openocd/src/target/arm_adi_v5.c
Mathias K e2073cc18a stm32: determine all cpu types and use common examine
This patch determine all cpu types and not only
the cortex M3 and the stm32 target use the common
target examine function from the cortex_m sources.

Change-Id: If689dd994b3855284b927fc4b206f420cf32b6c7
Signed-off-by: Mathias K <kesmtp@freenet.de>
Reviewed-on: http://openocd.zylin.com/511
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
2012-03-14 20:35:59 +00:00

1895 lines
51 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009-2010 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2009-2010 by David Brownell *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/**
* @file
* This file implements support for the ARM Debug Interface version 5 (ADIv5)
* debugging architecture. Compared with previous versions, this includes
* a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
* transport, and focusses on memory mapped resources as defined by the
* CoreSight architecture.
*
* A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
* basic components: a Debug Port (DP) transporting messages to and from a
* debugger, and an Access Port (AP) accessing resources. Three types of DP
* are defined. One uses only JTAG for communication, and is called JTAG-DP.
* One uses only SWD for communication, and is called SW-DP. The third can
* use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
* is used to access memory mapped resources and is called a MEM-AP. Also a
* JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
*
* This programming interface allows DAP pipelined operations through a
* transaction queue. This primarily affects AP operations (such as using
* a MEM-AP to access memory or registers). If the current transaction has
* not finished by the time the next one must begin, and the ORUNDETECT bit
* is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
* further AP operations will fail. There are two basic methods to avoid
* such overrun errors. One involves polling for status instead of using
* transaction piplining. The other involves adding delays to ensure the
* AP has enough time to complete one operation before starting the next
* one. (For JTAG these delays are controlled by memaccess_tck.)
*/
/*
* Relevant specifications from ARM include:
*
* ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
* CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
*
* CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
* Cortex-M3(tm) TRM, ARM DDI 0337G
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm.h"
#include "arm_adi_v5.h"
#include <helper/time_support.h>
/* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
/*
uint32_t tar_block_size(uint32_t address)
Return the largest block starting at address that does not cross a tar block size alignment boundary
*/
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
}
/***************************************************************************
* *
* DP and MEM-AP register access through APACC and DPACC *
* *
***************************************************************************/
/**
* Select one of the APs connected to the specified DAP. The
* selection is implicitly used with future AP transactions.
* This is a NOP if the specified AP is already selected.
*
* @param dap The DAP
* @param apsel Number of the AP to (implicitly) use with further
* transactions. This normally identifies a MEM-AP.
*/
void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
{
uint32_t new_ap = (ap << 24) & 0xFF000000;
if (new_ap != dap->ap_current) {
dap->ap_current = new_ap;
/* Switching AP invalidates cached values.
* Values MUST BE UPDATED BEFORE AP ACCESS.
*/
dap->ap_bank_value = -1;
dap->ap_csw_value = -1;
dap->ap_tar_value = -1;
}
}
/**
* Queue transactions setting up transfer parameters for the
* currently selected MEM-AP.
*
* Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
* initiate data reads or writes using memory or peripheral addresses.
* If the CSW is configured for it, the TAR may be automatically
* incremented after each transfer.
*
* @todo Rename to reflect it being specifically a MEM-AP function.
*
* @param dap The DAP connected to the MEM-AP.
* @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
* matches the cached value, the register is not changed.
* @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
* matches the cached address, the register is not changed.
*
* @return ERROR_OK if the transaction was properly queued, else a fault code.
*/
int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
{
int retval;
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
if (csw != dap->ap_csw_value) {
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
if (retval != ERROR_OK)
return retval;
dap->ap_csw_value = csw;
}
if (tar != dap->ap_tar_value) {
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
if (retval != ERROR_OK)
return retval;
dap->ap_tar_value = tar;
}
/* Disable TAR cache when autoincrementing */
if (csw & CSW_ADDRINC_MASK)
dap->ap_tar_value = -1;
return ERROR_OK;
}
/**
* Asynchronous (queued) read of a word from memory or a system register.
