openocd/src/target/arm_adi_v5.c

1449 lines
41 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/***************************************************************************
* *
* This file implements support for the ARM Debug Interface v5 (ADI_V5) *
* *
* ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A *
* *
* CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D *
* Cortex-M3(tm) TRM, ARM DDI 0337G *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm_adi_v5.h"
#include "time_support.h"
/*
* Transaction Mode:
* swjdp->trans_mode = TRANS_MODE_COMPOSITE;
* Uses Overrun checking mode and does not do actual JTAG send/receive or transaction
* result checking until swjdp_end_transaction()
* This must be done before using or deallocating any return variables.
* swjdp->trans_mode == TRANS_MODE_ATOMIC
* All reads and writes to the AHB bus are checked for valid completion, and return values
* are immediatley available.
*/
/* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
/*
uint32_t tar_block_size(uint32_t address)
Return the largest block starting at address that does not cross a tar block size alignment boundary
*/
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
}
/***************************************************************************
* *
* DPACC and APACC scanchain access through JTAG-DP *
* *
***************************************************************************/
/* Scan out and in from target ordered uint8_t buffers */
int adi_jtag_dp_scan(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint8_t *outvalue, uint8_t *invalue, uint8_t *ack)
{
arm_jtag_t *jtag_info = swjdp->jtag_info;
scan_field_t fields[2];
uint8_t out_addr_buf;
jtag_set_end_state(TAP_IDLE);
arm_jtag_set_instr(jtag_info, instr, NULL);
/* Add specified number of tck clocks before accessing memory bus */
if ((instr == DAP_IR_APACC) && ((reg_addr == AP_REG_DRW)||((reg_addr&0xF0) == AP_REG_BD0))&& (swjdp->memaccess_tck != 0))
jtag_add_runtest(swjdp->memaccess_tck, jtag_set_end_state(TAP_IDLE));
fields[0].tap = jtag_info->tap;
fields[0].num_bits = 3;
buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
fields[0].out_value = &out_addr_buf;
fields[0].in_value = ack;
fields[1].tap = jtag_info->tap;
fields[1].num_bits = 32;
fields[1].out_value = outvalue;
fields[1].in_value = invalue;
jtag_add_dr_scan(2, fields, jtag_get_end_state());
return ERROR_OK;
}
/* Scan out and in from host ordered uint32_t variables */
int adi_jtag_dp_scan_u32(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint32_t outvalue, uint32_t *invalue, uint8_t *ack)
{
arm_jtag_t *jtag_info = swjdp->jtag_info;
scan_field_t fields[2];
uint8_t out_value_buf[4];
uint8_t out_addr_buf;
jtag_set_end_state(TAP_IDLE);
arm_jtag_set_instr(jtag_info, instr, NULL);
/* Add specified number of tck clocks before accessing memory bus */
if ((instr == DAP_IR_APACC) && ((reg_addr == AP_REG_DRW)||((reg_addr&0xF0) == AP_REG_BD0))&& (swjdp->memaccess_tck != 0))
jtag_add_runtest(swjdp->memaccess_tck, jtag_set_end_state(TAP_IDLE));
fields[0].tap = jtag_info->tap;
fields[0].num_bits = 3;
buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
fields[0].out_value = &out_addr_buf;
fields[0].in_value = ack;
fields[1].tap = jtag_info->tap;
fields[1].num_bits = 32;
buf_set_u32(out_value_buf, 0, 32, outvalue);
fields[1].out_value = out_value_buf;
fields[1].in_value = NULL;
if (invalue)
{
fields[1].in_value = (uint8_t *)invalue;
jtag_add_dr_scan(2, fields, jtag_get_end_state());
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t) invalue);
} else
{
jtag_add_dr_scan(2, fields, jtag_get_end_state());
}
return ERROR_OK;
}
/* scan_inout_check adds one extra inscan for DPAP_READ commands to read variables */
int scan_inout_check(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint8_t *outvalue, uint8_t *invalue)
{
adi_jtag_dp_scan(swjdp, instr, reg_addr, RnW, outvalue, NULL, NULL);
if ((RnW == DPAP_READ) && (invalue != NULL))
{
adi_jtag_dp_scan(swjdp, DAP_IR_DPACC, DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack);
}
/* In TRANS_MODE_ATOMIC all DAP_IR_APACC transactions wait for ack = OK/FAULT and the check CTRL_STAT */
