openocd/src/target/riscv/riscv-013.c

3957 lines
124 KiB
C

/*
* Support for RISC-V, debug version 0.13, which is currently (2/4/17) the
* latest draft.
*/
#include <assert.h>
#include <stdlib.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include "log.h"
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/time_support.h"
#include "helper/list.h"
#include "riscv.h"
#include "debug_defines.h"
#include "rtos/rtos.h"
#include "program.h"
#include "asm.h"
#include "batch.h"
#define DMI_DATA1 (DMI_DATA0 + 1)
#define DMI_PROGBUF1 (DMI_PROGBUF0 + 1)
static int riscv013_on_step_or_resume(struct target *target, bool step);
static int riscv013_step_or_resume_current_hart(struct target *target, bool step);
static void riscv013_clear_abstract_error(struct target *target);
/* Implementations of the functions in riscv_info_t. */
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, int hid, int rid);
static int riscv013_set_register(struct target *target, int hartid, int regid, uint64_t value);
static int riscv013_select_current_hart(struct target *target);
static int riscv013_halt_current_hart(struct target *target);
static int riscv013_resume_current_hart(struct target *target);
static int riscv013_step_current_hart(struct target *target);
static int riscv013_on_halt(struct target *target);
static int riscv013_on_step(struct target *target);
static int riscv013_on_resume(struct target *target);
static bool riscv013_is_halted(struct target *target);
static enum riscv_halt_reason riscv013_halt_reason(struct target *target);
static int riscv013_write_debug_buffer(struct target *target, unsigned index,
riscv_insn_t d);
static riscv_insn_t riscv013_read_debug_buffer(struct target *target, unsigned
index);
static int riscv013_execute_debug_buffer(struct target *target);
static void riscv013_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d);
static void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a);
static int riscv013_dmi_write_u64_bits(struct target *target);
static void riscv013_fill_dmi_nop_u64(struct target *target, char *buf);
static int register_read(struct target *target, uint64_t *value, uint32_t number);
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number);
static int register_write_direct(struct target *target, unsigned number,
uint64_t value);
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer);
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
static int riscv013_test_sba_config_reg(struct target *target, target_addr_t legal_address,
uint32_t num_words, target_addr_t illegal_address, bool run_sbbusyerror_test);
void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t *write_data,
uint32_t write_size, uint32_t sbcs);
void read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *rd_buf, uint32_t read_size, uint32_t sbcs);
static int riscv013_test_compliance(struct target *target);
/**
* Since almost everything can be accomplish by scanning the dbus register, all
* functions here assume dbus is already selected. The exception are functions
* called directly by OpenOCD, which can't assume anything about what's
* currently in IR. They should set IR to dbus explicitly.
*/
#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
#define DIM(x) (sizeof(x)/sizeof(*x))
#define CSR_DCSR_CAUSE_SWBP 1
#define CSR_DCSR_CAUSE_TRIGGER 2
#define CSR_DCSR_CAUSE_DEBUGINT 3
#define CSR_DCSR_CAUSE_STEP 4
#define CSR_DCSR_CAUSE_HALT 5
#define RISCV013_INFO(r) riscv013_info_t *r = get_info(target)
/*** JTAG registers. ***/
typedef enum {
DMI_OP_NOP = 0,
DMI_OP_READ = 1,
DMI_OP_WRITE = 2
} dmi_op_t;
typedef enum {
DMI_STATUS_SUCCESS = 0,
DMI_STATUS_FAILED = 2,
DMI_STATUS_BUSY = 3
} dmi_status_t;
typedef enum {
RE_OK,
RE_FAIL,
RE_AGAIN
} riscv_error_t;
typedef enum slot {
SLOT0,
SLOT1,
SLOT_LAST,
} slot_t;
/*** Debug Bus registers. ***/
#define CMDERR_NONE 0
#define CMDERR_BUSY 1
#define CMDERR_NOT_SUPPORTED 2
#define CMDERR_EXCEPTION 3
#define CMDERR_HALT_RESUME 4
#define CMDERR_OTHER 7
/*** Info about the core being debugged. ***/
struct trigger {
uint64_t address;
uint32_t length;
uint64_t mask;
uint64_t value;
bool read, write, execute;
int unique_id;
};
typedef enum {
YNM_MAYBE,
YNM_YES,
YNM_NO
} yes_no_maybe_t;
typedef struct {
struct list_head list;
int abs_chain_position;
/* Indicates we already reset this DM, so don't need to do it again. */
bool was_reset;
/* Targets that are connected to this DM. */
struct list_head target_list;
/* The currently selected hartid on this DM. */
int current_hartid;
} dm013_info_t;
typedef struct {
struct list_head list;
struct target *target;
} target_list_t;
typedef struct {
/* Number of address bits in the dbus register. */
unsigned abits;
/* Number of abstract command data registers. */
unsigned datacount;
/* Number of words in the Program Buffer. */
unsigned progbufsize;
/* We cache the read-only bits of sbcs here. */
uint32_t sbcs;
yes_no_maybe_t progbuf_writable;
/* We only need the address so that we know the alignment of the buffer. */
riscv_addr_t progbuf_address;
/* Number of run-test/idle cycles the target requests we do after each dbus
* access. */
unsigned int dtmcs_idle;
/* This value is incremented every time a dbus access comes back as "busy".
* It's used to determine how many run-test/idle cycles to feed the target
* in between accesses. */
unsigned int dmi_busy_delay;
/* Number of run-test/idle cycles to add between consecutive bus master
* reads/writes respectively. */
unsigned int bus_master_write_delay, bus_master_read_delay;
/* This value is increased every time we tried to execute two commands
* consecutively, and the second one failed because the previous hadn't
* completed yet. It's used to add extra run-test/idle cycles after
* starting a command, so we don't have to waste time checking for busy to
* go low. */
unsigned int ac_busy_delay;
bool abstract_read_csr_supported;
bool abstract_write_csr_supported;
bool abstract_read_fpr_supported;
bool abstract_write_fpr_supported;
/* When a function returns some error due to a failure indicated by the
* target in cmderr, the caller can look here to see what that error was.
* (Compare with errno.) */
uint8_t cmderr;
/* Some fields from hartinfo. */
uint8_t datasize;
uint8_t dataaccess;
int16_t dataaddr;
/* The width of the hartsel field. */
unsigned hartsellen;
/* DM that provides access to this target. */
dm013_info_t *dm;
} riscv013_info_t;
LIST_HEAD(dm_list);
static riscv013_info_t *get_info(const struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
return (riscv013_info_t *) info->version_specific;
}
/**
* Return the DM structure for this target. If there isn't one, find it in the
* global list of DMs. If it's not in there, then create one and initialize it
* to 0.
*/
static dm013_info_t *get_dm(struct target *target)
{
RISCV013_INFO(info);
if (info->dm)
return info->dm;
int abs_chain_position = target->tap->abs_chain_position;
dm013_info_t *entry;
dm013_info_t *dm = NULL;
list_for_each_entry(entry, &dm_list, list) {
if (entry->abs_chain_position == abs_chain_position) {
dm = entry;
break;
}
}
if (!dm) {
dm = calloc(1, sizeof(dm013_info_t));
dm->abs_chain_position = abs_chain_position;
dm->current_hartid = -1;
INIT_LIST_HEAD(&dm->target_list);
list_add(&dm->list, &dm_list);
}
info->dm = dm;
target_list_t *target_entry;
list_for_each_entry(target_entry, &dm->target_list, list) {
if (target_entry->target == target)
return dm;
}
target_entry = calloc(1, sizeof(*target_entry));
target_entry->target = target;
list_add(&target_entry->list, &dm->target_list);
return dm;
}
static uint32_t set_hartsel(uint32_t initial, uint32_t index)
{
initial &= ~DMI_DMCONTROL_HARTSELLO;
initial &= ~DMI_DMCONTROL_HARTSELHI;
uint32_t index_lo = index & ((1 << DMI_DMCONTROL_HARTSELLO_LENGTH) - 1);
initial |= index_lo << DMI_DMCONTROL_HARTSELLO_OFFSET;
uint32_t index_hi = index >> DMI_DMCONTROL_HARTSELLO_LENGTH;
assert(index_hi < 1 << DMI_DMCONTROL_HARTSELHI_LENGTH);
initial |= index_hi << DMI_DMCONTROL_HARTSELHI_OFFSET;
return initial;
}
static void decode_dmi(char *text, unsigned address, unsigned data)
{
static const struct {
unsigned address;
uint64_t mask;
const char *name;
} description[] = {
{ DMI_DMCONTROL, DMI_DMCONTROL_HALTREQ, "haltreq" },
{ DMI_DMCONTROL, DMI_DMCONTROL_RESUMEREQ, "resumereq" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HARTRESET, "hartreset" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HASEL, "hasel" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HARTSELHI, "hartselhi" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HARTSELLO, "hartsello" },
{ DMI_DMCONTROL, DMI_DMCONTROL_NDMRESET, "ndmreset" },
{ DMI_DMCONTROL, DMI_DMCONTROL_DMACTIVE, "dmactive" },
{ DMI_DMCONTROL, DMI_DMCONTROL_ACKHAVERESET, "ackhavereset" },
{ DMI_DMSTATUS, DMI_DMSTATUS_IMPEBREAK, "impebreak" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLHAVERESET, "allhavereset" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYHAVERESET, "anyhavereset" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLRESUMEACK, "allresumeack" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYRESUMEACK, "anyresumeack" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLNONEXISTENT, "allnonexistent" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYNONEXISTENT, "anynonexistent" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLUNAVAIL, "allunavail" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYUNAVAIL, "anyunavail" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLRUNNING, "allrunning" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYRUNNING, "anyrunning" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLHALTED, "allhalted" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYHALTED, "anyhalted" },
{ DMI_DMSTATUS, DMI_DMSTATUS_AUTHENTICATED, "authenticated" },
{ DMI_DMSTATUS, DMI_DMSTATUS_AUTHBUSY, "authbusy" },
{ DMI_DMSTATUS, DMI_DMSTATUS_DEVTREEVALID, "devtreevalid" },
{ DMI_DMSTATUS, DMI_DMSTATUS_VERSION, "version" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_PROGBUFSIZE, "progbufsize" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_BUSY, "busy" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR, "cmderr" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_DATACOUNT, "datacount" },
{ DMI_COMMAND, DMI_COMMAND_CMDTYPE, "cmdtype" },
{ DMI_SBCS, DMI_SBCS_SBREADONADDR, "sbreadonaddr" },
{ DMI_SBCS, DMI_SBCS_SBACCESS, "sbaccess" },
{ DMI_SBCS, DMI_SBCS_SBAUTOINCREMENT, "sbautoincrement" },
{ DMI_SBCS, DMI_SBCS_SBREADONDATA, "sbreadondata" },
{ DMI_SBCS, DMI_SBCS_SBERROR, "sberror" },
{ DMI_SBCS, DMI_SBCS_SBASIZE, "sbasize" },
{ DMI_SBCS, DMI_SBCS_SBACCESS128, "sbaccess128" },
{ DMI_SBCS, DMI_SBCS_SBACCESS64, "sbaccess64" },
{ DMI_SBCS, DMI_SBCS_SBACCESS32, "sbaccess32" },
{ DMI_SBCS, DMI_SBCS_SBACCESS16, "sbaccess16" },
{ DMI_SBCS, DMI_SBCS_SBACCESS8, "sbaccess8" },
};
text[0] = 0;
for (unsigned i = 0; i < DIM(description); i++) {
if (description[i].address == address) {
uint64_t mask = description[i].mask;
unsigned value = get_field(data, mask);
if (value) {
if (i > 0)
*(text++) = ' ';
if (mask & (mask >> 1)) {
/* If the field is more than 1 bit wide. */
sprintf(text, "%s=%d", description[i].name, value);
} else {
strcpy(text, description[i].name);
}
text += strlen(text);
}
}
}
}
static void dump_field(int idle, const struct scan_field *field)
{
static const char * const op_string[] = {"-", "r", "w", "?"};
static const char * const status_string[] = {"+", "?", "F", "b"};
if (debug_level < LOG_LVL_DEBUG)
return;
uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits);
unsigned int out_op = get_field(out, DTM_DMI_OP);
unsigned int out_data = get_field(out, DTM_DMI_DATA);
unsigned int out_address = out >> DTM_DMI_ADDRESS_OFFSET;
uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits);
unsigned int in_op = get_field(in, DTM_DMI_OP);
unsigned int in_data = get_field(in, DTM_DMI_DATA);
unsigned int in_address = in >> DTM_DMI_ADDRESS_OFFSET;
log_printf_lf(LOG_LVL_DEBUG,
__FILE__, __LINE__, "scan",
"%db %di %s %08x @%02x -> %s %08x @%02x",
field->num_bits, idle,
op_string[out_op], out_data, out_address,
status_string[in_op], in_data, in_address);
char out_text[500];
char in_text[500];
decode_dmi(out_text, out_address, out_data);
decode_dmi(in_text, in_address, in_data);
if (in_text[0] || out_text[0]) {
log_printf_lf(LOG_LVL_DEBUG, __FILE__, __LINE__, "scan", "%s -> %s",
out_text, in_text);
}
}
/*** Utility functions. ***/
static void select_dmi(struct target *target)
{
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
}
static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
{
struct scan_field field;
uint8_t in_value[4];
uint8_t out_value[4];
buf_set_u32(out_value, 0, 32, out);
jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
field.num_bits = 32;
field.out_value = out_value;
field.in_value = in_value;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
/* Always return to dmi. */
select_dmi(target);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed jtag scan: %d", retval);
return retval;
}
uint32_t in = buf_get_u32(field.in_value, 0, 32);
LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);
return in;
}
static void increase_dmi_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->dmi_busy_delay += info->dmi_busy_delay / 10 + 1;
LOG_DEBUG("dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcs_idle, info->dmi_busy_delay,
info->ac_busy_delay);
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET);
}
/**
* exec: If this is set, assume the scan results in an execution, so more
* run-test/idle cycles may be required.