*
* @param dap The DAP connected to the MEM-AP performing the read.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the word will be stored when the
* transaction queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t *value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when reading several consecutive addresses.
*/
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
}
/**
* Synchronous read of a word from memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param dap The DAP connected to the MEM-AP performing the read.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the result will be stored.
*
* @return ERROR_OK for success; *value holds the result.
* Otherwise a fault code.
*/
int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t *value)
{
int retval;
retval = mem_ap_read_u32(dap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
/**
* Asynchronous (queued) write of a word to memory or a system register.
*
* @param dap The DAP connected to the MEM-AP.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written to the address when transaction
* queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when writing several consecutive addresses.
*/
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
value);
}
/**
* Synchronous write of a word to memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param dap The DAP connected to the MEM-AP.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written.
*
* @return ERROR_OK for success; the data was written. Otherwise a fault code.
*/
int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
uint32_t value)
{
int retval = mem_ap_write_u32(dap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
/*****************************************************************************
* *
* mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
* *
* Write a buffer in target order (little endian) *
* *
*****************************************************************************/
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
const uint8_t *pBuffer = buffer;
count >>= 2;
wcount = count;
/* if we have an unaligned access - reorder data */
if (adr & 0x3u) {
for (writecount = 0; writecount < count; writecount++) {
int i;
uint32_t outvalue;
memcpy(&outvalue, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++) {
*((uint8_t *)pBuffer + (adr & 0x3)) = outvalue;
outvalue >>= 8;
adr++;
}
pBuffer += sizeof(uint32_t);
}
}
while (wcount > 0) {
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
for (writecount = 0; writecount < blocksize; writecount++) {
retval = dap_queue_ap_write(dap, AP_REG_DRW,
*(uint32_t *) ((void *) (buffer + 4 * writecount)));
if (retval != ERROR_OK)
break;
}
retval = dap_run(dap);
if (retval == ERROR_OK) {
wcount = wcount - blocksize;
address = address + 4 * blocksize;
buffer = buffer + 4 * blocksize;
} else
errorcount++;
if (errorcount > 1) {
LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
return retval;
}
}
return retval;
}
static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
wcount = count >> 1;
while (wcount > 0) {
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
writecount = blocksize;
do {
nbytes = MIN((writecount << 1), 4);
if (nbytes < 4) {
retval = mem_ap_write_buf_u16(dap, buffer,
nbytes, address);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
address += nbytes >> 1;
} else {
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
}
buffer += nbytes >> 1;
writecount -= nbytes >> 1;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
uint16_t svalue;
memcpy(&svalue, buffer, sizeof(uint16_t));
uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count -= 2;
address += 2;
buffer += 2;
}
return retval;
}
static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount, i;
wcount = count;
while (wcount > 0) {
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
writecount = blocksize;
do {
nbytes = MIN(writecount, 4);
if (nbytes < 4) {
retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
address += nbytes;
} else {
uint32_t outvalue;
memcpy(&outvalue, buffer, sizeof(uint32_t));
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer + (address & 0x3)) = outvalue;
outvalue >>= 8;
address++;
}
memcpy(&outvalue, buffer, sizeof(uint32_t));
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
}
buffer += nbytes;
writecount -= nbytes;
} while (writecount);
wcount -= blocksize;
}
return retval;
}
int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count--;
address++;
buffer++;
}
return retval;
}
/* FIXME don't import ... this is a temporary workaround for the
* mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
*/
extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
uint8_t instr, uint8_t reg_addr, uint8_t RnW,
uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
/**
* Synchronously read a block of 32-bit words into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the words will be stored (in host byte order).
* @param count How many words to read.
* @param address Memory address from which to read words; all the
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t *pBuffer = buffer;
count >>= 2;
wcount = count;
while (wcount > 0) {
/* Adjust to read blocks within boundaries aligned to the
* TAR autoincrement size (at least 2^10). Autoincrement
* mode avoids an extra per-word roundtrip to update TAR.