if ((instr == DAP_IR_APACC) && (swjdp->trans_mode == TRANS_MODE_ATOMIC))
{
return swjdp_transaction_endcheck(swjdp);
}
return ERROR_OK;
}
int scan_inout_check_u32(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint32_t outvalue, uint32_t *invalue)
{
adi_jtag_dp_scan_u32(swjdp, instr, reg_addr, RnW, outvalue, NULL, NULL);
if ((RnW == DPAP_READ) && (invalue != NULL))
{
adi_jtag_dp_scan_u32(swjdp, DAP_IR_DPACC, DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack);
}
/* In TRANS_MODE_ATOMIC all DAP_IR_APACC transactions wait for ack = OK/FAULT and then check CTRL_STAT */
if ((instr == DAP_IR_APACC) && (swjdp->trans_mode == TRANS_MODE_ATOMIC))
{
return swjdp_transaction_endcheck(swjdp);
}
return ERROR_OK;
}
int swjdp_transaction_endcheck(swjdp_common_t *swjdp)
{
int retval;
uint32_t ctrlstat;
/* too expensive to call keep_alive() here */
#if 0
/* Danger!!!! BROKEN!!!! */
scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
/* Danger!!!! BROKEN!!!! Why will jtag_execute_queue() fail here????
R956 introduced the check on return value here and now Michael Schwingen reports
that this code no longer works....
https://lists.berlios.de/pipermail/openocd-development/2008-September/003107.html
*/
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("BUG: Why does this fail the first time????");
}
/* Why??? second time it works??? */
#endif
scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
swjdp->ack = swjdp->ack & 0x7;
if (swjdp->ack != 2)
{
long long then = timeval_ms();
while (swjdp->ack != 2)
{
if (swjdp->ack == 1)
{
if ((timeval_ms()-then) > 1000)
{
LOG_WARNING("Timeout (1000ms) waiting for ACK = OK/FAULT in SWJDP transaction");
return ERROR_JTAG_DEVICE_ERROR;
}
}
else
{
LOG_WARNING("Invalid ACK in SWJDP transaction");
return ERROR_JTAG_DEVICE_ERROR;
}
scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
swjdp->ack = swjdp->ack & 0x7;
}
} else
{
/* common code path avoids fn to timeval_ms() */
}
/* Check for STICKYERR and STICKYORUN */
if (ctrlstat & (SSTICKYORUN | SSTICKYERR))
{
LOG_DEBUG("swjdp: CTRL/STAT error 0x%" PRIx32 "", ctrlstat);
/* Check power to debug regions */
if ((ctrlstat & 0xf0000000) != 0xf0000000)
{
ahbap_debugport_init(swjdp);
}
else
{
uint32_t mem_ap_csw, mem_ap_tar;
/* Print information about last AHBAP access */
LOG_ERROR("AHBAP Cached values: dp_select 0x%" PRIx32 ", ap_csw 0x%" PRIx32 ", ap_tar 0x%" PRIx32 "", swjdp->dp_select_value, swjdp->ap_csw_value, swjdp->ap_tar_value);
if (ctrlstat & SSTICKYORUN)
LOG_ERROR("SWJ-DP OVERRUN - check clock or reduce jtag speed");
if (ctrlstat & SSTICKYERR)
LOG_ERROR("SWJ-DP STICKY ERROR");
/* Clear Sticky Error Bits */
scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_WRITE, swjdp->dp_ctrl_stat | SSTICKYORUN | SSTICKYERR, NULL);
scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
LOG_DEBUG("swjdp: status 0x%" PRIx32 "", ctrlstat);
dap_ap_read_reg_u32(swjdp, AP_REG_CSW, &mem_ap_csw);
dap_ap_read_reg_u32(swjdp, AP_REG_TAR, &mem_ap_tar);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
LOG_ERROR("Read MEM_AP_CSW 0x%" PRIx32 ", MEM_AP_TAR 0x%" PRIx32 "", mem_ap_csw, mem_ap_tar);
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
return ERROR_JTAG_DEVICE_ERROR;
}
return ERROR_OK;
}
/***************************************************************************
* *
* DP and MEM-AP register access through APACC and DPACC *
* *
***************************************************************************/
int dap_dp_write_reg(swjdp_common_t *swjdp, uint32_t value, uint8_t reg_addr)
{
return scan_inout_check_u32(swjdp, DAP_IR_DPACC, reg_addr, DPAP_WRITE, value, NULL);
}
int dap_dp_read_reg(swjdp_common_t *swjdp, uint32_t *value, uint8_t reg_addr)
{
return scan_inout_check_u32(swjdp, DAP_IR_DPACC, reg_addr, DPAP_READ, 0, value);
}
int dap_ap_select(swjdp_common_t *swjdp,uint8_t apsel)
{
uint32_t select;
select = (apsel << 24) & 0xFF000000;
if (select != swjdp->apsel)
{
swjdp->apsel = select;
/* Switching AP invalidates cached values */
swjdp->dp_select_value = -1;
swjdp->ap_csw_value = -1;
swjdp->ap_tar_value = -1;
