openocd/src/target/mips32_pracc.c

1366 lines
47 KiB
C

/***************************************************************************
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by David T.L. Wong *
* *
* Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
* *
* Copyright (C) 2011 by Drasko DRASKOVIC *
* drasko.draskovic@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/*
* This version has optimized assembly routines for 32 bit operations:
* - read word
* - write word
* - write array of words
*
* One thing to be aware of is that the MIPS32 cpu will execute the
* instruction after a branch instruction (one delay slot).
*
* For example:
* LW $2, ($5 +10)
* B foo
* LW $1, ($2 +100)
*
* The LW $1, ($2 +100) instruction is also executed. If this is
* not wanted a NOP can be inserted:
*
* LW $2, ($5 +10)
* B foo
* NOP
* LW $1, ($2 +100)
*
* or the code can be changed to:
*
* B foo
* LW $2, ($5 +10)
* LW $1, ($2 +100)
*
* The original code contained NOPs. I have removed these and moved
* the branches.
*
* I also moved the PRACC_STACK to 0xFF204000. This allows
* the use of 16 bits offsets to get pointers to the input
* and output area relative to the stack. Note that the stack
* isn't really a stack (the stack pointer is not 'moving')
* but a FIFO simulated in software.
*
* These changes result in a 35% speed increase when programming an
* external flash.
*
* More improvement could be gained if the registers do no need
* to be preserved but in that case the routines should be aware
* OpenOCD is used as a flash programmer or as a debug tool.
*
* Nico Coesel
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/time_support.h>
#include "mips32.h"
#include "mips32_pracc.h"
struct mips32_pracc_context {
uint32_t *local_iparam;
int num_iparam;
uint32_t *local_oparam;
int num_oparam;
const uint32_t *code;
int code_len;
uint32_t stack[32];
int stack_offset;
struct mips_ejtag *ejtag_info;
};
static int mips32_pracc_read_mem8(struct mips_ejtag *ejtag_info,
uint32_t addr, int count, uint8_t *buf);
static int mips32_pracc_read_mem16(struct mips_ejtag *ejtag_info,
uint32_t addr, int count, uint16_t *buf);
static int mips32_pracc_read_mem32(struct mips_ejtag *ejtag_info,
uint32_t addr, int count, uint32_t *buf);
static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info,
uint32_t addr, uint32_t *buf);
static int mips32_pracc_write_mem8(struct mips_ejtag *ejtag_info,
uint32_t addr, int count, uint8_t *buf);
static int mips32_pracc_write_mem16(struct mips_ejtag *ejtag_info,
uint32_t addr, int count, uint16_t *buf);
static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info,
uint32_t addr, int count, uint32_t *buf);
static int mips32_pracc_write_u32(struct mips_ejtag *ejtag_info,
uint32_t addr, uint32_t *buf);
static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr);
static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr);
static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
{
uint32_t ejtag_ctrl;
long long then = timeval_ms();
int timeout;
int retval;
/* wait for the PrAcc to become "1" */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
ejtag_ctrl = ejtag_info->ejtag_ctrl;
while (1) {
retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
if (ejtag_ctrl & EJTAG_CTRL_PRACC)
break;
timeout = timeval_ms() - then;
if (timeout > 1000) {
LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
return ERROR_JTAG_DEVICE_ERROR;
}
}
*ctrl = ejtag_ctrl;
return ERROR_OK;
}
static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
{
struct mips_ejtag *ejtag_info = ctx->ejtag_info;
int offset;
uint32_t ejtag_ctrl, data;
if ((address >= MIPS32_PRACC_PARAM_IN)
&& (address <= MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
data = ctx->local_iparam[offset];
} else if ((address >= MIPS32_PRACC_PARAM_OUT)
&& (address <= MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
data = ctx->local_oparam[offset];
} else if ((address >= MIPS32_PRACC_TEXT)
&& (address <= MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
offset = (address - MIPS32_PRACC_TEXT) / 4;
data = ctx->code[offset];
} else if (address == MIPS32_PRACC_STACK) {
/* save to our debug stack */
data = ctx->stack[--ctx->stack_offset];
} else {
/* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
* to start of debug vector */
LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
return ERROR_JTAG_DEVICE_ERROR;
}
/* Send the data out */
mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
/* Clear the access pending bit (let the processor eat!) */
ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
return jtag_execute_queue();
}
static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
{
uint32_t ejtag_ctrl, data;
int offset;
struct mips_ejtag *ejtag_info = ctx->ejtag_info;
int retval;
mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
if (retval != ERROR_OK)
return retval;
/* Clear access pending bit */
ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if ((address >= MIPS32_PRACC_PARAM_IN)
&& (address <= MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
ctx->local_iparam[offset] = data;
} else if ((address >= MIPS32_PRACC_PARAM_OUT)
&& (address <= MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
ctx->local_oparam[offset] = data;
} else if (address == MIPS32_PRACC_STACK) {
/* save data onto our stack */
ctx->stack[ctx->stack_offset++] = data;
} else {
LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
return ERROR_JTAG_DEVICE_ERROR;
}
return ERROR_OK;
}
int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
{
uint32_t ejtag_ctrl;
uint32_t address, data;
struct mips32_pracc_context ctx;
int retval;
int pass = 0;
ctx.local_iparam = param_in;
ctx.local_oparam = param_out;
ctx.num_iparam = num_param_in;
ctx.num_oparam = num_param_out;
ctx.code = code;
ctx.code_len = code_len;
ctx.ejtag_info = ejtag_info;
ctx.stack_offset = 0;
while (1) {
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
address = data = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
retval = mips_ejtag_drscan_32(ejtag_info, &address);
if (retval != ERROR_OK)
return retval;
/* Check for read or write */
if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
retval = mips32_pracc_exec_write(&ctx, address);
if (retval != ERROR_OK)
return retval;
} else {
/* Check to see if its reading at the debug vector. The first pass through
* the module is always read at the vector, so the first one we allow. When
* the second read from the vector occurs we are done and just exit. */
if ((address == MIPS32_PRACC_TEXT) && (pass++))
break;
retval = mips32_pracc_exec_read(&ctx, address);
if (retval != ERROR_OK)
return retval;
}
if (cycle == 0)
break;
}
/* stack sanity check */
if (ctx.stack_offset != 0)
LOG_DEBUG("Pracc Stack not zero");
return ERROR_OK;
}
int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
switch (size) {
case 1:
return mips32_pracc_read_mem8(ejtag_info, addr, count, (uint8_t *)buf);
case 2:
return mips32_pracc_read_mem16(ejtag_info, addr, count, (uint16_t *)buf);
case 4:
if (count == 1)
return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
else
return mips32_pracc_read_mem32(ejtag_info, addr, count, (uint32_t *)buf);
}
return ERROR_OK;
}
static int mips32_pracc_read_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* $9 = mem[$8]; read addr */
MIPS32_LW(10, 4, 8), /* $10 = mem[$8 + 4]; read count */
MIPS32_LUI(11, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */
MIPS32_ORI(11, 11, LOWER16(MIPS32_PRACC_PARAM_OUT)),
/* loop: */
MIPS32_BEQ(0, 10, 8), /* beq 0, $10, end */
MIPS32_NOP,
MIPS32_LW(8, 0, 9), /* lw $8,0($9), Load $8 with the word @mem[$9] */
MIPS32_SW(8, 0, 11), /* sw $8,0($11) */
MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */
MIPS32_ADDI(9, 9, 4), /* $1 += 4 */
MIPS32_ADDI(11, 11, 4), /* $11 += 4 */
MIPS32_B(NEG16(8)), /* b loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(27)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
int retval = ERROR_OK;
int blocksize;
int wordsread;
uint32_t param_in[2];
wordsread = 0;
while (count > 0) {
blocksize = count;
if (count > 0x400)
blocksize = 0x400;
param_in[0] = addr;
param_in[1] = blocksize;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
ARRAY_SIZE(param_in), param_in, blocksize, &buf[wordsread], 1);
if (retval != ERROR_OK)
return retval;
count -= blocksize;
addr += blocksize*sizeof(uint32_t);
wordsread += blocksize;
}
return retval;
}