*/
static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
uint32_t *data_in, dmi_op_t op, uint32_t address_out, uint32_t data_out,
bool exec)
{
riscv013_info_t *info = get_info(target);
RISCV_INFO(r);
unsigned num_bits = info->abits + DTM_DMI_OP_LENGTH + DTM_DMI_DATA_LENGTH;
size_t num_bytes = (num_bits + 7) / 8;
uint8_t in[num_bytes];
uint8_t out[num_bytes];
struct scan_field field = {
.num_bits = num_bits,
.out_value = out,
.in_value = in
};
if (r->reset_delays_wait >= 0) {
r->reset_delays_wait--;
if (r->reset_delays_wait < 0) {
info->dmi_busy_delay = 0;
info->ac_busy_delay = 0;
}
}
memset(in, 0, num_bytes);
assert(info->abits != 0);
buf_set_u32(out, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, op);
buf_set_u32(out, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, data_out);
buf_set_u32(out, DTM_DMI_ADDRESS_OFFSET, info->abits, address_out);
/* Assume dbus is already selected. */
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
int idle_count = info->dmi_busy_delay;
if (exec)
idle_count += info->ac_busy_delay;
if (idle_count)
jtag_add_runtest(idle_count, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dmi_scan failed jtag scan");
return DMI_STATUS_FAILED;
}
if (data_in)
*data_in = buf_get_u32(in, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH);
if (address_in)
*address_in = buf_get_u32(in, DTM_DMI_ADDRESS_OFFSET, info->abits);
dump_field(idle_count, &field);
return buf_get_u32(in, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
}
/* If dmi_busy_encountered is non-NULL, this function will use it to tell the
* caller whether DMI was ever busy during this call. */
static int dmi_op_timeout(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int dmi_op, uint32_t address,
uint32_t data_out, int timeout_sec, bool exec)
{
select_dmi(target);
dmi_status_t status;
uint32_t address_in;
if (dmi_busy_encountered)
*dmi_busy_encountered = false;
const char *op_name;
switch (dmi_op) {
case DMI_OP_NOP:
op_name = "nop";
break;
case DMI_OP_READ:
op_name = "read";
break;
case DMI_OP_WRITE:
op_name = "write";
break;
default:
LOG_ERROR("Invalid DMI operation: %d", dmi_op);
return ERROR_FAIL;
}
time_t start = time(NULL);
/* This first loop performs the request. Note that if for some reason this
* stays busy, it is actually due to the previous access. */
while (1) {
status = dmi_scan(target, NULL, NULL, dmi_op, address, data_out,
exec);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
if (dmi_busy_encountered)
*dmi_busy_encountered = true;
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
LOG_ERROR("failed %s at 0x%x, status=%d", op_name, address, status);
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
if (status != DMI_STATUS_SUCCESS) {
LOG_ERROR("Failed %s at 0x%x; status=%d", op_name, address, status);
return ERROR_FAIL;
}
/* This second loop ensures the request succeeded, and gets back data.
* Note that NOP can result in a 'busy' result as well, but that would be
* noticed on the next DMI access we do. */
while (1) {
status = dmi_scan(target, &address_in, data_in, DMI_OP_NOP, address, 0,
false);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
LOG_ERROR("failed %s (NOP) at 0x%x, status=%d", op_name, address,
status);
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
if (status != DMI_STATUS_SUCCESS) {
if (status == DMI_STATUS_FAILED || !data_in) {
LOG_ERROR("Failed %s (NOP) at 0x%x; status=%d", op_name, address,
status);
} else {
LOG_ERROR("Failed %s (NOP) at 0x%x; value=0x%x, status=%d",
op_name, address, *data_in, status);
}
return ERROR_FAIL;
}
return ERROR_OK;
}
static int dmi_op(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int dmi_op, uint32_t address,
uint32_t data_out, bool exec)
{
int result = dmi_op_timeout(target, data_in, dmi_busy_encountered, dmi_op,
address, data_out, riscv_command_timeout_sec, exec);
if (result == ERROR_TIMEOUT_REACHED) {
LOG_ERROR("DMI operation didn't complete in %d seconds. The target is "
"either really slow or broken. You could increase the "
"timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec);
return ERROR_FAIL;
}
return result;
}
static int dmi_read(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, false);
}
static int dmi_read_exec(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, true);
}
static int dmi_write(struct target *target, uint32_t address, uint32_t value)
{
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, false);
}
static int dmi_write_exec(struct target *target, uint32_t address, uint32_t value)
{
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, true);
}
int dmstatus_read_timeout(struct target *target, uint32_t *dmstatus,
bool authenticated, unsigned timeout_sec)
{
int result = dmi_op_timeout(target, dmstatus, NULL, DMI_OP_READ,
DMI_DMSTATUS, 0, timeout_sec, false);
if (result != ERROR_OK)
return result;
if (authenticated && !get_field(*dmstatus, DMI_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", *dmstatus);
return ERROR_FAIL;
}
return ERROR_OK;
}
int dmstatus_read(struct target *target, uint32_t *dmstatus,
bool authenticated)
{
return dmstatus_read_timeout(target, dmstatus, authenticated,
riscv_command_timeout_sec);
}
static void increase_ac_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
LOG_DEBUG("dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcs_idle, info->dmi_busy_delay,
info->ac_busy_delay);
}
uint32_t abstract_register_size(unsigned width)
{
switch (width) {
case 32:
return set_field(0, AC_ACCESS_REGISTER_SIZE, 2);
case 64:
return set_field(0, AC_ACCESS_REGISTER_SIZE, 3);
break;
case 128:
return set_field(0, AC_ACCESS_REGISTER_SIZE, 4);
break;
default:
LOG_ERROR("Unsupported register width: %d", width);
return 0;
}
}
static int wait_for_idle(struct target *target, uint32_t *abstractcs)
{
RISCV013_INFO(info);
time_t start = time(NULL);
while (1) {
if (dmi_read(target, abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
if (get_field(*abstractcs, DMI_ABSTRACTCS_BUSY) == 0)
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
info->cmderr = get_field(*abstractcs, DMI_ABSTRACTCS_CMDERR);
if (info->cmderr != CMDERR_NONE) {
const char *errors[8] = {
"none",
"busy",
"not supported",
"exception",
"halt/resume",
"reserved",
"reserved",
"other" };
LOG_ERROR("Abstract command ended in error '%s' (abstractcs=0x%x)",
errors[info->cmderr], *abstractcs);
}
LOG_ERROR("Timed out after %ds waiting for busy to go low (abstractcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
*abstractcs);
return ERROR_FAIL;
}
}
}
static int execute_abstract_command(struct target *target, uint32_t command)
{
RISCV013_INFO(info);
if (debug_level >= LOG_LVL_DEBUG) {
switch (get_field(command, DMI_COMMAND_CMDTYPE)) {
case 0:
LOG_DEBUG("command=0x%x; access register, size=%d, postexec=%d, "
"transfer=%d, write=%d, regno=0x%x",
command,
8 << get_field(command, AC_ACCESS_REGISTER_SIZE),
get_field(command, AC_ACCESS_REGISTER_POSTEXEC),
get_field(command, AC_ACCESS_REGISTER_TRANSFER),
get_field(command, AC_ACCESS_REGISTER_WRITE),
get_field(command, AC_ACCESS_REGISTER_REGNO));
break;
default:
LOG_DEBUG("command=0x%x", command);
break;
}
}
dmi_write_exec(target, DMI_COMMAND, command);
uint32_t abstractcs = 0;
wait_for_idle(target, &abstractcs);
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
if (info->cmderr != 0) {
LOG_DEBUG("command 0x%x failed; abstractcs=0x%x", command, abstractcs);
/* Clear the error. */
dmi_write(target, DMI_ABSTRACTCS, set_field(0, DMI_ABSTRACTCS_CMDERR,
info->cmderr));
return ERROR_FAIL;
}
return ERROR_OK;
}
static riscv_reg_t read_abstract_arg(struct target *target, unsigned index,
unsigned size_bits)
{
riscv_reg_t value = 0;
uint32_t v;
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_ERROR("Unsupported size: %d", size_bits);
return ~0;
case 64:
dmi_read(target, &v, DMI_DATA0 + offset + 1);
value |= ((uint64_t) v) << 32;
/* falls through */
case 32:
dmi_read(target, &v, DMI_DATA0 + offset);
value |= v;
}
return value;
}
static int write_abstract_arg(struct target *target, unsigned index,
riscv_reg_t value, unsigned size_bits)
{
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_ERROR("Unsupported size: %d", size_bits);
return ERROR_FAIL;
case 64:
dmi_write(target, DMI_DATA0 + offset + 1, value >> 32);
/* falls through */
case 32:
dmi_write(target, DMI_DATA0 + offset, value);
}
return ERROR_OK;
}
/**
* @par size in bits
*/
static uint32_t access_register_command(struct target *target, uint32_t number,
unsigned size, uint32_t flags)
{
uint32_t command = set_field(0, DMI_COMMAND_CMDTYPE, 0);
switch (size) {
case 32:
command = set_field(command, AC_ACCESS_REGISTER_SIZE, 2);
break;
case 64:
command = set_field(command, AC_ACCESS_REGISTER_SIZE, 3);
break;
default:
assert(0);
}
if (number <= GDB_REGNO_XPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1000 + number - GDB_REGNO_ZERO);
} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1020 + number - GDB_REGNO_FPR0);
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
number - GDB_REGNO_CSR0);
} else if (number >= GDB_REGNO_COUNT) {
/* Custom register. */
assert(target->reg_cache->reg_list[number].arch_info);
riscv_reg_info_t *reg_info = target->reg_cache->reg_list[number].arch_info;
assert(reg_info);
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0xc000 + reg_info->custom_number);
}
command |= flags;
return command;
}
static int register_read_abstract(struct target *target, uint64_t *value,
uint32_t number, unsigned size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_read_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_read_csr_supported)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER);
int result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
if (info->cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_read_fpr_supported = false;
LOG_INFO("Disabling abstract command reads from FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_read_csr_supported = false;
LOG_INFO("Disabling abstract command reads from CSRs.");
}
}
return result;
}
if (value)
*value = read_abstract_arg(target, 0, size);
return ERROR_OK;
}
static int register_write_abstract(struct target *target, uint32_t number,
uint64_t value, unsigned size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_write_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_write_csr_supported)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
if (write_abstract_arg(target, 0, value, size) != ERROR_OK)
return ERROR_FAIL;
int result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
if (info->cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_write_fpr_supported = false;
LOG_INFO("Disabling abstract command writes to FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_write_csr_supported = false;
LOG_INFO("Disabling abstract command writes to CSRs.");
}
}
return result;
}
return ERROR_OK;
}
static int examine_progbuf(struct target *target)
{
riscv013_info_t *info = get_info(target);
if (info->progbuf_writable != YNM_MAYBE)
return ERROR_OK;
/* Figure out if progbuf is writable. */
if (info->progbufsize < 1) {
info->progbuf_writable = YNM_NO;
LOG_INFO("No program buffer present.");
return ERROR_OK;
}
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, auipc(S0));
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
if (register_read_direct(target, &info->progbuf_address, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
riscv_program_init(&program, target);
riscv_program_insert(&program, sw(S0, S0, 0));
int result = riscv_program_exec(&program, target);
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
if (result != ERROR_OK) {
/* This program might have failed if the program buffer is not
* writable. */
info->progbuf_writable = YNM_NO;
return ERROR_OK;
}
uint32_t written;
if (dmi_read(target, &written, DMI_PROGBUF0) != ERROR_OK)
return ERROR_FAIL;
if (written == (uint32_t) info->progbuf_address) {
LOG_INFO("progbuf is writable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_YES;
} else {
LOG_INFO("progbuf is not writeable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_NO;
}
return ERROR_OK;
}
typedef enum {
SPACE_DMI_DATA,
SPACE_DMI_PROGBUF,
SPACE_DMI_RAM
} memory_space_t;
typedef struct {
/* How can the debugger access this memory? */
memory_space_t memory_space;
/* Memory address to access the scratch memory from the hart. */
riscv_addr_t hart_address;
/* Memory address to access the scratch memory from the debugger. */
riscv_addr_t debug_address;
struct working_area *area;
} scratch_mem_t;
/**
* Find some scratch memory to be used with the given program.
