) {
/* FlexNVM bank can be used for EEPROM backup therefore zero sized */
bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
} else {
bank->num_prot_blocks = 0;
}
k_bank->probed = true;
return ERROR_OK;
}
static int kinetis_auto_probe(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
if (k_bank && k_bank->probed)
return ERROR_OK;
return kinetis_probe(bank);
}
static int kinetis_info(struct flash_bank *bank, struct command_invocation *cmd)
{
const char *bank_class_names[] = {
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
};
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
uint32_t size_k = bank->size / 1024;
command_print_sameline(cmd,
"%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
bank->driver->name, k_chip->name,
size_k, bank_class_names[k_bank->flash_class],
bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_blank_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *k_bank = bank->driver_priv;
struct kinetis_chip *k_chip = k_bank->k_chip;
int result;
/* surprisingly blank check does not work in VLPR and HSRUN modes */
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
bool block_dirty = true;
bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
uint8_t ftfx_fstat;
if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
/* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
if (fcfg1_depart != 0xf && fcfg1_depart != 0)
use_block_cmd = false;
}
if (use_block_cmd) {
/* check if whole bank is blank */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_BLOCKSTAT, k_bank->prog_base,
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
kinetis_ftfx_clear_error(bank->target);
else if ((ftfx_fstat & 0x01) == 0)
block_dirty = false;
}
if (block_dirty) {
/* the whole bank is not erased, check sector-by-sector */
for (unsigned int i = 0; i < bank->num_sectors; i++) {
/* normal margin */
result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTSTAT,
k_bank->prog_base + bank->sectors[i].offset,
1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
} else {
LOG_DEBUG("Ignoring error on PFlash sector blank-check");
kinetis_ftfx_clear_error(bank->target);
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
} else {
LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_nvm_partition)
{
int result;
unsigned bank_idx;
unsigned num_blocks, first_nvm_bank;
unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
bool enable;
uint8_t load_flex_ram = 1;
uint8_t ee_size_code = 0x3f;
uint8_t flex_nvm_partition_code = 0;
uint8_t ee_split = 3;
struct target *target = get_current_target(CMD_CTX);
struct kinetis_chip *k_chip;
uint32_t sim_fcfg1;
k_chip = kinetis_get_chip(target);
if (CMD_ARGC >= 2) {
if (strcmp(CMD_ARGV[0], "dataflash") == 0)
sz_type = DF_SIZE;
else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
sz_type = EEBKP_SIZE;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], par);
while (par >> (log2 + 3))
log2++;
}
switch (sz_type) {
case SHOW_INFO:
if (!k_chip) {
LOG_ERROR("Chip not probed.");
return ERROR_FAIL;
}
result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
if (result != ERROR_OK)
return result;
flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
switch (flex_nvm_partition_code) {
case 0:
command_print(CMD, "No EEPROM backup, data flash only");
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
break;
case 8:
command_print(CMD, "No data flash, EEPROM backup only");
break;
case 0x9:
case 0xA:
case 0xB:
case 0xC:
case 0xD:
case 0xE:
command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
break;
case 0xf:
command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
break;
default:
command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
}
return ERROR_OK;
case DF_SIZE:
flex_nvm_partition_code = 0x8 | log2;
break;
case EEBKP_SIZE:
flex_nvm_partition_code = log2;
break;
}
if (CMD_ARGC == 3) {
unsigned long eex;
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], eex);
ee1 = ee2 = eex / 2;
} else if (CMD_ARGC >= 4) {
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], ee1);
COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[3], ee2);
}
enable = ee1 + ee2 > 0;
if (enable) {
for (log2 = 2; ; log2++) {
if (ee1 + ee2 == (16u << 10) >> log2)
break;
if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
LOG_ERROR("Unsupported EEPROM size");
return ERROR_FLASH_OPERATION_FAILED;
}
}
if (ee1 * 3 == ee2)
ee_split = 1;