static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_LW(8, NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN), 15), /* load R8 @ param_in[0] = address */
MIPS32_LW(8, 0, 8), /* lw $8,0($8), Load $8 with the word @mem[$8] */
MIPS32_SW(8, NEG16(MIPS32_PRACC_STACK - MIPS32_PRACC_PARAM_OUT), 15), /* store R8 @ param_out[0] */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(9)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
int retval = ERROR_OK;
uint32_t param_in[1];
param_in[0] = addr;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
ARRAY_SIZE(param_in), param_in, 1, buf, 1);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int mips32_pracc_read_mem16(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint16_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* $9 = mem[$8]; read addr */
MIPS32_LW(10, 4, 8), /* $10 = mem[$8 + 4]; read count */
MIPS32_LUI(11, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */
MIPS32_ORI(11, 11, LOWER16(MIPS32_PRACC_PARAM_OUT)),
/* loop: */
MIPS32_BEQ(0, 10, 8), /* beq 0, $10, end */
MIPS32_NOP,
MIPS32_LHU(8, 0, 9), /* lw $8,0($9), Load $8 with the halfword @mem[$9] */
MIPS32_SW(8, 0, 11), /* sw $8,0($11) */
MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */
MIPS32_ADDI(9, 9, 2), /* $9 += 2 */
MIPS32_ADDI(11, 11, 4), /* $11 += 4 */
MIPS32_B(NEG16(8)), /* b loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(27)), /* b start */
MIPS32_MFC0(15, 30, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t *param_out = malloc(count * sizeof(uint32_t));
if (param_out == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
int retval = ERROR_OK;
int blocksize;
int hwordsread = 0;
uint32_t param_in[2];
while (count > 0) {
blocksize = count;
if (count > 0x400)
blocksize = 0x400;
param_in[0] = addr;
param_in[1] = blocksize;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
ARRAY_SIZE(param_in), param_in, blocksize, &param_out[hwordsread], 1);
if (retval != ERROR_OK)
return retval;
count -= blocksize;
addr += blocksize*sizeof(uint16_t);
hwordsread += blocksize;
}
int i;
for (i = 0; i < hwordsread; i++)
buf[i] = param_out[i];
free(param_out);
return retval;
}
static int mips32_pracc_read_mem8(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint8_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* $9 = mem[$8]; read addr */
MIPS32_LW(10, 4, 8), /* $10 = mem[$8 + 4]; read count */
MIPS32_LUI(11, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */
MIPS32_ORI(11, 11, LOWER16(MIPS32_PRACC_PARAM_OUT)),
/* loop: */
MIPS32_BEQ(0, 10, 8), /* beq 0, $10, end */
MIPS32_NOP,
MIPS32_LBU(8, 0, 9), /* lw $8,0($9), Load t4 with the byte @mem[t1] */
MIPS32_SW(8, 0, 11), /* sw $8,0($11) */
MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */
MIPS32_ADDI(9, 9, 1), /* $9 += 1 */
MIPS32_ADDI(11, 11, 4), /* $11 += 4 */
MIPS32_B(NEG16(8)), /* b loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(27)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t *param_out = malloc(count * sizeof(uint32_t));
if (param_out == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
int retval = ERROR_OK;
int blocksize;
uint32_t param_in[2];
int bytesread = 0;
while (count > 0) {
blocksize = count;
if (count > 0x400)
blocksize = 0x400;
param_in[0] = addr;
param_in[1] = blocksize;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
ARRAY_SIZE(param_in), param_in, count, &param_out[bytesread], 1);
if (retval != ERROR_OK)
return retval;
count -= blocksize;
addr += blocksize;
bytesread += blocksize;
}
int i;
for (i = 0; i < bytesread; i++)
buf[i] = param_out[i];
free(param_out);
return retval;
}
int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
{
/**
* Do not make this code static, but regenerate it every time,
* as 5th element has to be changed to add parameters
*/
uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
/* 5 */ MIPS32_MFC0(8, 0, 0), /* move COP0 [cp0_reg select] to $8 */
MIPS32_LUI(9, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */
MIPS32_ORI(9, 9, LOWER16(MIPS32_PRACC_PARAM_OUT)),
MIPS32_SW(8, 0, 9), /* sw $8,0($9) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(12)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/**
* Note that our input parametes cp0_reg and cp0_sel
* are numbers (not gprs) which make part of mfc0 instruction opcode.