*/
static int scratch_reserve(struct target *target,
scratch_mem_t *scratch,
struct riscv_program *program,
unsigned size_bytes)
{
riscv_addr_t alignment = 1;
while (alignment < size_bytes)
alignment *= 2;
scratch->area = NULL;
riscv013_info_t *info = get_info(target);
if (info->dataaccess == 1) {
/* Sign extend dataaddr. */
scratch->hart_address = info->dataaddr;
if (info->dataaddr & (1<<11))
scratch->hart_address |= 0xfffffffffffff000ULL;
/* Align. */
scratch->hart_address = (scratch->hart_address + alignment - 1) & ~(alignment - 1);
if ((size_bytes + scratch->hart_address - info->dataaddr + 3) / 4 >=
info->datasize) {
scratch->memory_space = SPACE_DMI_DATA;
scratch->debug_address = (scratch->hart_address - info->dataaddr) / 4;
return ERROR_OK;
}
}
if (examine_progbuf(target) != ERROR_OK)
return ERROR_FAIL;
/* Allow for ebreak at the end of the program. */
unsigned program_size = (program->instruction_count + 1) * 4;
scratch->hart_address = (info->progbuf_address + program_size + alignment - 1) &
~(alignment - 1);
if ((size_bytes + scratch->hart_address - info->progbuf_address + 3) / 4 >=
info->progbufsize) {
scratch->memory_space = SPACE_DMI_PROGBUF;
scratch->debug_address = (scratch->hart_address - info->progbuf_address) / 4;
return ERROR_OK;
}
if (target_alloc_working_area(target, size_bytes + alignment - 1,
&scratch->area) == ERROR_OK) {
scratch->hart_address = (scratch->area->address + alignment - 1) &
~(alignment - 1);
scratch->memory_space = SPACE_DMI_RAM;
scratch->debug_address = scratch->hart_address;
return ERROR_OK;
}
LOG_ERROR("Couldn't find %d bytes of scratch RAM to use. Please configure "
"a work area with 'configure -work-area-phys'.", size_bytes);
return ERROR_FAIL;
}
static int scratch_release(struct target *target,
scratch_mem_t *scratch)
{
if (scratch->area)
return target_free_working_area(target, scratch->area);
return ERROR_OK;
}
static int scratch_read64(struct target *target, scratch_mem_t *scratch,
uint64_t *value)
{
uint32_t v;
switch (scratch->memory_space) {
case SPACE_DMI_DATA:
if (dmi_read(target, &v, DMI_DATA0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dmi_read(target, &v, DMI_DATA1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_PROGBUF:
if (dmi_read(target, &v, DMI_PROGBUF0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dmi_read(target, &v, DMI_PROGBUF1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8];
if (read_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
return ERROR_FAIL;
*value = buffer[0] |
(((uint64_t) buffer[1]) << 8) |
(((uint64_t) buffer[2]) << 16) |
(((uint64_t) buffer[3]) << 24) |
(((uint64_t) buffer[4]) << 32) |
(((uint64_t) buffer[5]) << 40) |
(((uint64_t) buffer[6]) << 48) |
(((uint64_t) buffer[7]) << 56);
}
break;
}
return ERROR_OK;
}
static int scratch_write64(struct target *target, scratch_mem_t *scratch,
uint64_t value)
{
switch (scratch->memory_space) {
case SPACE_DMI_DATA:
dmi_write(target, DMI_DATA0 + scratch->debug_address, value);
dmi_write(target, DMI_DATA1 + scratch->debug_address, value >> 32);
break;
case SPACE_DMI_PROGBUF:
dmi_write(target, DMI_PROGBUF0 + scratch->debug_address, value);
dmi_write(target, DMI_PROGBUF1 + scratch->debug_address, value >> 32);
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8] = {
value,
value >> 8,
value >> 16,
value >> 24,
value >> 32,
value >> 40,
value >> 48,
value >> 56
};
if (write_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
return ERROR_FAIL;
}
break;
}
return ERROR_OK;
}
/** Return register size in bits. */
static unsigned register_size(struct target *target, unsigned number)
{
/* If reg_cache hasn't been initialized yet, make a guess. We need this for
* when this function is called during examine(). */
if (target->reg_cache)
return target->reg_cache->reg_list[number].size;
else
return riscv_xlen(target);
}
/**
* Immediately write the new value to the requested register. This mechanism
* bypasses any caches.
*/
static int register_write_direct(struct target *target, unsigned number,
uint64_t value)
{
RISCV013_INFO(info);
RISCV_INFO(r);
LOG_DEBUG("{%d} reg[0x%x] <- 0x%" PRIx64, riscv_current_hartid(target),
number, value);
int result = register_write_abstract(target, number, value,
register_size(target, number));
if (result == ERROR_OK && target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, value);
}
if (result == ERROR_OK || info->progbufsize + r->impebreak < 2 ||
!riscv_is_halted(target))
return result;
struct riscv_program program;
riscv_program_init(&program, target);
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
scratch_mem_t scratch;
bool use_scratch = false;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
riscv_supports_extension(target, riscv_current_hartid(target), 'D') &&
riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a register, so
* we need to use some scratch RAM. */
use_scratch = true;
riscv_program_insert(&program, fld(number - GDB_REGNO_FPR0, S0, 0));
if (scratch_reserve(target, &scratch, &program, 8) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, scratch.hart_address)
!= ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
if (scratch_write64(target, &scratch, value) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
} else {
if (register_write_direct(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
if (riscv_supports_extension(target, riscv_current_hartid(target), 'D'))
riscv_program_insert(&program, fmv_d_x(number - GDB_REGNO_FPR0, S0));
else
riscv_program_insert(&program, fmv_w_x(number - GDB_REGNO_FPR0, S0));
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
riscv_program_csrw(&program, S0, number);
} else {
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
return ERROR_FAIL;
}
}
int exec_out = riscv_program_exec(&program, target);
/* Don't message on error. Probably the register doesn't exist. */
if (exec_out == ERROR_OK && target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, value);
}
if (use_scratch)
scratch_release(target, &scratch);
/* Restore S0. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
return exec_out;
}
/** Return the cached value, or read from the target if necessary. */
static int register_read(struct target *target, uint64_t *value, uint32_t number)
{
if (number == GDB_REGNO_ZERO) {
*value = 0;
return ERROR_OK;
}
int result = register_read_direct(target, value, number);
if (result != ERROR_OK)
return ERROR_FAIL;
if (target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, *value);
}
return ERROR_OK;
}
/** Actually read registers from the target right now. */
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number)
{
RISCV013_INFO(info);
RISCV_INFO(r);
int result = register_read_abstract(target, value, number,
register_size(target, number));
if (result != ERROR_OK &&
info->progbufsize + r->impebreak >= 2 &&
number > GDB_REGNO_XPR31) {
struct riscv_program program;
riscv_program_init(&program, target);
scratch_mem_t scratch;
bool use_scratch = false;
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
/* Write program to move data into s0. */
uint64_t mstatus;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
if (register_read(target, &mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
return ERROR_FAIL;
if ((mstatus & MSTATUS_FS) == 0)
if (register_write_direct(target, GDB_REGNO_MSTATUS,
set_field(mstatus, MSTATUS_FS, 1)) != ERROR_OK)
return ERROR_FAIL;
if (riscv_supports_extension(target, riscv_current_hartid(target), 'D')
&& riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a
* register, so we need to use some scratch RAM. */
riscv_program_insert(&program, fsd(number - GDB_REGNO_FPR0, S0,
0));
if (scratch_reserve(target, &scratch, &program, 8) != ERROR_OK)
return ERROR_FAIL;
use_scratch = true;
if (register_write_direct(target, GDB_REGNO_S0,
scratch.hart_address) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
} else if (riscv_supports_extension(target,
riscv_current_hartid(target), 'D')) {
riscv_program_insert(&program, fmv_x_d(S0, number - GDB_REGNO_FPR0));
} else {
riscv_program_insert(&program, fmv_x_w(S0, number - GDB_REGNO_FPR0));
}
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
riscv_program_csrr(&program, S0, number);
} else {
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
return ERROR_FAIL;
}
/* Execute program. */
result = riscv_program_exec(&program, target);
/* Don't message on error. Probably the register doesn't exist. */
if (use_scratch) {
result = scratch_read64(target, &scratch, value);
scratch_release(target, &scratch);
if (result != ERROR_OK)
return result;
} else {
/* Read S0 */
if (register_read_direct(target, value, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
}
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
(mstatus & MSTATUS_FS) == 0)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus) != ERROR_OK)
return ERROR_FAIL;
/* Restore S0. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
}
if (result == ERROR_OK) {
LOG_DEBUG("{%d} reg[0x%x] = 0x%" PRIx64, riscv_current_hartid(target),
number, *value);
}
return result;
}
int wait_for_authbusy(struct target *target, uint32_t *dmstatus)
{
time_t start = time(NULL);
while (1) {
uint32_t value;
if (dmstatus_read(target, &value, false) != ERROR_OK)
return ERROR_FAIL;
if (dmstatus)
*dmstatus = value;
if (!get_field(value, DMI_DMSTATUS_AUTHBUSY))
break;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for authbusy to go low (dmstatus=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
value);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/*** OpenOCD target functions. ***/