*/
blocksize = max_tar_block_size(dap->tar_autoincr_block,
address);
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
address);
if (retval != ERROR_OK)
return retval;
/* FIXME remove these three calls to adi_jtag_dp_scan(),
* so this routine becomes transport-neutral. Be careful
* not to cause performance problems with JTAG; would it
* suffice to loop over dap_queue_ap_read(), or would that
* be slower when JTAG is the chosen transport?
*/
/* Scan out first read */
retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
DPAP_READ, 0, NULL, NULL);
if (retval != ERROR_OK)
return retval;
for (readcount = 0; readcount < blocksize - 1; readcount++) {
/* Scan out next read; scan in posted value for the
* previous one. Assumes read is acked "OK/FAULT",
* and CTRL_STAT says that meant "OK".
*/
retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
DPAP_READ, 0, buffer + 4 * readcount,
&dap->ack);
if (retval != ERROR_OK)
return retval;
}
/* Scan in last posted value; RDBUFF has no other effect,
* assuming ack is OK/FAULT and CTRL_STAT says "OK".
*/
retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
DPAP_READ, 0, buffer + 4 * readcount,
&dap->ack);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
errorcount++;
if (errorcount <= 1) {
/* try again */
continue;
}
LOG_WARNING("Block read error address 0x%" PRIx32, address);
return retval;
}
wcount = wcount - blocksize;
address += 4 * blocksize;
buffer += 4 * blocksize;
}
/* if we have an unaligned access - reorder data */
if (adr & 0x3u) {
for (readcount = 0; readcount < count; readcount++) {
int i;
uint32_t data;
memcpy(&data, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++) {
*((uint8_t *)pBuffer) =
(data >> 8 * (adr & 0x3));
pBuffer++;
adr++;
}
}
}
return retval;
}
static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count >> 1;
while (wcount > 0) {
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
readcount = blocksize;
do {
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return retval;
}
nbytes = MIN((readcount << 1), 4);
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= (nbytes >> 1);
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of 16-bit halfwords into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the halfwords will be stored (in host byte order).
* @param count How many halfwords to read.
* @param address Memory address from which to read words; all the
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
uint32_t invalue, i;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
if (address & 0x1) {
for (i = 0; i < 2; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
} else {
uint16_t svalue = (invalue >> 8 * (address & 0x3));
memcpy(buffer, &svalue, sizeof(uint16_t));
address += 2;
buffer += 2;
}
count -= 2;
}
return retval;
}
/* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
* roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
*
* The solution is to arrange for a large out/in scan in this loop and
* and convert data afterwards.
*/
static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count;
while (wcount > 0) {
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
readcount = blocksize;
do {
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return retval;
}
nbytes = MIN(readcount, 4);
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= nbytes;
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of bytes into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the bytes will be stored.
* @param count How many bytes to read.
* @param address Memory address from which to read data; all the
* data must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
if (count >= 4)
return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
count--;
address++;
buffer++;
}
return retval;
}
/*--------------------------------------------------------------------*/
/* Wrapping function with selection of AP */
/*--------------------------------------------------------------------*/
int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t *value)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_u32(swjdp, address, value);
}
int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t value)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_u32(swjdp, address, value);
}
int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t *value)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_atomic_u32(swjdp, address, value);
}
int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t value)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_atomic_u32(swjdp, address, value);
}
int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u8(swjdp, buffer, count, address);
}
int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u16(swjdp, buffer, count, address);
}