*
* These are not fix, but can be different for each mips32_cp0_read() function call,
* and that is why we must insert them directly into opcode,
* i.e. we can not pass it on EJTAG microprogram stack (via param_in),
* and put them into the gprs later from MIPS32_PRACC_STACK
* because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
* but plain (immediate) number.
*
* MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
* In order to insert our parameters, we must change rd and funct fields.
*/
code[5] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct of MIPS32_R_INST macro */
/* TODO remove array */
uint32_t *param_out = val;
int retval;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, param_out, 1);
return retval;
}
int mips32_cp0_write(struct mips_ejtag *ejtag_info,
uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
{
uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* Load write val to $9 */
/* 8 */ MIPS32_MTC0(9, 0, 0), /* move $9 to COP0 [cp0_reg select] */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(12)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/**
* Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
* In order to insert our parameters, we must change rd and funct fields.
*/
code[8] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct fields of MIPS32_R_INST macro */
/* TODO remove array */
uint32_t *param_in = malloc(1 * sizeof(uint32_t));
int retval;
param_in[0] = val;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 1, param_in, 0, NULL, 1);
free(param_in);
return retval;
}
/**
* \b mips32_pracc_sync_cache
*
* Synchronize Caches to Make Instruction Writes Effective
* (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
* Document Number: MD00086, Revision 2.00, June 9, 2003)
*
* When the instruction stream is written, the SYNCI instruction should be used
* in conjunction with other instructions to make the newly-written instructions effective.
*
* Explanation :
* A program that loads another program into memory is actually writing the D- side cache.
* The instructions it has loaded can't be executed until they reach the I-cache.
*
* After the instructions have been written, the loader should arrange
* to write back any containing D-cache line and invalidate any locations
* already in the I-cache.
*
* You can do that with cache instructions, but those instructions are only available in kernel mode,
* and a loader writing instructions for the use of its own process need not be privileged software.
*
* In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
* which does the whole job for a cache-line-sized chunk of the memory you just loaded:
* That is, it arranges a D-cache write-back and an I-cache invalidate.
*
* To employ synci at user level, you need to know the size of a cache line,
* and that can be obtained with a rdhwr SYNCI_Step
* from one of the standard “hardware registers”.
*/
static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */
MIPS32_NOP,
/* synci_loop : */
MIPS32_SYNCI(0, 9), /* synci 0($9) */
MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */
MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
MIPS32_SYNC,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(24)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t *param_in = malloc(2 * sizeof(uint32_t));
int retval;
param_in[0] = start_addr;
param_in[1] = end_addr;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
free(param_in);
return retval;
}
/**
* \b mips32_pracc_clean_invalidate_cache
*
* Writeback D$ and Invalidate I$
* so that the instructions written can be visible to CPU
*/
static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */
/* cache_loop: */
MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
MIPS32_BGTZ(8, 6), /* bgtz $8, end */
MIPS32_NOP,
MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */
MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */
MIPS32_ADDU(9, 9, 11), /* $9 += $11 */
MIPS32_B(NEG16(7)), /* b cache_loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(25)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/**
* Find cache line size in bytes
*/
uint32_t conf;
uint32_t dl, clsiz;
mips32_cp0_read(ejtag_info, &conf, 16, 1);
dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
/* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
clsiz = 0x2 << dl;
/* TODO remove array */
uint32_t *param_in = malloc(3 * sizeof(uint32_t));
int retval;
param_in[0] = start_addr;
param_in[1] = end_addr;
param_in[2] = clsiz;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
free(param_in);
return retval;
}
int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
int retval;
switch (size) {
case 1:
retval = mips32_pracc_write_mem8(ejtag_info, addr, count, (uint8_t *)buf);
break;
case 2:
retval = mips32_pracc_write_mem16(ejtag_info, addr, count, (uint16_t *)buf);
break;
case 4:
if (count == 1)
retval = mips32_pracc_write_u32(ejtag_info, addr, (uint32_t *)buf);
else
retval = mips32_pracc_write_mem32(ejtag_info, addr, count, (uint32_t *)buf);
break;
default:
retval = ERROR_FAIL;
}
/**
* If we are in the cachable regoion and cache is activated,
* we must clean D$ + invalidate I$ after we did the write,
* so that changes do not continue to live only in D$, but to be
* replicated in I$ also (maybe we wrote the istructions)
*/
uint32_t conf = 0;
int cached = 0;
mips32_cp0_read(ejtag_info, &conf, 16, 0);
switch (KSEGX(addr)) {
case KUSEG:
cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
break;
case KSEG0:
cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
break;
case KSEG1:
/* uncachable segment - nothing to do */
break;
case KSEG2:
case KSEG3:
cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
break;
default:
/* what ? */
break;
}
/**
* Check cachablitiy bits coherency algorithm -
* is the region cacheable or uncached.