static void deinit_target(struct target *target)
{
LOG_DEBUG("riscv_deinit_target()");
riscv_info_t *info = (riscv_info_t *) target->arch_info;
free(info->version_specific);
/* TODO: free register arch_info */
info->version_specific = NULL;
}
static int examine(struct target *target)
{
/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
uint32_t dtmcontrol = dtmcontrol_scan(target, 0);
LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol);
LOG_DEBUG(" dmireset=%d", get_field(dtmcontrol, DTM_DTMCS_DMIRESET));
LOG_DEBUG(" idle=%d", get_field(dtmcontrol, DTM_DTMCS_IDLE));
LOG_DEBUG(" dmistat=%d", get_field(dtmcontrol, DTM_DTMCS_DMISTAT));
LOG_DEBUG(" abits=%d", get_field(dtmcontrol, DTM_DTMCS_ABITS));
LOG_DEBUG(" version=%d", get_field(dtmcontrol, DTM_DTMCS_VERSION));
if (dtmcontrol == 0) {
LOG_ERROR("dtmcontrol is 0. Check JTAG connectivity/board power.");
return ERROR_FAIL;
}
if (get_field(dtmcontrol, DTM_DTMCS_VERSION) != 1) {
LOG_ERROR("Unsupported DTM version %d. (dtmcontrol=0x%x)",
get_field(dtmcontrol, DTM_DTMCS_VERSION), dtmcontrol);
return ERROR_FAIL;
}
riscv013_info_t *info = get_info(target);
info->abits = get_field(dtmcontrol, DTM_DTMCS_ABITS);
info->dtmcs_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);
/* Reset the Debug Module. */
dm013_info_t *dm = get_dm(target);
if (!dm->was_reset) {
dmi_write(target, DMI_DMCONTROL, 0);
dmi_write(target, DMI_DMCONTROL, DMI_DMCONTROL_DMACTIVE);
dm->was_reset = true;
}
dmi_write(target, DMI_DMCONTROL, DMI_DMCONTROL_HARTSELLO |
DMI_DMCONTROL_HARTSELHI | DMI_DMCONTROL_DMACTIVE);
uint32_t dmcontrol;
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(dmcontrol, DMI_DMCONTROL_DMACTIVE)) {
LOG_ERROR("Debug Module did not become active. dmcontrol=0x%x",
dmcontrol);
return ERROR_FAIL;
}
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, false) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("dmstatus: 0x%08x", dmstatus);
if (get_field(dmstatus, DMI_DMSTATUS_VERSION) != 2) {
LOG_ERROR("OpenOCD only supports Debug Module version 2, not %d "
"(dmstatus=0x%x)", get_field(dmstatus, DMI_DMSTATUS_VERSION), dmstatus);
return ERROR_FAIL;
}
uint32_t hartsel =
(get_field(dmcontrol, DMI_DMCONTROL_HARTSELHI) <<
DMI_DMCONTROL_HARTSELLO_LENGTH) |
get_field(dmcontrol, DMI_DMCONTROL_HARTSELLO);
info->hartsellen = 0;
while (hartsel & 1) {
info->hartsellen++;
hartsel >>= 1;
}
LOG_DEBUG("hartsellen=%d", info->hartsellen);
uint32_t hartinfo;
if (dmi_read(target, &hartinfo, DMI_HARTINFO) != ERROR_OK)
return ERROR_FAIL;
info->datasize = get_field(hartinfo, DMI_HARTINFO_DATASIZE);
info->dataaccess = get_field(hartinfo, DMI_HARTINFO_DATAACCESS);
info->dataaddr = get_field(hartinfo, DMI_HARTINFO_DATAADDR);
if (!get_field(dmstatus, DMI_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", dmstatus);
/* If we return ERROR_FAIL here, then in a multicore setup the next
* core won't be examined, which means we won't set up the
* authentication commands for them, which means the config script
* needs to be a lot more complex. */
return ERROR_OK;
}
if (dmi_read(target, &info->sbcs, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* Check that abstract data registers are accessible. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->datacount = get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT);
info->progbufsize = get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE);
LOG_INFO("datacount=%d progbufsize=%d", info->datacount, info->progbufsize);
RISCV_INFO(r);
r->impebreak = get_field(dmstatus, DMI_DMSTATUS_IMPEBREAK);
if (info->progbufsize + r->impebreak < 2) {
LOG_WARNING("We won't be able to execute fence instructions on this "
"target. Memory may not always appear consistent. "
"(progbufsize=%d, impebreak=%d)", info->progbufsize,
r->impebreak);
}
/* Before doing anything else we must first enumerate the harts. */
/* Don't call any riscv_* functions until after we've counted the number of
* cores and initialized registers. */
for (int i = 0; i < MIN(RISCV_MAX_HARTS, 1 << info->hartsellen); ++i) {
if (!riscv_rtos_enabled(target) && i != target->coreid)
continue;
r->current_hartid = i;
if (riscv013_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
uint32_t s;
if (dmstatus_read(target, &s, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(s, DMI_DMSTATUS_ANYNONEXISTENT))
break;
r->hart_count = i + 1;
if (get_field(s, DMI_DMSTATUS_ANYHAVERESET))
dmi_write(target, DMI_DMCONTROL,
set_hartsel(DMI_DMCONTROL_DMACTIVE | DMI_DMCONTROL_ACKHAVERESET, i));
bool halted = riscv_is_halted(target);
if (!halted) {
if (riscv013_halt_current_hart(target) != ERROR_OK) {
LOG_ERROR("Fatal: Hart %d failed to halt during examine()", i);
return ERROR_FAIL;
}
}
/* Without knowing anything else we can at least mess with the
* program buffer. */
r->debug_buffer_size[i] = info->progbufsize;
int result = register_read_abstract(target, NULL, GDB_REGNO_S0, 64);
if (result == ERROR_OK)
r->xlen[i] = 64;
else
r->xlen[i] = 32;
if (register_read(target, &r->misa[i], GDB_REGNO_MISA)) {
LOG_ERROR("Fatal: Failed to read MISA from hart %d.", i);
return ERROR_FAIL;
}
/* Now init registers based on what we discovered. */
if (riscv_init_registers(target) != ERROR_OK)
return ERROR_FAIL;
/* Display this as early as possible to help people who are using
* really slow simulators. */
LOG_DEBUG(" hart %d: XLEN=%d, misa=0x%" PRIx64, i, r->xlen[i],
r->misa[i]);
if (!halted)
riscv013_resume_current_hart(target);
}
LOG_DEBUG("Enumerated %d harts", r->hart_count);
if (r->hart_count == 0) {
LOG_ERROR("No harts found!");
return ERROR_FAIL;
}
target_set_examined(target);
/* Some regression suites rely on seeing 'Examined RISC-V core' to know
* when they can connect with gdb/telnet.
* We will need to update those suites if we want to change that text. */
LOG_INFO("Examined RISC-V core; found %d harts",
riscv_count_harts(target));
for (int i = 0; i < riscv_count_harts(target); ++i) {
if (riscv_hart_enabled(target, i)) {
LOG_INFO(" hart %d: XLEN=%d, misa=0x%" PRIx64, i, r->xlen[i],
r->misa[i]);
} else {
LOG_INFO(" hart %d: currently disabled", i);
}
}
return ERROR_OK;
}
int riscv013_authdata_read(struct target *target, uint32_t *value)
{
if (wait_for_authbusy(target, NULL) != ERROR_OK)
return ERROR_FAIL;
return dmi_read(target, value, DMI_AUTHDATA);
}
int riscv013_authdata_write(struct target *target, uint32_t value)
{
uint32_t before, after;
if (wait_for_authbusy(target, &before) != ERROR_OK)
return ERROR_FAIL;
dmi_write(target, DMI_AUTHDATA, value);
if (wait_for_authbusy(target, &after) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(before, DMI_DMSTATUS_AUTHENTICATED) &&
get_field(after, DMI_DMSTATUS_AUTHENTICATED)) {
LOG_INFO("authdata_write resulted in successful authentication");
int result = ERROR_OK;
dm013_info_t *dm = get_dm(target);
target_list_t *entry;
list_for_each_entry(entry, &dm->target_list, list) {
if (examine(entry->target) != ERROR_OK)
result = ERROR_FAIL;
}
return result;
}
return ERROR_OK;
}
static int init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_DEBUG("init");
riscv_info_t *generic_info = (riscv_info_t *) target->arch_info;
generic_info->get_register = &riscv013_get_register;
generic_info->set_register = &riscv013_set_register;
generic_info->select_current_hart = &riscv013_select_current_hart;
generic_info->is_halted = &riscv013_is_halted;
generic_info->halt_current_hart = &riscv013_halt_current_hart;
generic_info->resume_current_hart = &riscv013_resume_current_hart;
generic_info->step_current_hart = &riscv013_step_current_hart;
generic_info->on_halt = &riscv013_on_halt;
generic_info->on_resume = &riscv013_on_resume;
generic_info->on_step = &riscv013_on_step;
generic_info->halt_reason = &riscv013_halt_reason;
generic_info->read_debug_buffer = &riscv013_read_debug_buffer;
generic_info->write_debug_buffer = &riscv013_write_debug_buffer;
generic_info->execute_debug_buffer = &riscv013_execute_debug_buffer;
generic_info->fill_dmi_write_u64 = &riscv013_fill_dmi_write_u64;
generic_info->fill_dmi_read_u64 = &riscv013_fill_dmi_read_u64;
generic_info->fill_dmi_nop_u64 = &riscv013_fill_dmi_nop_u64;
generic_info->dmi_write_u64_bits = &riscv013_dmi_write_u64_bits;
generic_info->authdata_read = &riscv013_authdata_read;
generic_info->authdata_write = &riscv013_authdata_write;
generic_info->dmi_read = &dmi_read;
generic_info->dmi_write = &dmi_write;
generic_info->test_sba_config_reg = &riscv013_test_sba_config_reg;
generic_info->test_compliance = &riscv013_test_compliance;
generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
if (!generic_info->version_specific)
return ERROR_FAIL;
riscv013_info_t *info = get_info(target);
info->progbufsize = -1;
info->dmi_busy_delay = 0;
info->bus_master_read_delay = 0;
info->bus_master_write_delay = 0;
info->ac_busy_delay = 0;
/* Assume all these abstract commands are supported until we learn
* otherwise.
* TODO: The spec allows eg. one CSR to be able to be accessed abstractly
* while another one isn't. We don't track that this closely here, but in
* the future we probably should. */
info->abstract_read_csr_supported = true;
info->abstract_write_csr_supported = true;
info->abstract_read_fpr_supported = true;
info->abstract_write_fpr_supported = true;
return ERROR_OK;
}
static int assert_reset(struct target *target)
{
RISCV_INFO(r);
select_dmi(target);
uint32_t control_base = set_field(0, DMI_DMCONTROL_DMACTIVE, 1);
if (target->rtos) {
/* There's only one target, and OpenOCD thinks each hart is a thread.