}
return ERROR_OK;
}
int dap_dp_bankselect(swjdp_common_t *swjdp,uint32_t ap_reg)
{
uint32_t select;
select = (ap_reg & 0x000000F0);
if (select != swjdp->dp_select_value)
{
dap_dp_write_reg(swjdp, select | swjdp->apsel, DP_SELECT);
swjdp->dp_select_value = select;
}
return ERROR_OK;
}
int dap_ap_write_reg(swjdp_common_t *swjdp, uint32_t reg_addr, uint8_t* out_value_buf)
{
dap_dp_bankselect(swjdp, reg_addr);
scan_inout_check(swjdp, DAP_IR_APACC, reg_addr, DPAP_WRITE, out_value_buf, NULL);
return ERROR_OK;
}
int dap_ap_read_reg(swjdp_common_t *swjdp, uint32_t reg_addr, uint8_t *in_value_buf)
{
dap_dp_bankselect(swjdp, reg_addr);
scan_inout_check(swjdp, DAP_IR_APACC, reg_addr, DPAP_READ, 0, in_value_buf);
return ERROR_OK;
}
int dap_ap_write_reg_u32(swjdp_common_t *swjdp, uint32_t reg_addr, uint32_t value)
{
uint8_t out_value_buf[4];
buf_set_u32(out_value_buf, 0, 32, value);
dap_dp_bankselect(swjdp, reg_addr);
scan_inout_check(swjdp, DAP_IR_APACC, reg_addr, DPAP_WRITE, out_value_buf, NULL);
return ERROR_OK;
}
int dap_ap_read_reg_u32(swjdp_common_t *swjdp, uint32_t reg_addr, uint32_t *value)
{
dap_dp_bankselect(swjdp, reg_addr);
scan_inout_check_u32(swjdp, DAP_IR_APACC, reg_addr, DPAP_READ, 0, value);
return ERROR_OK;
}
/***************************************************************************
* *
* AHB-AP access to memory and system registers on AHB bus *
* *
***************************************************************************/
int dap_setup_accessport(swjdp_common_t *swjdp, uint32_t csw, uint32_t tar)
{
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
if (csw != swjdp->ap_csw_value)
{
/* LOG_DEBUG("swjdp : Set CSW %x",csw); */
dap_ap_write_reg_u32(swjdp, AP_REG_CSW, csw);
swjdp->ap_csw_value = csw;
}
if (tar != swjdp->ap_tar_value)
{
/* LOG_DEBUG("swjdp : Set TAR %x",tar); */
dap_ap_write_reg_u32(swjdp, AP_REG_TAR, tar);
swjdp->ap_tar_value = tar;
}
if (csw & CSW_ADDRINC_MASK)
{
/* Do not cache TAR value when autoincrementing */
swjdp->ap_tar_value = -1;
}
return ERROR_OK;
}
/*****************************************************************************
* *
* mem_ap_read_u32(swjdp_common_t *swjdp, uint32_t address, uint32_t *value) *
* *
* Read a uint32_t value from memory or system register *
* Functionally equivalent to target_read_u32(target, address, uint32_t *value), *
* but with less overhead *
*****************************************************************************/
int mem_ap_read_u32(swjdp_common_t *swjdp, uint32_t address, uint32_t *value)
{
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0);
dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC), value);
return ERROR_OK;
}
int mem_ap_read_atomic_u32(swjdp_common_t *swjdp, uint32_t address, uint32_t *value)
{
mem_ap_read_u32(swjdp, address, value);
return swjdp_transaction_endcheck(swjdp);
}
/*****************************************************************************
* *
* mem_ap_write_u32(swjdp_common_t *swjdp, uint32_t address, uint32_t value) *
* *
* Write a uint32_t value to memory or memory mapped register *
* *
*****************************************************************************/
int mem_ap_write_u32(swjdp_common_t *swjdp, uint32_t address, uint32_t value)
{
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0);
dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC), value);
return ERROR_OK;
}
int mem_ap_write_atomic_u32(swjdp_common_t *swjdp, uint32_t address, uint32_t value)
{
mem_ap_write_u32(swjdp, address, value);
return swjdp_transaction_endcheck(swjdp);
}
/*****************************************************************************
* *
* mem_ap_write_buf(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address) *
* *
* Write a buffer in target order (little endian) *
* *
*****************************************************************************/
int mem_ap_write_buf_u32(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t* pBuffer = buffer;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
count >>= 2;
wcount = count;
/* if we have an unaligned access - reorder data */
if (adr & 0x3u)
{