* If cacheable we have to synchronize the cache
*/
if (cached == 0x3) {
uint32_t start_addr, end_addr;
uint32_t rel;
start_addr = addr;
end_addr = addr + count * size;
/** select cache synchronisation mechanism based on Architecture Release */
rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
switch (rel) {
case MIPS32_ARCH_REL1:
/* MIPS32/64 Release 1 - we must use cache instruction */
mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
break;
case MIPS32_ARCH_REL2:
/* MIPS32/64 Release 2 - we can use synci instruction */
mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
break;
default:
/* what ? */
break;
}
}
return retval;
}
static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_ADDI(8, 15, NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN)), /* $8= MIPS32_PRACC_PARAM_IN */
MIPS32_LW(9, 0, 8), /* Load write addr to $9 */
MIPS32_LW(10, 4, 8), /* Load write count to $10 */
MIPS32_ADDI(8, 8, 8), /* $8 += 8 beginning of data */
/* loop: */
MIPS32_LW(11, 0, 8), /* lw $11,0($8), Load $11 with the word @mem[$8] */
MIPS32_SW(11, 0, 9), /* sw $11,0($9) */
MIPS32_ADDI(9, 9, 4), /* $9 += 4 */
MIPS32_BNE(10, 9, NEG16(4)), /* bne $10, $9, loop */
MIPS32_ADDI(8, 8, 4), /* $8 += 4 */
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(21)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t));
param_in[0] = addr;
param_in[1] = addr + (count * sizeof(uint32_t)); /* last address */
memcpy(&param_in[2], buf, count * sizeof(uint32_t));
int retval;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
count + 2, param_in, 0, NULL, 1);
free(param_in);
return retval;
}
static int mips32_pracc_write_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_LW(8, NEG16((MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN)-4), 15), /* load R8 @ param_in[1] = data */
MIPS32_LW(9, NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN), 15), /* load R9 @ param_in[0] = address */
MIPS32_SW(8, 0, 9), /* sw $8,0($9) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(11)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t param_in[1 + 1];
param_in[0] = addr;
param_in[1] = *buf;
return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
ARRAY_SIZE(param_in), param_in, 0, NULL, 1);
}
static int mips32_pracc_write_mem16(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint16_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* Load write addr to $9 */
MIPS32_LW(10, 4, 8), /* Load write count to $10 */
MIPS32_ADDI(8, 8, 8), /* $8 += 8 */
/* loop: */
MIPS32_BEQ(0, 10, 8), /* beq $0, $10, end */
MIPS32_NOP,
MIPS32_LW(11, 0, 8), /* lw $11,0($8), Load $11 with the word @mem[$8] */
MIPS32_SH(11, 0, 9), /* sh $11,0($9) */
MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */
MIPS32_ADDI(9, 9, 2), /* $9 += 2 */
MIPS32_ADDI(8, 8, 4), /* $8 += 4 */
MIPS32_B(NEG16(8)), /* b loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(26)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t));
int i;
param_in[0] = addr;
param_in[1] = count;
for (i = 0; i < count; i++)
param_in[i + 2] = buf[i];
int retval;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
count + 2, param_in, 0, NULL, 1);
free(param_in);
return retval;
}
static int mips32_pracc_write_mem8(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint8_t *buf)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(8, 0, 15), /* sw $8,($15) */