int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u32(swjdp, buffer, count, address);
}
int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u8(swjdp, buffer, count, address);
}
int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u16(swjdp, buffer, count, address);
}
int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u32(swjdp, buffer, count, address);
}
#define MDM_REG_STAT 0x00
#define MDM_REG_CTRL 0x04
#define MDM_REG_ID 0xfc
#define MDM_STAT_FMEACK (1<<0)
#define MDM_STAT_FREADY (1<<1)
#define MDM_STAT_SYSSEC (1<<2)
#define MDM_STAT_SYSRES (1<<3)
#define MDM_STAT_FMEEN (1<<5)
#define MDM_STAT_BACKDOOREN (1<<6)
#define MDM_STAT_LPEN (1<<7)
#define MDM_STAT_VLPEN (1<<8)
#define MDM_STAT_LLSMODEXIT (1<<9)
#define MDM_STAT_VLLSXMODEXIT (1<<10)
#define MDM_STAT_CORE_HALTED (1<<16)
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
#define MDM_STAT_CORESLEEPING (1<<18)
#define MEM_CTRL_FMEIP (1<<0)
#define MEM_CTRL_DBG_DIS (1<<1)
#define MEM_CTRL_DBG_REQ (1<<2)
#define MEM_CTRL_SYS_RES_REQ (1<<3)
#define MEM_CTRL_CORE_HOLD_RES (1<<4)
#define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
#define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
#define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
/**
*
*/
int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
{
uint32_t val;
int retval;
enum reset_types jtag_reset_config = jtag_get_reset_config();
dap_ap_select(dap, 1);
/* first check mdm-ap id register */
retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
if (val != 0x001C0000) {
LOG_DEBUG("id doesn't match %08X != 0x001C0000", val);
dap_ap_select(dap, 0);
return ERROR_FAIL;
}
/* read and parse status register
* it's important that the device is out of
* reset here
*/
retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_STAT %08X", val);
if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) {
LOG_DEBUG("MDMAP: system is secured, masserase needed");
if (!(val & MDM_STAT_FMEEN))
LOG_DEBUG("MDMAP: masserase is disabled");
else {
/* we need to assert reset */
if (jtag_reset_config & RESET_HAS_SRST) {
/* default to asserting srst */
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
jtag_add_reset(1, 1);
else
jtag_add_reset(0, 1);
} else {
LOG_DEBUG("SRST not configured");
dap_ap_select(dap, 0);
return ERROR_FAIL;
}
while (1) {
retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
/* read status register and wait for ready */
retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_STAT %08X", val);
if ((val & 1))
break;
}
while (1) {
retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
/* read status register */
retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_STAT %08X", val);
/* read control register and wait for ready */
retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
if (retval != ERROR_OK)
return retval;
dap_run(dap);
LOG_DEBUG("MDM_REG_CTRL %08X", val);
if (val == 0x00)
break;
}
}
}
dap_ap_select(dap, 0);
return ERROR_OK;
}
/** */
struct dap_syssec_filter {
/** */
uint32_t idcode;
/** */
int (*dap_init)(struct adiv5_dap *dap);
};
/** */
static struct dap_syssec_filter dap_syssec_filter_data[] = {
{ 0x4BA00477, dap_syssec_kinetis_mdmap }
};
/**
*
*/
int dap_syssec(struct adiv5_dap *dap)
{
unsigned int i;
struct jtag_tap *tap;
for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
tap = dap->jtag_info->tap;
while (tap != NULL) {
if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode);
dap_syssec_filter_data[i].dap_init(dap);
}
tap = tap->next_tap;
}
}
return ERROR_OK;
}
/*--------------------------------------------------------------------------*/
/* FIXME don't import ... just initialize as
* part of DAP transport setup
*/
extern const struct dap_ops jtag_dp_ops;
/*--------------------------------------------------------------------------*/
/**
* Initialize a DAP. This sets up the power domains, prepares the DP
* for further use, and arranges to use AP #0 for all AP operations
* until dap_ap-select() changes that policy.
*
* @param dap The DAP being initialized.
*
* @todo Rename this. We also need an initialization scheme which account
* for SWD transports not just JTAG; that will need to address differences
* in layering. (JTAG is useful without any debug target; but not SWD.)
* And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
*/
int ahbap_debugport_init(struct adiv5_dap *dap)
{
uint32_t ctrlstat;
int cnt = 0;
int retval;
LOG_DEBUG(" ");
/* test for initialized low level jtag hardware
* this always fails for stlink hardware
*/
if (!dap->jtag_info) {
LOG_DEBUG("No low level jtag hardware found");
return ERROR_OK;
}
/* JTAG-DP or SWJ-DP, in JTAG mode
* ... for SWD mode this is patched as part
* of link switchover
*/
if (!dap->ops)
dap->ops = &jtag_dp_ops;
/* Default MEM-AP setup.