* We must reset them all. */
/* TODO: Try to use hasel in dmcontrol */
/* Set haltreq for each hart. */
uint32_t control = control_base;
for (int i = 0; i < riscv_count_harts(target); ++i) {
if (!riscv_hart_enabled(target, i))
continue;
control = set_hartsel(control_base, i);
control = set_field(control, DMI_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
dmi_write(target, DMI_DMCONTROL, control);
}
/* Assert ndmreset */
control = set_field(control, DMI_DMCONTROL_NDMRESET, 1);
dmi_write(target, DMI_DMCONTROL, control);
} else {
/* Reset just this hart. */
uint32_t control = set_hartsel(control_base, r->current_hartid);
control = set_field(control, DMI_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
control = set_field(control, DMI_DMCONTROL_NDMRESET, 1);
dmi_write(target, DMI_DMCONTROL, control);
}
target->state = TARGET_RESET;
return ERROR_OK;
}
static int deassert_reset(struct target *target)
{
RISCV_INFO(r);
RISCV013_INFO(info);
select_dmi(target);
/* Clear the reset, but make sure haltreq is still set */
uint32_t control = 0;
control = set_field(control, DMI_DMCONTROL_HALTREQ, target->reset_halt ? 1 : 0);
control = set_field(control, DMI_DMCONTROL_DMACTIVE, 1);
dmi_write(target, DMI_DMCONTROL,
set_hartsel(control, r->current_hartid));
uint32_t dmstatus;
int dmi_busy_delay = info->dmi_busy_delay;
time_t start = time(NULL);
for (int i = 0; i < riscv_count_harts(target); ++i) {
int index = i;
if (target->rtos) {
if (!riscv_hart_enabled(target, index))
continue;
dmi_write(target, DMI_DMCONTROL,
set_hartsel(control, index));
} else {
index = r->current_hartid;
}
char *operation;
uint32_t expected_field;
if (target->reset_halt) {
operation = "halt";
expected_field = DMI_DMSTATUS_ALLHALTED;
} else {
operation = "run";
expected_field = DMI_DMSTATUS_ALLRUNNING;
}
LOG_DEBUG("Waiting for hart %d to %s out of reset.", index, operation);
while (1) {
int result = dmstatus_read_timeout(target, &dmstatus, true,
riscv_reset_timeout_sec);
if (result == ERROR_TIMEOUT_REACHED)
LOG_ERROR("Hart %d didn't complete a DMI read coming out of "
"reset in %ds; Increase the timeout with riscv "
"set_reset_timeout_sec.",
index, riscv_reset_timeout_sec);
if (result != ERROR_OK)
return result;
if (get_field(dmstatus, expected_field))
break;
if (time(NULL) - start > riscv_reset_timeout_sec) {
LOG_ERROR("Hart %d didn't %s coming out of reset in %ds; "
"dmstatus=0x%x; "
"Increase the timeout with riscv set_reset_timeout_sec.",
index, operation, riscv_reset_timeout_sec, dmstatus);
return ERROR_FAIL;
}
}
target->state = TARGET_HALTED;
if (get_field(dmstatus, DMI_DMSTATUS_ALLHAVERESET)) {
/* Ack reset. */
dmi_write(target, DMI_DMCONTROL,
set_hartsel(control, index) |
DMI_DMCONTROL_ACKHAVERESET);
}
if (!target->rtos)
break;
}
info->dmi_busy_delay = dmi_busy_delay;
return ERROR_OK;
}
/**
* @par size in bytes
*/
static void write_to_buf(uint8_t *buffer, uint64_t value, unsigned size)
{
switch (size) {
case 8:
buffer[7] = value >> 56;
buffer[6] = value >> 48;
buffer[5] = value >> 40;
buffer[4] = value >> 32;
/* falls through */
case 4:
buffer[3] = value >> 24;
buffer[2] = value >> 16;
/* falls through */
case 2:
buffer[1] = value >> 8;
/* falls through */
case 1:
buffer[0] = value;
break;
default:
assert(false);
}
}
static int execute_fence(struct target *target)
{
int old_hartid = riscv_current_hartid(target);
/* FIXME: For non-coherent systems we need to flush the caches right
* here, but there's no ISA-defined way of doing that. */
{
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_fence_i(&program);
riscv_program_fence(&program);
int result = riscv_program_exec(&program, target);
if (result != ERROR_OK)
LOG_DEBUG("Unable to execute pre-fence");
}
for (int i = 0; i < riscv_count_harts(target); ++i) {
if (!riscv_hart_enabled(target, i))
continue;
riscv_set_current_hartid(target, i);
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_fence_i(&program);
riscv_program_fence(&program);
int result = riscv_program_exec(&program, target);
if (result != ERROR_OK)
LOG_DEBUG("Unable to execute fence on hart %d", i);
}
riscv_set_current_hartid(target, old_hartid);
return ERROR_OK;
}
static void log_memory_access(target_addr_t address, uint64_t value,
unsigned size_bytes, bool read)
{
if (debug_level < LOG_LVL_DEBUG)
return;
char fmt[80];
sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%0%d" PRIx64,
address, read ? "read" : "write", size_bytes * 2);
value &= (((uint64_t) 0x1) << (size_bytes * 8)) - 1;
LOG_DEBUG(fmt, value);
}
/* Read the relevant sbdata regs depending on size, and put the results into
* buffer. */
static int read_memory_bus_word(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
uint32_t value;
if (size > 12) {
if (dmi_read(target, &value, DMI_SBDATA3) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + 12, value, 4);
log_memory_access(address + 12, value, 4, true);
}
if (size > 8) {
if (dmi_read(target, &value, DMI_SBDATA2) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + 8, value, 4);
log_memory_access(address + 8, value, 4, true);
}
if (size > 4) {
if (dmi_read(target, &value, DMI_SBDATA1) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + 4, value, 4);
log_memory_access(address + 4, value, 4, true);
}
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer, value, MIN(size, 4));
log_memory_access(address, value, MIN(size, 4), true);
return ERROR_OK;
}
static uint32_t sb_sbaccess(unsigned size_bytes)
{
switch (size_bytes) {
case 1:
return set_field(0, DMI_SBCS_SBACCESS, 0);
case 2:
return set_field(0, DMI_SBCS_SBACCESS, 1);
case 4:
return set_field(0, DMI_SBCS_SBACCESS, 2);
case 8:
return set_field(0, DMI_SBCS_SBACCESS, 3);
case 16:
return set_field(0, DMI_SBCS_SBACCESS, 4);
}
assert(0);
return 0; /* Make mingw happy. */
}
static target_addr_t sb_read_address(struct target *target)
{
RISCV013_INFO(info);
unsigned sbasize = get_field(info->sbcs, DMI_SBCS_SBASIZE);
target_addr_t address = 0;
uint32_t v;
if (sbasize > 32) {
#if BUILD_TARGET64
dmi_read(target, &v, DMI_SBADDRESS1);
address |= v;
address <<= 32;
#endif
}
dmi_read(target, &v, DMI_SBADDRESS0);
address |= v;
return address;
}
static int sb_write_address(struct target *target, target_addr_t address)
{
RISCV013_INFO(info);
unsigned sbasize = get_field(info->sbcs, DMI_SBCS_SBASIZE);
/* There currently is no support for >64-bit addresses in OpenOCD. */
if (sbasize > 96)
dmi_write(target, DMI_SBADDRESS3, 0);
if (sbasize > 64)
dmi_write(target, DMI_SBADDRESS2, 0);
if (sbasize > 32)
#if BUILD_TARGET64
dmi_write(target, DMI_SBADDRESS1, address >> 32);
#else
dmi_write(target, DMI_SBADDRESS1, 0);
#endif
return dmi_write(target, DMI_SBADDRESS0, address);
}
static int read_sbcs_nonbusy(struct target *target, uint32_t *sbcs)
{
time_t start = time(NULL);
while (1) {
if (dmi_read(target, sbcs, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(*sbcs, DMI_SBCS_SBBUSY))
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec, *sbcs);
return ERROR_FAIL;
}
}
}
static int read_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
LOG_DEBUG("System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
uint8_t *t_buffer = buffer;
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
uint32_t access = 0;
const int DMI_SBCS_SBSINGLEREAD_OFFSET = 20;
const uint32_t DMI_SBCS_SBSINGLEREAD = (0x1U << DMI_SBCS_SBSINGLEREAD_OFFSET);
const int DMI_SBCS_SBAUTOREAD_OFFSET = 15;
const uint32_t DMI_SBCS_SBAUTOREAD = (0x1U << DMI_SBCS_SBAUTOREAD_OFFSET);
/* ww favorise one off reading if there is an issue */
if (count == 1) {
for (uint32_t i = 0; i < count; i++) {
if (dmi_read(target, &access, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
dmi_write(target, DMI_SBADDRESS0, cur_addr);
/* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
access = set_field(access, DMI_SBCS_SBSINGLEREAD, 1);
LOG_DEBUG("\r\nread_memory: sab: access: 0x%08x", access);
dmi_write(target, DMI_SBCS, access);
/* 3) read */
uint32_t value;
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("\r\nread_memory: sab: value: 0x%08x", value);
write_to_buf(t_buffer, value, size);
t_buffer += size;
cur_addr += size;
}
return ERROR_OK;
}
/* has to be the same size if we want to read a block */
LOG_DEBUG("reading block until final address 0x%" PRIx64, fin_addr);
if (dmi_read(target, &access, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* set current address */
dmi_write(target, DMI_SBADDRESS0, cur_addr);
/* 2) write sbaccess=2, sbsingleread,sbautoread,sbautoincrement
* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
access = set_field(access, DMI_SBCS_SBAUTOREAD, 1);
access = set_field(access, DMI_SBCS_SBSINGLEREAD, 1);
access = set_field(access, DMI_SBCS_SBAUTOINCREMENT, 1);
LOG_DEBUG("\r\naccess: 0x%08x", access);
dmi_write(target, DMI_SBCS, access);
while (cur_addr < fin_addr) {
LOG_DEBUG("\r\nsab:autoincrement: \r\n size: %d\tcount:%d\taddress: 0x%08"
PRIx64, size, count, cur_addr);
/* read */
uint32_t value;
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(t_buffer, value, size);
cur_addr += size;
t_buffer += size;
/* if we are reaching last address, we must clear autoread */
if (cur_addr == fin_addr && count != 1) {
dmi_write(target, DMI_SBCS, 0);
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(t_buffer, value, size);
}
}
return ERROR_OK;
}
/**
* Read the requested memory using the system bus interface.
*/
static int read_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV013_INFO(info);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
while (next_address < end_address) {
uint32_t sbcs = set_field(0, DMI_SBCS_SBREADONADDR, 1);
sbcs |= sb_sbaccess(size);
sbcs = set_field(sbcs, DMI_SBCS_SBAUTOINCREMENT, 1);
sbcs = set_field(sbcs, DMI_SBCS_SBREADONDATA, count > 1);
dmi_write(target, DMI_SBCS, sbcs);
/* This address write will trigger the first read. */
sb_write_address(target, next_address);
if (info->bus_master_read_delay) {
jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_ERROR("Failed to scan idle sequence");
return ERROR_FAIL;
}
}
for (uint32_t i = (next_address - address) / size; i < count - 1; i++) {
read_memory_bus_word(target, address + i * size, size,
buffer + i * size);
}
sbcs = set_field(sbcs, DMI_SBCS_SBREADONDATA, 0);
dmi_write(target, DMI_SBCS, sbcs);
read_memory_bus_word(target, address + (count - 1) * size, size,
buffer + (count - 1) * size);
if (read_sbcs_nonbusy(target, &sbcs) != ERROR_OK)
return ERROR_FAIL;
if (get_field(sbcs, DMI_SBCS_SBBUSYERROR)) {
/* We read while the target was busy. Slow down and try again. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBBUSYERROR);
next_address = sb_read_address(target);
info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
continue;
}
unsigned error = get_field(sbcs, DMI_SBCS_SBERROR);
if (error == 0) {
next_address = end_address;
} else {
/* Some error indicating the bus access failed, but not because of
* something we did wrong. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBERROR);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int batch_run(const struct target *target, struct riscv_batch *batch)
{
RISCV013_INFO(info);
RISCV_INFO(r);
if (r->reset_delays_wait >= 0) {
r->reset_delays_wait -= batch->used_scans;
if (r->reset_delays_wait <= 0) {
batch->idle_count = 0;
info->dmi_busy_delay = 0;
info->ac_busy_delay = 0;
}
}
return riscv_batch_run(batch);
}
/**
* Read the requested memory, taking care to execute every read exactly once,
* even if cmderr=busy is encountered.