MIPS32_SW(9, 0, 15), /* sw $9,($15) */
MIPS32_SW(10, 0, 15), /* sw $10,($15) */
MIPS32_SW(11, 0, 15), /* sw $11,($15) */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(9, 0, 8), /* Load write addr to $9 */
MIPS32_LW(10, 4, 8), /* Load write count to $10 */
MIPS32_ADDI(8, 8, 8), /* $8 += 8 */
/* loop: */
MIPS32_BEQ(0, 10, 8), /* beq $0, $10, end */
MIPS32_NOP,
MIPS32_LW(11, 0, 8), /* lw $11,0($8), Load $11 with the word @mem[$8] */
MIPS32_SB(11, 0, 9), /* sb $11,0($9) */
MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */
MIPS32_ADDI(9, 9, 1), /* $9 += 1 */
MIPS32_ADDI(8, 8, 4), /* $8 += 4 */
MIPS32_B(NEG16(8)), /* b loop */
MIPS32_NOP,
/* end: */
MIPS32_LW(11, 0, 15), /* lw $11,($15) */
MIPS32_LW(10, 0, 15), /* lw $10,($15) */
MIPS32_LW(9, 0, 15), /* lw $9,($15) */
MIPS32_LW(8, 0, 15), /* lw $8,($15) */
MIPS32_B(NEG16(26)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
/* TODO remove array */
uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t));
int retval;
int i;
param_in[0] = addr;
param_in[1] = count;
for (i = 0; i < count; i++)
param_in[i + 2] = buf[i];
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
count + 2, param_in, 0, NULL, 1);
free(param_in);
return retval;
}
int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
static const uint32_t code[] = {
/* start: */
MIPS32_LUI(2, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $2 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(2, 2, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(1, 1*4, 2), /* lw $1,1*4($2) */
MIPS32_LW(15, 15*4, 2), /* lw $15,15*4($2) */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(1, 0, 15), /* sw $1,($15) */
MIPS32_LUI(1, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $1 = MIPS32_PRACC_PARAM_IN */
MIPS32_ORI(1, 1, LOWER16(MIPS32_PRACC_PARAM_IN)),
MIPS32_LW(3, 3*4, 1), /* lw $3,3*4($1) */
MIPS32_LW(4, 4*4, 1), /* lw $4,4*4($1) */
MIPS32_LW(5, 5*4, 1), /* lw $5,5*4($1) */
MIPS32_LW(6, 6*4, 1), /* lw $6,6*4($1) */
MIPS32_LW(7, 7*4, 1), /* lw $7,7*4($1) */
MIPS32_LW(8, 8*4, 1), /* lw $8,8*4($1) */
MIPS32_LW(9, 9*4, 1), /* lw $9,9*4($1) */
MIPS32_LW(10, 10*4, 1), /* lw $10,10*4($1) */
MIPS32_LW(11, 11*4, 1), /* lw $11,11*4($1) */
MIPS32_LW(12, 12*4, 1), /* lw $12,12*4($1) */
MIPS32_LW(13, 13*4, 1), /* lw $13,13*4($1) */
MIPS32_LW(14, 14*4, 1), /* lw $14,14*4($1) */
MIPS32_LW(16, 16*4, 1), /* lw $16,16*4($1) */
MIPS32_LW(17, 17*4, 1), /* lw $17,17*4($1) */
MIPS32_LW(18, 18*4, 1), /* lw $18,18*4($1) */
MIPS32_LW(19, 19*4, 1), /* lw $19,19*4($1) */
MIPS32_LW(20, 20*4, 1), /* lw $20,20*4($1) */
MIPS32_LW(21, 21*4, 1), /* lw $21,21*4($1) */
MIPS32_LW(22, 22*4, 1), /* lw $22,22*4($1) */
MIPS32_LW(23, 23*4, 1), /* lw $23,23*4($1) */
MIPS32_LW(24, 24*4, 1), /* lw $24,24*4($1) */
MIPS32_LW(25, 25*4, 1), /* lw $25,25*4($1) */
MIPS32_LW(26, 26*4, 1), /* lw $26,26*4($1) */
MIPS32_LW(27, 27*4, 1), /* lw $27,27*4($1) */
MIPS32_LW(28, 28*4, 1), /* lw $28,28*4($1) */
MIPS32_LW(29, 29*4, 1), /* lw $29,29*4($1) */
MIPS32_LW(30, 30*4, 1), /* lw $30,30*4($1) */
MIPS32_LW(31, 31*4, 1), /* lw $31,31*4($1) */
MIPS32_LW(2, 32*4, 1), /* lw $2,32*4($1) */
MIPS32_MTC0(2, 12, 0), /* move $2 to status */
MIPS32_LW(2, 33*4, 1), /* lw $2,33*4($1) */
MIPS32_MTLO(2), /* move $2 to lo */
MIPS32_LW(2, 34*4, 1), /* lw $2,34*4($1) */