*
* REVISIT AP #0 may be an inappropriate default for this.
* Should we probe, or take a hint from the caller?
* Presumably we can ignore the possibility of multiple APs.
*/
dap->ap_current = !0;
dap_ap_select(dap, 0);
/* DP initialization */
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
/* Check that we have debug power domains activated */
while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
LOG_DEBUG("DAP: wait CDBGPWRUPACK");
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
alive_sleep(10);
}
while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
LOG_DEBUG("DAP: wait CSYSPWRUPACK");
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
alive_sleep(10);
}
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
/* With debug power on we can activate OVERRUN checking */
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
return retval;
dap_syssec(dap);
return ERROR_OK;
}
/* CID interpretation -- see ARM IHI 0029B section 3
* and ARM IHI 0031A table 13-3.
*/
static const char *class_description[16] = {
"Reserved", "ROM table", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
"Reserved", "OptimoDE DESS",
"Generic IP component", "PrimeCell or System component"
};
static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
{
return cid3 == 0xb1 && cid2 == 0x05
&& ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
}
int dap_get_debugbase(struct adiv5_dap *dap, int ap,
uint32_t *out_dbgbase, uint32_t *out_apid)
{
uint32_t ap_old;
int retval;
uint32_t dbgbase, apid;
/* AP address is in bits 31:24 of DP_SELECT */
if (ap >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
ap_old = dap->ap_current;
dap_ap_select(dap, ap);
retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
/* Excavate the device ID code */
struct jtag_tap *tap = dap->jtag_info->tap;
while (tap != NULL) {
if (tap->hasidcode)
break;
tap = tap->next_tap;
}
if (tap == NULL || !tap->hasidcode)
return ERROR_OK;
dap_ap_select(dap, ap_old);
/* The asignment happens only here to prevent modification of these
* values before they are certain. */
*out_dbgbase = dbgbase;
*out_apid = apid;
return ERROR_OK;
}
int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
uint32_t dbgbase, uint8_t type, uint32_t *addr)
{
uint32_t ap_old;
uint32_t romentry, entry_offset = 0, component_base, devtype;
int retval = ERROR_FAIL;
if (ap >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
ap_old = dap->ap_current;
dap_ap_select(dap, ap);
do {
retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
entry_offset, &romentry);
if (retval != ERROR_OK)
return retval;
component_base = (dbgbase & 0xFFFFF000)
+ (romentry & 0xFFFFF000);
if (romentry & 0x1) {
retval = mem_ap_read_atomic_u32(dap,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
if ((devtype & 0xff) == type) {
*addr = component_base;
retval = ERROR_OK;
break;
}
}
entry_offset += 4;
} while (romentry > 0);
dap_ap_select(dap, ap_old);
return retval;
}
static int dap_info_command(struct command_context *cmd_ctx,
struct adiv5_dap *dap, int ap)
{
int retval;
uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
int romtable_present = 0;
uint8_t mem_ap;
uint32_t ap_old;
retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
if (retval != ERROR_OK)
return retval;
ap_old = dap->ap_current;
dap_ap_select(dap, ap);
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
if (apid) {
switch (apid&0x0F) {
case 0:
command_print(cmd_ctx, "\tType is JTAG-AP");
break;
case 1:
command_print(cmd_ctx, "\tType is MEM-AP AHB");
break;
case 2:
command_print(cmd_ctx, "\tType is MEM-AP APB");
break;
default:
command_print(cmd_ctx, "\tUnknown AP type");
break;
}
/* NOTE: a MEM-AP may have a single CoreSight component that's
* not a ROM table ... or have no such components at all.