for (writecount = 0; writecount < count; writecount++)
{
int i;
uint32_t outvalue;
memcpy(&outvalue, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++)
{
*((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
outvalue >>= 8;
adr++;
}
pBuffer += sizeof(uint32_t);
}
}
while (wcount > 0)
{
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
for (writecount = 0; writecount < blocksize; writecount++)
{
dap_ap_write_reg(swjdp, AP_REG_DRW, buffer + 4 * writecount);
}
if (swjdp_transaction_endcheck(swjdp) == ERROR_OK)
{
wcount = wcount - blocksize;
address = address + 4 * blocksize;
buffer = buffer + 4 * blocksize;
}
else
{
errorcount++;
}
if (errorcount > 1)
{
LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
return ERROR_JTAG_DEVICE_ERROR;
}
}
return retval;
}
int mem_ap_write_buf_packed_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
wcount = count >> 1;
while (wcount > 0)
{
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
writecount = blocksize;
do
{
nbytes = MIN((writecount << 1), 4);
if (nbytes < 4)
{
if (mem_ap_write_buf_u16(swjdp, buffer, nbytes, address) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
address += nbytes >> 1;
}
else
{
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
if (swjdp_transaction_endcheck(swjdp) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
}
buffer += nbytes >> 1;
writecount -= nbytes >> 1;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u16(swjdp, buffer, count, address);
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count > 0)
{
dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
uint16_t svalue;
memcpy(&svalue, buffer, sizeof(uint16_t));
uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
retval = swjdp_transaction_endcheck(swjdp);
count -= 2;
address += 2;
buffer += 2;
}
return retval;
}
int mem_ap_write_buf_packed_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
wcount = count;
while (wcount > 0)
{
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
writecount = blocksize;
do
{
nbytes = MIN(writecount, 4);
if (nbytes < 4)
{
if (mem_ap_write_buf_u8(swjdp, buffer, nbytes, address) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
address += nbytes;
}
else
{
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
if (swjdp_transaction_endcheck(swjdp) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
}
buffer += nbytes;
writecount -= nbytes;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u8(swjdp, buffer, count, address);
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count > 0)
{
dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
retval = swjdp_transaction_endcheck(swjdp);
count--;
address++;
buffer++;
}
return retval;
}
/*********************************************************************************
* *
* mem_ap_read_buf_u32(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address) *
* *
* Read block fast in target order (little endian) into a buffer *
* *
**********************************************************************************/
int mem_ap_read_buf_u32(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t* pBuffer = buffer;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
count >>= 2;
wcount = count;
while (wcount > 0)
{
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
/* Scan out first read */
adi_jtag_dp_scan(swjdp, DAP_IR_APACC, AP_REG_DRW, DPAP_READ, 0, NULL, NULL);
for (readcount = 0; readcount < blocksize - 1; readcount++)
{
/* Scan out read instruction and scan in previous value */
adi_jtag_dp_scan(swjdp, DAP_IR_APACC, AP_REG_DRW, DPAP_READ, 0, buffer + 4 * readcount, &swjdp->ack);
}
/* Scan in last value */
adi_jtag_dp_scan(swjdp, DAP_IR_DPACC, DP_RDBUFF, DPAP_READ, 0, buffer + 4 * readcount, &swjdp->ack);
if (swjdp_transaction_endcheck(swjdp) == ERROR_OK)
{
wcount = wcount - blocksize;
address += 4 * blocksize;
buffer += 4 * blocksize;
}
else
{
errorcount++;
}
if (errorcount > 1)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
}
/* if we have an unaligned access - reorder data */
if (adr & 0x3u)
{
for (readcount = 0; readcount < count; readcount++)
{
int i;
uint32_t data;