else if (ee1 * 7 == ee2)
ee_split = 0;
else if (ee1 != ee2) {
LOG_ERROR("Unsupported EEPROM sizes ratio");
return ERROR_FLASH_OPERATION_FAILED;
}
ee_size_code = log2 | ee_split << 4;
}
if (CMD_ARGC >= 5)
COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
if (enable)
load_flex_ram = 0;
LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
flex_nvm_partition_code, ee_size_code);
result = kinetis_check_run_mode(k_chip);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(target);
if (result != ERROR_OK)
return result;
result = kinetis_ftfx_command(target, FTFX_CMD_PGMPART, load_flex_ram,
ee_size_code, flex_nvm_partition_code, 0, 0,
0, 0, 0, 0, NULL);
if (result != ERROR_OK)
return result;
command_print(CMD, "FlexNVM partition set. Please reset MCU.");
if (k_chip) {
first_nvm_bank = k_chip->num_pflash_blocks;
num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
k_chip->probed = false;
}
command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_fcf_source_handler)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1) {
if (strcmp(CMD_ARGV[0], "write") == 0)
allow_fcf_writes = true;
else if (strcmp(CMD_ARGV[0], "protection") == 0)
allow_fcf_writes = false;
else
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (allow_fcf_writes) {
command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
command_print(CMD, "Protection info writes to FCF disabled.");
LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
} else {
command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_fopt_handler)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1) {
COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], fcf_fopt);
} else {
command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_create_banks_handler)
{
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
create_banks = true;
return ERROR_OK;
}
static const struct command_registration kinetis_security_command_handlers[] = {
{
.name = "check_security",
.mode = COMMAND_EXEC,
.help = "Check status of device security lock",
.usage = "",
.handler = kinetis_check_flash_security_status,
},
{
.name = "halt",
.mode = COMMAND_EXEC,
.help = "Issue a halt via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_halt,
},
{
.name = "mass_erase",
.mode = COMMAND_EXEC,
.help = "Issue a complete flash erase via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_mass_erase,
},
{
.name = "reset",
.mode = COMMAND_EXEC,
.help = "Issue a reset via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_reset,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_exec_command_handlers[] = {
{
.name = "mdm",
.mode = COMMAND_ANY,
.help = "MDM-AP command group",
.usage = "",
.chain = kinetis_security_command_handlers,
},
{
.name = "disable_wdog",
.mode = COMMAND_EXEC,
.help = "Disable the watchdog timer",
.usage = "",
.handler = kinetis_disable_wdog_handler,
},
{
.name = "nvm_partition",
.mode = COMMAND_EXEC,
.help = "Show/set data flash or EEPROM backup size in kilobytes,"
" set two EEPROM sizes in bytes and FlexRAM loading during reset",
.usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
.handler = kinetis_nvm_partition,
},
{
.name = "fcf_source",
.mode = COMMAND_EXEC,
.help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
" Mode 'protection' is safe from unwanted locking of the device.",
.usage = "['protection'|'write']",
.handler = kinetis_fcf_source_handler,
},
{
.name = "fopt",
.mode = COMMAND_EXEC,
.help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
.usage = "[num]",
.handler = kinetis_fopt_handler,
},
{
.name = "create_banks",
.mode = COMMAND_CONFIG,
.help = "Driver creates additional banks if device with two/four flash blocks is probed",
.handler = kinetis_create_banks_handler,
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_command_handler[] = {
{
.name = "kinetis",
.mode = COMMAND_ANY,
.help = "Kinetis flash controller commands",
.usage = "",
.chain = kinetis_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver kinetis_flash = {
.name = "kinetis",
.commands = kinetis_command_handler,
.flash_bank_command = kinetis_flash_bank_command,
.erase = kinetis_erase,
.protect = kinetis_protect,
.write = kinetis_write,
.read = default_flash_read,
.probe = kinetis_probe,
.auto_probe = kinetis_auto_probe,
.erase_check = kinetis_blank_check,
.protect_check = kinetis_protect_check,
.info = kinetis_info,
.free_driver_priv = kinetis_free_driver_priv,
};