MIPS32_MTHI(2), /* move $2 to hi */
MIPS32_LW(2, 35*4, 1), /* lw $2,35*4($1) */
MIPS32_MTC0(2, 8, 0), /* move $2 to badvaddr */
MIPS32_LW(2, 36*4, 1), /* lw $2,36*4($1) */
MIPS32_MTC0(2, 13, 0), /* move $2 to cause*/
MIPS32_LW(2, 37*4, 1), /* lw $2,37*4($1) */
MIPS32_MTC0(2, 24, 0), /* move $2 to depc (pc) */
MIPS32_LW(2, 2*4, 1), /* lw $2,2*4($1) */
MIPS32_LW(1, 0, 15), /* lw $1,($15) */
MIPS32_B(NEG16(53)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
int retval;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
MIPS32NUMCOREREGS, regs, 0, NULL, 1);
return retval;
}
int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
static const uint32_t code[] = {
/* start: */
MIPS32_MTC0(2, 31, 0), /* move $2 to COP0 DeSave */
MIPS32_LUI(2, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $2 = MIPS32_PRACC_PARAM_OUT */
MIPS32_ORI(2, 2, LOWER16(MIPS32_PRACC_PARAM_OUT)),
MIPS32_SW(0, 0*4, 2), /* sw $0,0*4($2) */
MIPS32_SW(1, 1*4, 2), /* sw $1,1*4($2) */
MIPS32_SW(15, 15*4, 2), /* sw $15,15*4($2) */
MIPS32_MFC0(2, 31, 0), /* move COP0 DeSave to $2 */
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
MIPS32_SW(1, 0, 15), /* sw $1,($15) */
MIPS32_SW(2, 0, 15), /* sw $2,($15) */
MIPS32_LUI(1, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $1 = MIPS32_PRACC_PARAM_OUT */
MIPS32_ORI(1, 1, LOWER16(MIPS32_PRACC_PARAM_OUT)),
MIPS32_SW(2, 2*4, 1), /* sw $2,2*4($1) */
MIPS32_SW(3, 3*4, 1), /* sw $3,3*4($1) */
MIPS32_SW(4, 4*4, 1), /* sw $4,4*4($1) */
MIPS32_SW(5, 5*4, 1), /* sw $5,5*4($1) */
MIPS32_SW(6, 6*4, 1), /* sw $6,6*4($1) */
MIPS32_SW(7, 7*4, 1), /* sw $7,7*4($1) */
MIPS32_SW(8, 8*4, 1), /* sw $8,8*4($1) */
MIPS32_SW(9, 9*4, 1), /* sw $9,9*4($1) */
MIPS32_SW(10, 10*4, 1), /* sw $10,10*4($1) */
MIPS32_SW(11, 11*4, 1), /* sw $11,11*4($1) */
MIPS32_SW(12, 12*4, 1), /* sw $12,12*4($1) */
MIPS32_SW(13, 13*4, 1), /* sw $13,13*4($1) */
MIPS32_SW(14, 14*4, 1), /* sw $14,14*4($1) */
MIPS32_SW(16, 16*4, 1), /* sw $16,16*4($1) */
MIPS32_SW(17, 17*4, 1), /* sw $17,17*4($1) */
MIPS32_SW(18, 18*4, 1), /* sw $18,18*4($1) */
MIPS32_SW(19, 19*4, 1), /* sw $19,19*4($1) */
MIPS32_SW(20, 20*4, 1), /* sw $20,20*4($1) */
MIPS32_SW(21, 21*4, 1), /* sw $21,21*4($1) */
MIPS32_SW(22, 22*4, 1), /* sw $22,22*4($1) */
MIPS32_SW(23, 23*4, 1), /* sw $23,23*4($1) */
MIPS32_SW(24, 24*4, 1), /* sw $24,24*4($1) */
MIPS32_SW(25, 25*4, 1), /* sw $25,25*4($1) */
MIPS32_SW(26, 26*4, 1), /* sw $26,26*4($1) */
MIPS32_SW(27, 27*4, 1), /* sw $27,27*4($1) */
MIPS32_SW(28, 28*4, 1), /* sw $28,28*4($1) */
MIPS32_SW(29, 29*4, 1), /* sw $29,29*4($1) */
MIPS32_SW(30, 30*4, 1), /* sw $30,30*4($1) */
MIPS32_SW(31, 31*4, 1), /* sw $31,31*4($1) */
MIPS32_MFC0(2, 12, 0), /* move status to $2 */
MIPS32_SW(2, 32*4, 1), /* sw $2,32*4($1) */
MIPS32_MFLO(2), /* move lo to $2 */
MIPS32_SW(2, 33*4, 1), /* sw $2,33*4($1) */
MIPS32_MFHI(2), /* move hi to $2 */
MIPS32_SW(2, 34*4, 1), /* sw $2,34*4($1) */
MIPS32_MFC0(2, 8, 0), /* move badvaddr to $2 */
MIPS32_SW(2, 35*4, 1), /* sw $2,35*4($1) */
MIPS32_MFC0(2, 13, 0), /* move cause to $2 */
MIPS32_SW(2, 36*4, 1), /* sw $2,36*4($1) */
MIPS32_MFC0(2, 24, 0), /* move depc (pc) to $2 */
MIPS32_SW(2, 37*4, 1), /* sw $2,37*4($1) */
MIPS32_LW(2, 0, 15), /* lw $2,($15) */
MIPS32_LW(1, 0, 15), /* lw $1,($15) */
MIPS32_B(NEG16(58)), /* b start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