memcpy(&data, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++)
{
*((uint8_t*)pBuffer) = (data >> 8 * (adr & 0x3));
pBuffer++;
adr++;
}
}
}
return retval;
}
int mem_ap_read_buf_packed_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
wcount = count >> 1;
while (wcount > 0)
{
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
readcount = blocksize;
do
{
dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
if (swjdp_transaction_endcheck(swjdp) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
nbytes = MIN((readcount << 1), 4);
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= (nbytes >> 1);
} while (readcount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_read_buf_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue, i;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u16(swjdp, buffer, count, address);
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count > 0)
{
dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
retval = swjdp_transaction_endcheck(swjdp);
if (address & 0x1)
{
for (i = 0; i < 2; i++)
{
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
}
else
{
uint16_t svalue = (invalue >> 8 * (address & 0x3));
memcpy(buffer, &svalue, sizeof(uint16_t));
address += 2;
buffer += 2;
}
count -= 2;
}
return retval;
}
/* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
* roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
*
* The solution is to arrange for a large out/in scan in this loop and
* and convert data afterwards.
*/
int mem_ap_read_buf_packed_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
wcount = count;
while (wcount > 0)
{
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
readcount = blocksize;
do
{
dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
if (swjdp_transaction_endcheck(swjdp) != ERROR_OK)
{
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return ERROR_JTAG_DEVICE_ERROR;
}
nbytes = MIN(readcount, 4);
for (i = 0; i < nbytes; i++)
{
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= nbytes;
} while (readcount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_read_buf_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u8(swjdp, buffer, count, address);
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count > 0)
{
dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
retval = swjdp_transaction_endcheck(swjdp);
*((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
count--;
address++;
buffer++;
}
return retval;
}
int ahbap_debugport_init(swjdp_common_t *swjdp)
{
uint32_t idreg, romaddr, dummy;
uint32_t ctrlstat;
int cnt = 0;
int retval;
LOG_DEBUG(" ");
swjdp->apsel = 0;
swjdp->ap_csw_value = -1;
swjdp->ap_tar_value = -1;
swjdp->trans_mode = TRANS_MODE_ATOMIC;
dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
dap_dp_write_reg(swjdp, SSTICKYERR, DP_CTRL_STAT);
dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
/* Check that we have debug power domains activated */
while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
{
LOG_DEBUG("swjdp: wait CDBGPWRUPACK");
dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
alive_sleep(10);
}
while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
{
LOG_DEBUG("swjdp: wait CSYSPWRUPACK");
dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
alive_sleep(10);
}
dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
/* With debug power on we can activate OVERRUN checking */
swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
dap_ap_read_reg_u32(swjdp, 0xFC, &idreg);
dap_ap_read_reg_u32(swjdp, 0xF8, &romaddr);
LOG_DEBUG("AHB-AP ID Register 0x%" PRIx32 ", Debug ROM Address 0x%" PRIx32 "", idreg, romaddr);
return ERROR_OK;
}
/* CID interpretation -- see ARM IHI 0029B section 3 */
static const char *class_description[16] ={
"Reserved", "ROM table", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
"Reserved", "DESS", "Generic IP component", "PrimeCell or System component"
};
static bool
is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
{
return cid3 == 0xb1 && cid2 == 0x05
&& ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
}
int dap_info_command(struct command_context_s *cmd_ctx, swjdp_common_t *swjdp, int apsel)