*/
static int read_memory_progbuf_inner(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV013_INFO(info);
int result = ERROR_OK;
/* Write address to S0, and execute buffer. */
result = register_write_direct(target, GDB_REGNO_S0, address);
if (result != ERROR_OK)
goto error;
uint32_t command = access_register_command(target, GDB_REGNO_S1,
riscv_xlen(target),
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
if (execute_abstract_command(target, command) != ERROR_OK)
return ERROR_FAIL;
/* First read has just triggered. Result is in s1. */
if (count == 1) {
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer, value, size);
log_memory_access(address, value, size, true);
return ERROR_OK;
}
if (dmi_write(target, DMI_ABSTRACTAUTO,
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET) != ERROR_OK)
goto error;
/* Read garbage from dmi_data0, which triggers another execution of the
* program. Now dmi_data0 contains the first good result, and s1 the next
* memory value. */
if (dmi_read_exec(target, NULL, DMI_DATA0) != ERROR_OK)
goto error;
/* read_addr is the next address that the hart will read from, which is the
* value in s0. */
riscv_addr_t read_addr = address + 2 * size;
riscv_addr_t fin_addr = address + (count * size);
while (read_addr < fin_addr) {
LOG_DEBUG("read_addr=0x%" PRIx64 ", fin_addr=0x%" PRIx64, read_addr,
fin_addr);
/* The pipeline looks like this:
* memory -> s1 -> dm_data0 -> debugger
* Right now:
* s0 contains read_addr
* s1 contains mem[read_addr-size]
* dm_data0 contains[read_addr-size*2]
*/
LOG_DEBUG("creating burst to read from 0x%" PRIx64
" up to 0x%" PRIx64, read_addr, fin_addr);
assert(read_addr >= address && read_addr < fin_addr);
struct riscv_batch *batch = riscv_batch_alloc(target, 32,
info->dmi_busy_delay + info->ac_busy_delay);
size_t reads = 0;
for (riscv_addr_t addr = read_addr; addr < fin_addr; addr += size) {
riscv_batch_add_dmi_read(batch, DMI_DATA0);
reads++;
if (riscv_batch_full(batch))
break;
}
batch_run(target, batch);
/* Wait for the target to finish performing the last abstract command,
* and update our copy of cmderr. If we see that DMI is busy here,
* dmi_busy_delay will be incremented. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
riscv_addr_t next_read_addr;
unsigned ignore_last = 0;
switch (info->cmderr) {
case CMDERR_NONE:
LOG_DEBUG("successful (partial?) memory read");
next_read_addr = read_addr + reads * size;
break;
case CMDERR_BUSY:
LOG_DEBUG("memory read resulted in busy response");
increase_ac_busy_delay(target);
riscv013_clear_abstract_error(target);
dmi_write(target, DMI_ABSTRACTAUTO, 0);
uint32_t dmi_data0;
/* This is definitely a good version of the value that we
* attempted to read when we discovered that the target was
* busy. */
if (dmi_read(target, &dmi_data0, DMI_DATA0) != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* See how far we got, clobbering dmi_data0. */
result = register_read_direct(target, &next_read_addr,
GDB_REGNO_S0);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
write_to_buf(buffer + next_read_addr - 2 * size - address, dmi_data0, size);
log_memory_access(next_read_addr - 2 * size, dmi_data0, size, true);
/* Restore the command, and execute it.
* Now DMI_DATA0 contains the next value just as it would if no
* error had occurred. */
dmi_write_exec(target, DMI_COMMAND, command);
next_read_addr += size;
dmi_write(target, DMI_ABSTRACTAUTO,
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
ignore_last = 1;
break;
default:
LOG_DEBUG("error when reading memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
/* Now read whatever we got out of the batch. */
dmi_status_t status = DMI_STATUS_SUCCESS;
for (size_t i = 0; i < reads; i++) {
riscv_addr_t receive_addr = read_addr + (i-2) * size;
assert(receive_addr < address + size * count);
if (receive_addr < address)
continue;
if (receive_addr > next_read_addr - (3 + ignore_last) * size)
break;
uint64_t dmi_out = riscv_batch_get_dmi_read(batch, i);
status = get_field(dmi_out, DTM_DMI_OP);
if (status != DMI_STATUS_SUCCESS) {
/* If we're here because of busy count, dmi_busy_delay will
* already have been increased and busy state will have been
* cleared in dmi_read(). */
/* In at least some implementations, we issue a read, and then
* can get busy back when we try to scan out the read result,
* and the actual read value is lost forever. Since this is
* rare in any case, we return error here and rely on our
* caller to reread the entire block. */
LOG_WARNING("Batch memory read encountered DMI error %d. "
"Falling back on slower reads.", status);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
uint32_t value = get_field(dmi_out, DTM_DMI_DATA);
riscv_addr_t offset = receive_addr - address;
write_to_buf(buffer + offset, value, size);
log_memory_access(receive_addr, value, size, true);
receive_addr += size;
}
read_addr = next_read_addr;
riscv_batch_free(batch);
}
dmi_write(target, DMI_ABSTRACTAUTO, 0);
if (count > 1) {
/* Read the penultimate word. */
uint32_t value;
if (dmi_read(target, &value, DMI_DATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + size * (count-2), value, size);
log_memory_access(address + size * (count-2), value, size, true);
}
/* Read the last word. */
uint64_t value;
result = register_read_direct(target, &value, GDB_REGNO_S1);
if (result != ERROR_OK)
goto error;
write_to_buf(buffer + size * (count-1), value, size);
log_memory_access(address + size * (count-1), value, size, true);
return ERROR_OK;
error:
dmi_write(target, DMI_ABSTRACTAUTO, 0);
return result;
}
/**
* Read the requested memory, silently handling memory access errors.
*/
static int read_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int result = ERROR_OK;
LOG_DEBUG("reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
select_dmi(target);
memset(buffer, 0, count*size);
/* s0 holds the next address to write to
* s1 holds the next data value to write
*/
uint64_t s0, s1;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, &s1, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (load, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
switch (size) {
case 1:
riscv_program_lbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_lhr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_lwr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
riscv_program_write(&program);
result = read_memory_progbuf_inner(target, address, size, count, buffer);
if (result != ERROR_OK) {
/* The full read did not succeed, so we will try to read each word individually. */
/* This will not be fast, but reading outside actual memory is a special case anyway. */
/* It will make the toolchain happier, especially Eclipse Memory View as it reads ahead. */
target_addr_t address_i = address;
uint32_t size_i = size;
uint32_t count_i = 1;
uint8_t *buffer_i = buffer;
for (uint32_t i = 0; i < count; i++, address_i += size_i, buffer_i += size_i) {
/* TODO: This is much slower than it needs to be because we end up
* writing the address to read for every word we read. */
result = read_memory_progbuf_inner(target, address_i, size_i, count_i, buffer_i);
/* The read of a single word failed, so we will just return 0 for that instead */
if (result != ERROR_OK) {
LOG_DEBUG("error reading single word of %d bytes from 0x%" TARGET_PRIxADDR,
size_i, address_i);
uint64_t value_i = 0;
write_to_buf(buffer_i, value_i, size_i);
}
}
result = ERROR_OK;
}
riscv_set_register(target, GDB_REGNO_S0, s0);
riscv_set_register(target, GDB_REGNO_S1, s1);
return result;
}
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV013_INFO(info);
if (info->progbufsize >= 2 && !riscv_prefer_sba)
return read_memory_progbuf(target, address, size, count, buffer);
if ((get_field(info->sbcs, DMI_SBCS_SBACCESS8) && size == 1) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS16) && size == 2) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS32) && size == 4) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS64) && size == 8) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS128) && size == 16)) {
if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 0)
return read_memory_bus_v0(target, address, size, count, buffer);
else if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 1)
return read_memory_bus_v1(target, address, size, count, buffer);
}
if (info->progbufsize >= 2)
return read_memory_progbuf(target, address, size, count, buffer);
LOG_ERROR("Don't know how to read memory on this target.");
return ERROR_FAIL;
}
static int write_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
/*1) write sbaddress: for singlewrite and autoincrement, we need to write the address once*/
LOG_DEBUG("System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
dmi_write(target, DMI_SBADDRESS0, address);
int64_t value = 0;
int64_t access = 0;
riscv_addr_t offset = 0;
riscv_addr_t t_addr = 0;
const uint8_t *t_buffer = buffer + offset;
/* B.8 Writing Memory, single write check if we write in one go */
if (count == 1) { /* count is in bytes here */
/* check the size */
switch (size) {
case 1:
value = t_buffer[0];
break;
case 2:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8);
break;
case 4:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8)
| ((uint32_t) t_buffer[2] << 16)
| ((uint32_t) t_buffer[3] << 24);
break;
default:
LOG_ERROR("unsupported access size: %d", size);
return ERROR_FAIL;
}
access = 0;
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
dmi_write(target, DMI_SBCS, access);
LOG_DEBUG("\r\naccess: 0x%08" PRIx64, access);
LOG_DEBUG("\r\nwrite_memory:SAB: ONE OFF: value 0x%08" PRIx64, value);
dmi_write(target, DMI_SBDATA0, value);
return ERROR_OK;
}
/*B.8 Writing Memory, using autoincrement*/
access = 0;
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
access = set_field(access, DMI_SBCS_SBAUTOINCREMENT, 1);
LOG_DEBUG("\r\naccess: 0x%08" PRIx64, access);
dmi_write(target, DMI_SBCS, access);
/*2)set the value according to the size required and write*/
for (riscv_addr_t i = 0; i < count; ++i) {
offset = size*i;
/* for monitoring only */
t_addr = address + offset;
t_buffer = buffer + offset;
switch (size) {
case 1:
value = t_buffer[0];
break;
case 2:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8);
break;
case 4:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8)
| ((uint32_t) t_buffer[2] << 16)
| ((uint32_t) t_buffer[3] << 24);
break;
default:
LOG_ERROR("unsupported access size: %d", size);
return ERROR_FAIL;
}
LOG_DEBUG("SAB:autoincrement: expected address: 0x%08x value: 0x%08x"
PRIx64, (uint32_t)t_addr, (uint32_t)value);
dmi_write(target, DMI_SBDATA0, value);
}
/*reset the autoincrement when finished (something weird is happening if this is not done at the end*/
access = set_field(access, DMI_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DMI_SBCS, access);
return ERROR_OK;
}
static int write_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
uint32_t sbcs = sb_sbaccess(size);
sbcs = set_field(sbcs, DMI_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DMI_SBCS, sbcs);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
sb_write_address(target, next_address);
while (next_address < end_address) {
for (uint32_t i = (next_address - address) / size; i < count; i++) {
const uint8_t *p = buffer + i * size;
if (size > 12)
dmi_write(target, DMI_SBDATA3,