*/
if (mem_ap)
command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
} else
command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
if (romtable_present) {
uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
uint16_t entry_offset;
/* bit 16 of apid indicates a memory access port */
if (dbgbase & 0x02)
command_print(cmd_ctx, "\tValid ROM table present");
else
command_print(cmd_ctx, "\tROM table in legacy format");
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\tCID3 0x%2.2x"
", CID2 0x%2.2x"
", CID1 0x%2.2x"
", CID0 0x%2.2x",
(unsigned) cid3, (unsigned)cid2,
(unsigned) cid1, (unsigned) cid0);
if (memtype & 0x01)
command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
else
command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
"Dedicated debug bus.");
/* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
entry_offset = 0;
do {
retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
if (retval != ERROR_OK)
return retval;
command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry);
if (romentry & 0x01) {
uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
uint32_t component_base;
unsigned part_num;
char *type, *full;
component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
/* IDs are in last 4K section */
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
if (retval != ERROR_OK)
return retval;
c_pid0 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
if (retval != ERROR_OK)
return retval;
c_pid1 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
if (retval != ERROR_OK)
return retval;
c_pid2 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
if (retval != ERROR_OK)
return retval;
c_pid3 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
if (retval != ERROR_OK)
return retval;
c_pid4 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
if (retval != ERROR_OK)
return retval;
c_cid0 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
if (retval != ERROR_OK)
return retval;
c_cid1 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
if (retval != ERROR_OK)
return retval;
c_cid2 &= 0xff;
retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
if (retval != ERROR_OK)
return retval;
c_cid3 &= 0xff;
command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ","
"start address 0x%" PRIx32, component_base,
/* component may take multiple 4K pages */
component_base - 0x1000*(c_pid4 >> 4));
command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
(int) (c_cid1 >> 4) & 0xf,
/* See ARM IHI 0029B Table 3-3 */
class_description[(c_cid1 >> 4) & 0xf]);
/* CoreSight component? */
if (((c_cid1 >> 4) & 0x0f) == 9) {
uint32_t devtype;
unsigned minor;
char *major = "Reserved", *subtype = "Reserved";
retval = mem_ap_read_atomic_u32(dap,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
if (retval != ERROR_OK)
return retval;
minor = (devtype >> 4) & 0x0f;
switch (devtype & 0x0f) {
case 0:
major = "Miscellaneous";
switch (minor) {
case 0:
subtype = "other";
break;
case 4:
subtype = "Validation component";
break;
}
break;
case 1:
major = "Trace Sink";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Port";
break;
case 2:
subtype = "Buffer";
break;
}
break;
case 2:
major = "Trace Link";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Funnel, router";
break;
case 2:
subtype = "Filter";
break;
case 3:
subtype = "FIFO, buffer";
break;
}
break;
case 3:
major = "Trace Source";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
}
break;
case 4:
major = "Debug Control";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Trigger Matrix";
break;
case 2:
subtype = "Debug Auth";
break;
}
break;
case 5:
major = "Debug Logic";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
}
break;
}
command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
(unsigned) (devtype & 0xff),
major, subtype);
/* REVISIT also show 0xfc8 DevId */
}
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx,
"\t\tCID3 0%2.2x"
", CID2 0%2.2x"
", CID1 0%2.2x"
", CID0 0%2.2x",
(int) c_cid3,
(int) c_cid2,
(int)c_cid1,
(int)c_cid0);
command_print(cmd_ctx,
"\t\tPeripheral ID[4..0] = hex "
"%2.2x %2.2x %2.2x %2.2x %2.2x",
(int) c_pid4, (int) c_pid3, (int) c_pid2,
(int) c_pid1, (int) c_pid0);
/* Part number interpretations are from Cortex
* core specs, the CoreSight components TRM
* (ARM DDI 0314H), CoreSight System Design
* Guide (ARM DGI 0012D) and ETM specs; also
* from chip observation (e.g. TI SDTI).