{
uint32_t dbgbase,apid;
int romtable_present = 0;
uint8_t mem_ap;
uint32_t apselold;
apselold = swjdp->apsel;
dap_ap_select(swjdp, apsel);
dap_ap_read_reg_u32(swjdp, 0xF8, &dbgbase);
dap_ap_read_reg_u32(swjdp, 0xFC, &apid);
swjdp_transaction_endcheck(swjdp);
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
command_print(cmd_ctx, "ap identification register 0x%8.8" PRIx32 "", apid);
if (apid)
{
switch (apid&0x0F)
{
case 0:
command_print(cmd_ctx, "\tType is jtag-ap");
break;
case 1:
command_print(cmd_ctx, "\tType is mem-ap AHB");
break;
case 2:
command_print(cmd_ctx, "\tType is mem-ap APB");
break;
default:
command_print(cmd_ctx, "\tUnknown AP-type");
break;
}
command_print(cmd_ctx, "ap debugbase 0x%8.8" PRIx32 "", dbgbase);
}
else
{
command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
}
romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
if (romtable_present)
{
uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
uint16_t entry_offset;
/* bit 16 of apid indicates a memory access port */
if (dbgbase & 0x02)
command_print(cmd_ctx, "\tValid ROM table present");
else
command_print(cmd_ctx, "\tROM table in legacy format");
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
swjdp_transaction_endcheck(swjdp);
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
", CID2 0x%2.2" PRIx32
", CID1 0x%2.2" PRIx32
", CID0 0x%2.2" PRIx32,
cid3, cid2, cid1, cid0);
if (memtype & 0x01)
command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
else
command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
"Dedicated debug bus.");
/* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
entry_offset = 0;
do
{
mem_ap_read_atomic_u32(swjdp, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
if (romentry&0x01)
{
uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
uint32_t component_start, component_base;
unsigned part_num;
char *type, *full;
component_base = (uint32_t)((dbgbase & 0xFFFFF000)
+ (int)(romentry & 0xFFFFF000));
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
component_start = component_base - 0x1000*(c_pid4 >> 4);
command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
", start address 0x%" PRIx32,
component_base, component_start);
command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
(int) (c_cid1 >> 4) & 0xf,
/* See ARM IHI 0029B Table 3-3 */
class_description[(c_cid1 >> 4) & 0xf]);
/* CoreSight component? */
if (((c_cid1 >> 4) & 0x0f) == 9) {
uint32_t devtype;
unsigned minor;
char *major = "Reserved", *subtype = "Reserved";
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
minor = (devtype >> 4) & 0x0f;
switch (devtype & 0x0f) {
case 0:
major = "Miscellaneous";
switch (minor) {
case 0:
subtype = "other";
break;
case 4:
subtype = "Validation component";
break;
}
break;
case 1:
major = "Trace Sink";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Port";
break;
case 2:
subtype = "Buffer";
break;
}
break;
case 2:
major = "Trace Link";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Funnel, router";
break;
case 2:
subtype = "Filter";
break;
case 3:
subtype = "FIFO, buffer";
break;
}
break;
case 3:
major = "Trace Source";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
}
break;
case 4:
major = "Debug Control";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Trigger Matrix";
break;
case 2:
subtype = "Debug Auth";
break;
}
break;
case 5:
major = "Debug Logic";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
}
break;
}
command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
(unsigned) (devtype & 0xff),
major, subtype);
/* REVISIT also show 0xfc8 DevId */
}
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
", CID2 0x%2.2" PRIx32
", CID1 0x%2.2" PRIx32
", CID0 0x%2.2" PRIx32,
c_cid3, c_cid2, c_cid1, c_cid0);
command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
"%2.2x %2.2x %2.2x %2.2x %2.2x",
(int) c_pid4,
(int) c_pid3, (int) c_pid2,
(int) c_pid1, (int) c_pid0);
/* Part number interpretations are from Cortex
* core specs, the CoreSight components TRM
* (ARM DDI 0314H), and ETM specs; also from
* chip observation (e.g. TI SDTI).