((uint32_t) p[12]) |
(((uint32_t) p[13]) << 8) |
(((uint32_t) p[14]) << 16) |
(((uint32_t) p[15]) << 24));
if (size > 8)
dmi_write(target, DMI_SBDATA2,
((uint32_t) p[8]) |
(((uint32_t) p[9]) << 8) |
(((uint32_t) p[10]) << 16) |
(((uint32_t) p[11]) << 24));
if (size > 4)
dmi_write(target, DMI_SBDATA1,
((uint32_t) p[4]) |
(((uint32_t) p[5]) << 8) |
(((uint32_t) p[6]) << 16) |
(((uint32_t) p[7]) << 24));
uint32_t value = p[0];
if (size > 2) {
value |= ((uint32_t) p[2]) << 16;
value |= ((uint32_t) p[3]) << 24;
}
if (size > 1)
value |= ((uint32_t) p[1]) << 8;
dmi_write(target, DMI_SBDATA0, value);
log_memory_access(address + i * size, value, size, false);
if (info->bus_master_write_delay) {
jtag_add_runtest(info->bus_master_write_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_ERROR("Failed to scan idle sequence");
return ERROR_FAIL;
}
}
}
if (read_sbcs_nonbusy(target, &sbcs) != ERROR_OK)
return ERROR_FAIL;
if (get_field(sbcs, DMI_SBCS_SBBUSYERROR)) {
/* We wrote while the target was busy. Slow down and try again. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBBUSYERROR);
next_address = sb_read_address(target);
info->bus_master_write_delay += info->bus_master_write_delay / 10 + 1;
continue;
}
unsigned error = get_field(sbcs, DMI_SBCS_SBERROR);
if (error == 0) {
next_address = end_address;
} else {
/* Some error indicating the bus access failed, but not because of
* something we did wrong. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBERROR);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int write_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
LOG_DEBUG("writing %d words of %d bytes to 0x%08lx", count, size, (long)address);
select_dmi(target);
/* s0 holds the next address to write to
* s1 holds the next data value to write
*/
int result = ERROR_OK;
uint64_t s0, s1;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, &s1, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (store, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
switch (size) {
case 1:
riscv_program_sbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_shr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_swr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
result = ERROR_FAIL;
goto error;
}
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
result = riscv_program_ebreak(&program);
if (result != ERROR_OK)
goto error;
riscv_program_write(&program);
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
bool setup_needed = true;
LOG_DEBUG("writing until final address 0x%016" PRIx64, fin_addr);
while (cur_addr < fin_addr) {
LOG_DEBUG("transferring burst starting at address 0x%016" PRIx64,
cur_addr);
struct riscv_batch *batch = riscv_batch_alloc(
target,
32,
info->dmi_busy_delay + info->ac_busy_delay);
/* To write another word, we put it in S1 and execute the program. */
unsigned start = (cur_addr - address) / size;
for (unsigned i = start; i < count; ++i) {
unsigned offset = size*i;
const uint8_t *t_buffer = buffer + offset;
uint32_t value;
switch (size) {
case 1:
value = t_buffer[0];
break;
case 2:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8);
break;
case 4:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8)
| ((uint32_t) t_buffer[2] << 16)
| ((uint32_t) t_buffer[3] << 24);
break;
default:
LOG_ERROR("unsupported access size: %d", size);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
log_memory_access(address + offset, value, size, false);
cur_addr += size;
if (setup_needed) {
result = register_write_direct(target, GDB_REGNO_S0,
address + offset);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Write value. */
dmi_write(target, DMI_DATA0, value);
/* Write and execute command that moves value into S1 and
* executes program buffer. */
uint32_t command = access_register_command(target,
GDB_REGNO_S1, 32,
AC_ACCESS_REGISTER_POSTEXEC |
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Turn on autoexec */
dmi_write(target, DMI_ABSTRACTAUTO,
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
setup_needed = false;
} else {
riscv_batch_add_dmi_write(batch, DMI_DATA0, value);
if (riscv_batch_full(batch))
break;
}
}
result = batch_run(target, batch);
riscv_batch_free(batch);
if (result != ERROR_OK)
goto error;
/* Note that if the scan resulted in a Busy DMI response, it
* is this read to abstractcs that will cause the dmi_busy_delay
* to be incremented if necessary. */
uint32_t abstractcs;
bool dmi_busy_encountered;
if (dmi_op(target, &abstractcs, &dmi_busy_encountered, DMI_OP_READ,
DMI_ABSTRACTCS, 0, false) != ERROR_OK)
goto error;
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
if (info->cmderr == CMDERR_NONE && !dmi_busy_encountered) {
LOG_DEBUG("successful (partial?) memory write");
} else if (info->cmderr == CMDERR_BUSY || dmi_busy_encountered) {
if (info->cmderr == CMDERR_BUSY)
LOG_DEBUG("Memory write resulted in abstract command busy response.");
else if (dmi_busy_encountered)
LOG_DEBUG("Memory write resulted in DMI busy response.");
riscv013_clear_abstract_error(target);
increase_ac_busy_delay(target);
dmi_write(target, DMI_ABSTRACTAUTO, 0);
result = register_read_direct(target, &cur_addr, GDB_REGNO_S0);
if (result != ERROR_OK)
goto error;
setup_needed = true;
} else {
LOG_ERROR("error when writing memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
result = ERROR_FAIL;
goto error;
}
}
error:
dmi_write(target, DMI_ABSTRACTAUTO, 0);
if (register_write_direct(target, GDB_REGNO_S1, s1) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
if (info->progbufsize >= 2 && !riscv_prefer_sba)
return write_memory_progbuf(target, address, size, count, buffer);
if ((get_field(info->sbcs, DMI_SBCS_SBACCESS8) && size == 1) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS16) && size == 2) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS32) && size == 4) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS64) && size == 8) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS128) && size == 16)) {
if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 0)
return write_memory_bus_v0(target, address, size, count, buffer);
else if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 1)
return write_memory_bus_v1(target, address, size, count, buffer);
}
if (info->progbufsize >= 2)
return write_memory_progbuf(target, address, size, count, buffer);
LOG_ERROR("Don't know how to write memory on this target.");
return ERROR_FAIL;
}
static int arch_state(struct target *target)
{
return ERROR_OK;
}
struct target_type riscv013_target = {
.name = "riscv",
.init_target = init_target,
.deinit_target = deinit_target,
.examine = examine,
.poll = &riscv_openocd_poll,
.halt = &riscv_openocd_halt,
.resume = &riscv_openocd_resume,
.step = &riscv_openocd_step,
.assert_reset = assert_reset,
.deassert_reset = deassert_reset,
.read_memory = read_memory,
.write_memory = write_memory,
.arch_state = arch_state,
};
/*** 0.13-specific implementations of various RISC-V helper functions. ***/
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, int hid, int rid)
{
LOG_DEBUG("reading register %s on hart %d", gdb_regno_name(rid), hid);
riscv_set_current_hartid(target, hid);
int result = ERROR_OK;
if (rid == GDB_REGNO_PC) {
result = register_read(target, value, GDB_REGNO_DPC);
LOG_DEBUG("read PC from DPC: 0x%" PRIx64, *value);
} else if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
result = register_read(target, &dcsr, GDB_REGNO_DCSR);
*value = get_field(dcsr, CSR_DCSR_PRV);
} else {
result = register_read(target, value, rid);
if (result != ERROR_OK)
*value = -1;
}
return result;
}
static int riscv013_set_register(struct target *target, int hid, int rid, uint64_t value)
{
LOG_DEBUG("writing 0x%" PRIx64 " to register %s on hart %d", value,
gdb_regno_name(rid), hid);
riscv_set_current_hartid(target, hid);
if (rid <= GDB_REGNO_XPR31) {
return register_write_direct(target, rid, value);
} else if (rid == GDB_REGNO_PC) {
LOG_DEBUG("writing PC to DPC: 0x%" PRIx64, value);
register_write_direct(target, GDB_REGNO_DPC, value);
uint64_t actual_value;
register_read_direct(target, &actual_value, GDB_REGNO_DPC);
LOG_DEBUG(" actual DPC written: 0x%016" PRIx64, actual_value);
if (value != actual_value) {
LOG_ERROR("Written PC (0x%" PRIx64 ") does not match read back "
"value (0x%" PRIx64 ")", value, actual_value);
return ERROR_FAIL;
}
} else if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
register_read(target, &dcsr, GDB_REGNO_DCSR);
dcsr = set_field(dcsr, CSR_DCSR_PRV, value);
return register_write_direct(target, GDB_REGNO_DCSR, dcsr);
} else {
return register_write_direct(target, rid, value);
}
return ERROR_OK;
}
static int riscv013_select_current_hart(struct target *target)
{
RISCV_INFO(r);
dm013_info_t *dm = get_dm(target);
if (r->current_hartid == dm->current_hartid)
return ERROR_OK;
uint32_t dmcontrol;
/* TODO: can't we just "dmcontrol = DMI_DMACTIVE"? */
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
int result = dmi_write(target, DMI_DMCONTROL, dmcontrol);
dm->current_hartid = r->current_hartid;
return result;
}
static int riscv013_halt_current_hart(struct target *target)
{
RISCV_INFO(r);
LOG_DEBUG("halting hart %d", r->current_hartid);
if (riscv_is_halted(target))
LOG_ERROR("Hart %d is already halted!", r->current_hartid);
/* Issue the halt command, and then wait for the current hart to halt. */
uint32_t dmcontrol;
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_HALTREQ, 1);
dmi_write(target, DMI_DMCONTROL, dmcontrol);
for (size_t i = 0; i < 256; ++i)
if (riscv_is_halted(target))
break;
if (!riscv_is_halted(target)) {
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR("unable to halt hart %d", r->current_hartid);
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
return ERROR_FAIL;
}
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_HALTREQ, 0);
dmi_write(target, DMI_DMCONTROL, dmcontrol);
return ERROR_OK;
}
static int riscv013_resume_current_hart(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, false);
}
static int riscv013_step_current_hart(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, true);
}
static int riscv013_on_resume(struct target *target)
{
return riscv013_on_step_or_resume(target, false);
}
static int riscv013_on_step(struct target *target)
{
return riscv013_on_step_or_resume(target, true);
}
static int riscv013_on_halt(struct target *target)
{
return ERROR_OK;
}
static bool riscv013_is_halted(struct target *target)
{
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return false;
if (get_field(dmstatus, DMI_DMSTATUS_ANYUNAVAIL))
LOG_ERROR("Hart %d is unavailable.", riscv_current_hartid(target));
if (get_field(dmstatus, DMI_DMSTATUS_ANYNONEXISTENT))
LOG_ERROR("Hart %d doesn't exist.", riscv_current_hartid(target));
if (get_field(dmstatus, DMI_DMSTATUS_ANYHAVERESET)) {
int hartid = riscv_current_hartid(target);
LOG_INFO("Hart %d unexpectedly reset!", hartid);
/* TODO: Can we make this more obvious to eg. a gdb user? */
uint32_t dmcontrol = DMI_DMCONTROL_DMACTIVE |
DMI_DMCONTROL_ACKHAVERESET;
dmcontrol = set_hartsel(dmcontrol, hartid);
/* If we had been halted when we reset, request another halt. If we
* ended up running out of reset, then the user will (hopefully) get a
* message that a reset happened, that the target is running, and then
* that it is halted again once the request goes through.