int retval;
retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
0, NULL, MIPS32NUMCOREREGS, regs, 1);
return retval;
}
/* fastdata upload/download requires an initialized working area
* to load the download code; it should not be called otherwise
* fetch order from the fastdata area
* 1. start addr
* 2. end addr
* 3. data ...
*/
int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
int write_t, uint32_t addr, int count, uint32_t *buf)
{
uint32_t handler_code[] = {
/* caution when editing, table is modified below */
/* r15 points to the start of this code */
MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
/* start of fastdata area in t0 */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
MIPS32_LW(9, 0, 8), /* start addr in t1 */
MIPS32_LW(10, 0, 8), /* end addr to t2 */
/* loop: */
/* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
/* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
MIPS32_JR(15), /* jr start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
uint32_t jmp_code[] = {
MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
/* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */
/* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
MIPS32_JR(15), /* jump to ram program */
MIPS32_NOP,
};
int retval, i;
uint32_t val, ejtag_ctrl, address;
if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
if (write_t) {
handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
} else {
handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
}
/* write program into RAM */
if (write_t != ejtag_info->fast_access_save) {
mips32_pracc_write_mem32(ejtag_info, source->address, ARRAY_SIZE(handler_code), handler_code);
/* save previous operation to speed to any consecutive read/writes */
ejtag_info->fast_access_save = write_t;
}
LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
jmp_code[1] |= UPPER16(source->address);
jmp_code[2] |= LOWER16(source->address);
for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
/* Clear the access pending bit (let the processor eat!) */
ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
}
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
/* next fetch to dmseg should be in FASTDATA_AREA, check */
address = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
retval = mips_ejtag_drscan_32(ejtag_info, &address);
if (retval != ERROR_OK)
return retval;
if (address != MIPS32_PRACC_FASTDATA_AREA)
return ERROR_FAIL;
/* wait PrAcc pending bit for FASTDATA write */
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
/* Send the load start address */
val = addr;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
/* Send the load end address */
val = addr + (count - 1) * 4;
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
for (i = 0; i < count; i++) {
retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
if (retval != ERROR_OK)
return retval;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("fastdata load failed");
return retval;
}
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
address = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
retval = mips_ejtag_drscan_32(ejtag_info, &address);
if (retval != ERROR_OK)
return retval;
if (address != MIPS32_PRACC_TEXT)
LOG_ERROR("mini program did not return to start");
return retval;
}