*/
part_num = (c_pid0 & 0xff);
part_num |= (c_pid1 & 0x0f) << 8;
switch (part_num) {
case 0x000:
type = "Cortex-M3 NVIC";
full = "(Interrupt Controller)";
break;
case 0x001:
type = "Cortex-M3 ITM";
full = "(Instrumentation Trace Module)";
break;
case 0x002:
type = "Cortex-M3 DWT";
full = "(Data Watchpoint and Trace)";
break;
case 0x003:
type = "Cortex-M3 FBP";
full = "(Flash Patch and Breakpoint)";
break;
case 0x00d:
type = "CoreSight ETM11";
full = "(Embedded Trace)";
break;
/* case 0x113: what? */
case 0x120: /* from OMAP3 memmap */
type = "TI SDTI";
full = "(System Debug Trace Interface)";
break;
case 0x343: /* from OMAP3 memmap */
type = "TI DAPCTL";
full = "";
break;
case 0x906:
type = "Coresight CTI";
full = "(Cross Trigger)";
break;
case 0x907:
type = "Coresight ETB";
full = "(Trace Buffer)";
break;
case 0x908:
type = "Coresight CSTF";
full = "(Trace Funnel)";
break;
case 0x910:
type = "CoreSight ETM9";
full = "(Embedded Trace)";
break;
case 0x912:
type = "Coresight TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x921:
type = "Cortex-A8 ETM";
full = "(Embedded Trace)";
break;
case 0x922:
type = "Cortex-A8 CTI";
full = "(Cross Trigger)";
break;
case 0x923:
type = "Cortex-M3 TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x924:
type = "Cortex-M3 ETM";
full = "(Embedded Trace)";
break;
case 0x930:
type = "Cortex-R4 ETM";
full = "(Embedded Trace)";
break;
case 0xc08:
type = "Cortex-A8 Debug";
full = "(Debug Unit)";
break;
default:
type = "-*- unrecognized -*-";
full = "";
break;
}
command_print(cmd_ctx, "\t\tPart is %s %s",
type, full);
} else {
if (romentry)
command_print(cmd_ctx, "\t\tComponent not present");
else
command_print(cmd_ctx, "\t\tEnd of ROM table");
}
entry_offset += 4;
} while (romentry > 0);
} else
command_print(cmd_ctx, "\tNo ROM table present");
dap_ap_select(dap, ap_old);
return ERROR_OK;
}
COMMAND_HANDLER(handle_dap_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return dap_info_command(CMD_CTX, dap, apsel);
}
COMMAND_HANDLER(dap_baseaddr_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, baseaddr;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap_ap_select(dap, apsel);
/* NOTE: assumes we're talking to a MEM-AP, which
* has a base address. There are other kinds of AP,
* though they're not common for now. This should
* use the ID register to verify it's a MEM-AP.
*/
retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
return retval;
}
COMMAND_HANDLER(dap_memaccess_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t memaccess_tck;
switch (CMD_ARGC) {
case 0:
memaccess_tck = dap->memaccess_tck;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->memaccess_tck = memaccess_tck;
command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
dap->memaccess_tck);
return ERROR_OK;
}
COMMAND_HANDLER(dap_apsel_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = 0;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->apsel = apsel;
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
apsel, apid);
return retval;
}
COMMAND_HANDLER(dap_apid_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap_ap_select(dap, apsel);
retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
return retval;
}
static const struct command_registration dap_commands[] = {
{
.name = "info",
.handler = handle_dap_info_command,
.mode = COMMAND_EXEC,
.help = "display ROM table for MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "apsel",
.handler = dap_apsel_command,
.mode = COMMAND_EXEC,
.help = "Set the currently selected AP (default 0) "
"and display the result",
.usage = "[ap_num]",
},
{
.name = "apid",
.handler = dap_apid_command,
.mode = COMMAND_EXEC,
.help = "return ID register from AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "baseaddr",
.handler = dap_baseaddr_command,
.mode = COMMAND_EXEC,
.help = "return debug base address from MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "memaccess",
.handler = dap_memaccess_command,
.mode = COMMAND_EXEC,
.help = "set/get number of extra tck for MEM-AP memory "
"bus access [0-255]",
.usage = "[cycles]",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration dap_command_handlers[] = {
{
.name = "dap",
.mode = COMMAND_EXEC,
.help = "DAP command group",
.usage = "",
.chain = dap_commands,
},
COMMAND_REGISTRATION_DONE
};