*/
part_num = c_pid0 & 0xff;
part_num |= (c_pid1 & 0x0f) << 8;
switch (part_num) {
case 0x000:
type = "Cortex-M3 NVIC";
full = "(Interrupt Controller)";
break;
case 0x001:
type = "Cortex-M3 ITM";
full = "(Instrumentation Trace Module)";
break;
case 0x002:
type = "Cortex-M3 DWT";
full = "(Data Watchpoint and Trace)";
break;
case 0x003:
type = "Cortex-M3 FBP";
full = "(Flash Patch and Breakpoint)";
break;
case 0x00d:
type = "CoreSight ETM11";
full = "(Embedded Trace)";
break;
// case 0x113: what?
case 0x120: /* from OMAP3 memmap */
type = "TI SDTI";
full = "(System Debug Trace Interface)";
break;
case 0x343: /* from OMAP3 memmap */
type = "TI DAPCTL";
full = "";
break;
case 0x4e0:
type = "Cortex-M3 ETM";
full = "(Embedded Trace)";
break;
case 0x906:
type = "Coresight CTI";
full = "(Cross Trigger)";
break;
case 0x907:
type = "Coresight ETB";
full = "(Trace Buffer)";
break;
case 0x908:
type = "Coresight CSTF";
full = "(Trace Funnel)";
break;
case 0x910:
type = "CoreSight ETM9";
full = "(Embedded Trace)";
break;
case 0x912:
type = "Coresight TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x921:
type = "Cortex-A8 ETM";
full = "(Embedded Trace)";
break;
case 0x922:
type = "Cortex-A8 CTI";
full = "(Cross Trigger)";
break;
case 0x923:
type = "Cortex-M3 TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0xc08:
type = "Cortex-A8 Debug";
full = "(Debug Unit)";
break;
default:
type = "-*- unrecognized -*-";
full = "";
break;
}
command_print(cmd_ctx, "\t\tPart is %s %s",
type, full);
}
else
{
if (romentry)
command_print(cmd_ctx, "\t\tComponent not present");
else
command_print(cmd_ctx, "\t\tEnd of ROM table");
}
entry_offset += 4;
} while (romentry > 0);
}
else
{
command_print(cmd_ctx, "\tNo ROM table present");
}
dap_ap_select(swjdp, apselold);
return ERROR_OK;
}
int dap_baseaddr_command(struct command_context_s *cmd_ctx,
swjdp_common_t *swjdp, char **args, int argc)
{
uint32_t apsel, apselsave, baseaddr;
int retval;
apsel = swjdp->apsel;
apselsave = swjdp->apsel;
if (argc > 0)
apsel = strtoul(args[0], NULL, 0);
if (apselsave != apsel)
dap_ap_select(swjdp, apsel);
dap_ap_read_reg_u32(swjdp, 0xF8, &baseaddr);
retval = swjdp_transaction_endcheck(swjdp);
command_print(cmd_ctx, "0x%8.8" PRIx32, baseaddr);
if (apselsave != apsel)
dap_ap_select(swjdp, apselsave);
return retval;
}
int dap_memaccess_command(struct command_context_s *cmd_ctx,
swjdp_common_t *swjdp, char **args, int argc)
{
uint32_t memaccess_tck;
memaccess_tck = swjdp->memaccess_tck;
if (argc > 0)
memaccess_tck = strtoul(args[0], NULL, 0);
swjdp->memaccess_tck = memaccess_tck;
command_print(cmd_ctx, "memory bus access delay set to %" PRIi32 " tck",
swjdp->memaccess_tck);
return ERROR_OK;
}
int dap_apsel_command(struct command_context_s *cmd_ctx,
swjdp_common_t *swjdp, char **args, int argc)
{
uint32_t apsel, apid;
int retval;
apsel = 0;
if (argc > 0)
apsel = strtoul(args[0], NULL, 0);
dap_ap_select(swjdp, apsel);
dap_ap_read_reg_u32(swjdp, 0xFC, &apid);
retval = swjdp_transaction_endcheck(swjdp);
command_print(cmd_ctx, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
apsel, apid);
return retval;
}
int dap_apid_command(struct command_context_s *cmd_ctx,
swjdp_common_t *swjdp, char **args, int argc)
{
uint32_t apsel, apselsave, apid;
int retval;
apsel = swjdp->apsel;
apselsave = swjdp->apsel;
if (argc > 0)
apsel = strtoul(args[0], NULL, 0);
if (apselsave != apsel)
dap_ap_select(swjdp, apsel);
dap_ap_read_reg_u32(swjdp, 0xFC, &apid);
retval = swjdp_transaction_endcheck(swjdp);
command_print(cmd_ctx, "0x%8.8" PRIx32, apid);
if (apselsave != apsel)
dap_ap_select(swjdp, apselsave);
return retval;
}