*/
if (target->state == TARGET_HALTED)
dmcontrol |= DMI_DMCONTROL_HALTREQ;
dmi_write(target, DMI_DMCONTROL, dmcontrol);
}
return get_field(dmstatus, DMI_DMSTATUS_ALLHALTED);
}
static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
{
riscv_reg_t dcsr;
int result = register_read(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return RISCV_HALT_UNKNOWN;
switch (get_field(dcsr, CSR_DCSR_CAUSE)) {
case CSR_DCSR_CAUSE_SWBP:
return RISCV_HALT_BREAKPOINT;
case CSR_DCSR_CAUSE_TRIGGER:
/* We could get here before triggers are enumerated if a trigger was
* already set when we connected. Force enumeration now, which has the
* side effect of clearing any triggers we did not set. */
riscv_enumerate_triggers(target);
LOG_DEBUG("{%d} halted because of trigger", target->coreid);
return RISCV_HALT_TRIGGER;
case CSR_DCSR_CAUSE_STEP:
return RISCV_HALT_SINGLESTEP;
case CSR_DCSR_CAUSE_DEBUGINT:
case CSR_DCSR_CAUSE_HALT:
return RISCV_HALT_INTERRUPT;
}
LOG_ERROR("Unknown DCSR cause field: %x", (int)get_field(dcsr, CSR_DCSR_CAUSE));
LOG_ERROR(" dcsr=0x%016lx", (long)dcsr);
return RISCV_HALT_UNKNOWN;
}
int riscv013_write_debug_buffer(struct target *target, unsigned index, riscv_insn_t data)
{
return dmi_write(target, DMI_PROGBUF0 + index, data);
}
riscv_insn_t riscv013_read_debug_buffer(struct target *target, unsigned index)
{
uint32_t value;
dmi_read(target, &value, DMI_PROGBUF0 + index);
return value;
}
int riscv013_execute_debug_buffer(struct target *target)
{
uint32_t run_program = 0;
run_program = set_field(run_program, AC_ACCESS_REGISTER_SIZE, 2);
run_program = set_field(run_program, AC_ACCESS_REGISTER_POSTEXEC, 1);
run_program = set_field(run_program, AC_ACCESS_REGISTER_TRANSFER, 0);
run_program = set_field(run_program, AC_ACCESS_REGISTER_REGNO, 0x1000);
return execute_abstract_command(target, run_program);
}
void riscv013_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_WRITE);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, d);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_READ);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
void riscv013_fill_dmi_nop_u64(struct target *target, char *buf)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_NOP);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0);
}
/* Helper function for riscv013_test_sba_config_reg */
static int get_max_sbaccess(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DMI_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DMI_SBCS_SBACCESS64);
uint32_t sbaccess32 = get_field(info->sbcs, DMI_SBCS_SBACCESS32);
uint32_t sbaccess16 = get_field(info->sbcs, DMI_SBCS_SBACCESS16);
uint32_t sbaccess8 = get_field(info->sbcs, DMI_SBCS_SBACCESS8);
if (sbaccess128)
return 4;
else if (sbaccess64)
return 3;
else if (sbaccess32)
return 2;
else if (sbaccess16)
return 1;
else if (sbaccess8)
return 0;
else
return -1;
}
static uint32_t get_num_sbdata_regs(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DMI_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DMI_SBCS_SBACCESS64);
uint32_t sbaccess32 = get_field(info->sbcs, DMI_SBCS_SBACCESS32);
if (sbaccess128)
return 4;
else if (sbaccess64)
return 2;
else if (sbaccess32)
return 1;
else
return 0;
}
static int riscv013_test_sba_config_reg(struct target *target,
target_addr_t legal_address, uint32_t num_words,
target_addr_t illegal_address, bool run_sbbusyerror_test)
{
LOG_INFO("Testing System Bus Access as defined by RISC-V Debug Spec v0.13");
uint32_t tests_failed = 0;
uint32_t rd_val;
uint32_t sbcs_orig;
dmi_read(target, &sbcs_orig, DMI_SBCS);
uint32_t sbcs = sbcs_orig;
bool test_passed;
int max_sbaccess = get_max_sbaccess(target);
if (max_sbaccess == -1) {
LOG_ERROR("System Bus Access not supported in this config.");
return ERROR_FAIL;
}
if (get_field(sbcs, DMI_SBCS_SBVERSION) != 1) {
LOG_ERROR("System Bus Access unsupported SBVERSION (%d). Only version 1 is supported.",
get_field(sbcs, DMI_SBCS_SBVERSION));
return ERROR_FAIL;
}
uint32_t num_sbdata_regs = get_num_sbdata_regs(target);
uint32_t rd_buf[num_sbdata_regs];
/* Test 1: Simple write/read test */
test_passed = true;
sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DMI_SBCS, sbcs);
uint32_t test_patterns[4] = {0xdeadbeef, 0xfeedbabe, 0x12345678, 0x08675309};
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DMI_SBCS_SBACCESS, sbaccess);
dmi_write(target, DMI_SBCS, sbcs);
uint32_t compare_mask = (sbaccess == 0) ? 0xff : (sbaccess == 1) ? 0xffff : 0xffffffff;
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess);
uint32_t wr_data[num_sbdata_regs];
for (uint32_t j = 0; j < num_sbdata_regs; j++)
wr_data[j] = test_patterns[j] + i;
write_memory_sba_simple(target, addr, wr_data, num_sbdata_regs, sbcs);
}
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess);
read_memory_sba_simple(target, addr, rd_buf, num_sbdata_regs, sbcs);
for (uint32_t j = 0; j < num_sbdata_regs; j++) {
if (((test_patterns[j]+i)&compare_mask) != (rd_buf[j]&compare_mask)) {
LOG_ERROR("System Bus Access Test 1: Error reading non-autoincremented address %x,"
"expected val = %x, read val = %x", addr, test_patterns[j]+i, rd_buf[j]);
test_passed = false;
tests_failed++;
}
}
}
}
if (test_passed)
LOG_INFO("System Bus Access Test 1: Simple write/read test PASSED.");
/* Test 2: Address autoincrement test */
target_addr_t curr_addr;
target_addr_t prev_addr;
test_passed = true;
sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DMI_SBCS, sbcs);
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DMI_SBCS_SBACCESS, sbaccess);
dmi_write(target, DMI_SBCS, sbcs);
dmi_write(target, DMI_SBADDRESS0, legal_address);
read_sbcs_nonbusy(target, &sbcs);
curr_addr = legal_address;
for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs);
curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && (i != 0)) {
LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x.", sbaccess);
test_passed = false;
tests_failed++;
}
dmi_write(target, DMI_SBDATA0, i);
}
read_sbcs_nonbusy(target, &sbcs);
dmi_write(target, DMI_SBADDRESS0, legal_address);
uint32_t val;
sbcs = set_field(sbcs, DMI_SBCS_SBREADONDATA, 1);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &val, DMI_SBDATA0); /* Dummy read to trigger first system bus read */
curr_addr = legal_address;
for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs);
curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && (i != 0)) {
LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x", sbaccess);
test_passed = false;
tests_failed++;
}
dmi_read(target, &val, DMI_SBDATA0);
read_sbcs_nonbusy(target, &sbcs);
if (i != val) {
LOG_ERROR("System Bus Access Test 2: Error reading auto-incremented address,"
"expected val = %x, read val = %x.", i, val);
test_passed = false;
tests_failed++;
}
}
}
if (test_passed)
LOG_INFO("System Bus Access Test 2: Address auto-increment test PASSED.");
/* Test 3: Read from illegal address */
read_memory_sba_simple(target, illegal_address, rd_buf, 1, sbcs_orig);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 2);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 3: Illegal address read test PASSED.");
else
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED, unable to clear to 0.");
} else {
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED, unable to set error code.");
}
/* Test 4: Write to illegal address */
write_memory_sba_simple(target, illegal_address, test_patterns, 1, sbcs_orig);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 2);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 4: Illegal address write test PASSED.");
else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED, unable to set error code.");
tests_failed++;
}
/* Test 5: Write with unsupported sbaccess size */
uint32_t sbaccess128 = get_field(sbcs_orig, DMI_SBCS_SBACCESS128);
if (sbaccess128) {
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED, all sbaccess sizes supported.");
} else {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 4);
write_memory_sba_simple(target, legal_address, test_patterns, 1, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 4) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 4);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED.");
else {
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to set error code.");
tests_failed++;
}
}
/* Test 6: Write to misaligned address */
sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 1);
write_memory_sba_simple(target, legal_address+1, test_patterns, 1, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 3) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 3);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 6: SBCS address alignment error test PASSED");
else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to set error code.");
tests_failed++;
}
/* Test 7: Set sbbusyerror, only run this case in simulation as it is likely
* impossible to hit otherwise */
if (run_sbbusyerror_test) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBREADONADDR, 1);
dmi_write(target, DMI_SBCS, sbcs);
for (int i = 0; i < 16; i++)
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
for (int i = 0; i < 16; i++)
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBBUSYERROR)) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBBUSYERROR, 1);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBBUSYERROR) == 0)
LOG_INFO("System Bus Access Test 7: SBCS sbbusyerror test PASSED.");
else {
LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to set error code.");
tests_failed++;
}
}
if (tests_failed == 0) {
LOG_INFO("ALL TESTS PASSED");
return ERROR_OK;
} else {
LOG_ERROR("%d TESTS FAILED", tests_failed);
return ERROR_FAIL;
}
}
void write_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *write_data, uint32_t write_size, uint32_t sbcs)
{
RISCV013_INFO(info);
uint32_t rd_sbcs;
uint32_t masked_addr;
uint32_t sba_size = get_field(info->sbcs, DMI_SBCS_SBASIZE);
read_sbcs_nonbusy(target, &rd_sbcs);
uint32_t sbcs_no_readonaddr = set_field(sbcs, DMI_SBCS_SBREADONADDR, 0);
dmi_write(target, DMI_SBCS, sbcs_no_readonaddr);
for (uint32_t i = 0; i < sba_size/32; i++) {
masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3)
dmi_write(target, DMI_SBADDRESS0+i, masked_addr);
else
dmi_write(target, DMI_SBADDRESS3, masked_addr);
}
/* Write SBDATA registers starting with highest address, since write to
* SBDATA0 triggers write */
for (int i = write_size-1; i >= 0; i--)
dmi_write(target, DMI_SBDATA0+i, write_data[i]);
}
void read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *rd_buf, uint32_t read_size, uint32_t sbcs)
{
RISCV013_INFO(info);
uint32_t rd_sbcs;
uint32_t masked_addr;
uint32_t sba_size = get_field(info->sbcs, DMI_SBCS_SBASIZE);
read_sbcs_nonbusy(target, &rd_sbcs);
uint32_t sbcs_readonaddr = set_field(sbcs, DMI_SBCS_SBREADONADDR, 1);
dmi_write(target, DMI_SBCS, sbcs_readonaddr);
/* Write addresses starting with highest address register */
for (int i = sba_size/32-1; i >= 0; i--) {
masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3)
dmi_write(target, DMI_SBADDRESS0+i, masked_addr);
else
dmi_write(target, DMI_SBADDRESS3, masked_addr);
}
read_sbcs_nonbusy(target, &rd_sbcs);
for (uint32_t i = 0; i < read_size; i++)
dmi_read(target, &(rd_buf[i]), DMI_SBDATA0+i);
}
int riscv013_dmi_write_u64_bits(struct target *target)
{
RISCV013_INFO(info);
return info->abits + DTM_DMI_DATA_LENGTH + DTM_DMI_OP_LENGTH;
}
static int maybe_execute_fence_i(struct target *target)
{
RISCV013_INFO(info);
RISCV_INFO(r);
if (info->progbufsize + r->impebreak >= 3)
return execute_fence(target);
return ERROR_OK;
}
/* Helper Functions. */
static int riscv013_on_step_or_resume(struct target *target, bool step)
{
if (maybe_execute_fence_i(target) != ERROR_OK)
return ERROR_FAIL;
/* We want to twiddle some bits in the debug CSR so debugging works. */
riscv_reg_t dcsr;
int result = register_read(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return result;
dcsr = set_field(dcsr, CSR_DCSR_STEP, step);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKM, 1);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKS, 1);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKU, 1);
return riscv_set_register(target, GDB_REGNO_DCSR, dcsr);
}
static int riscv013_step_or_resume_current_hart(struct target *target, bool step)
{
RISCV_INFO(r);
LOG_DEBUG("resuming hart %d (for step?=%d)", r->current_hartid, step);
if (!riscv_is_halted(target)) {
LOG_ERROR("Hart %d is not halted!", r->current_hartid);
return ERROR_FAIL;
}
if (maybe_execute_fence_i(target) != ERROR_OK)
return ERROR_FAIL;
/* Issue the resume command, and then wait for the current hart to resume. */
uint32_t dmcontrol = DMI_DMCONTROL_DMACTIVE;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
dmi_write(target, DMI_DMCONTROL, dmcontrol | DMI_DMCONTROL_RESUMEREQ);
uint32_t dmstatus;
for (size_t i = 0; i < 256; ++i) {
usleep(10);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(dmstatus, DMI_DMSTATUS_ALLRESUMEACK) == 0)
continue;
if (step && get_field(dmstatus, DMI_DMSTATUS_ALLHALTED) == 0)
continue;
dmi_write(target, DMI_DMCONTROL, dmcontrol);
return ERROR_OK;
}
LOG_ERROR("unable to resume hart %d", r->current_hartid);
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
if (step) {
LOG_ERROR(" was stepping, halting");
riscv013_halt_current_hart(target);
return ERROR_OK;
}
return ERROR_FAIL;
}
void riscv013_clear_abstract_error(struct target *target)
{
/* Wait for busy to go away. */
time_t start = time(NULL);
uint32_t abstractcs;
dmi_read(target, &abstractcs, DMI_ABSTRACTCS);
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY)) {
dmi_read(target, &abstractcs, DMI_ABSTRACTCS);
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("abstractcs.busy is not going low after %d seconds "
"(abstractcs=0x%x). The target is either really slow or "
"broken. You could increase the timeout with riscv "
"set_command_timeout_sec.",
riscv_command_timeout_sec, abstractcs);
break;
}
}
/* Clear the error status. */
dmi_write(target, DMI_ABSTRACTCS, abstractcs & DMI_ABSTRACTCS_CMDERR);
}
#define COMPLIANCE_TEST(b, message) \
{ \
int pass = 0; \
if (b) { \
pass = 1; \
passed_tests++; \
} \
LOG_INFO("%s test %d (%s)\n", (pass) ? "PASSED" : "FAILED", total_tests, message); \
assert(pass); \
total_tests++; \
}
#define COMPLIANCE_MUST_PASS(b) COMPLIANCE_TEST(ERROR_OK == (b), "Regular calls must return ERROR_OK")
#define COMPLIANCE_READ(target, addr, value) COMPLIANCE_MUST_PASS(dmi_read(target, addr, value))
#define COMPLIANCE_WRITE(target, addr, value) COMPLIANCE_MUST_PASS(dmi_write(target, addr, value))
#define COMPLIANCE_CHECK_RO(target, addr) \
{ \
uint32_t orig; \
uint32_t inverse; \
COMPLIANCE_READ(target, &orig, addr); \
COMPLIANCE_WRITE(target, addr, ~orig); \
COMPLIANCE_READ(target, &inverse, addr); \
COMPLIANCE_TEST(orig == inverse, "Register must be read-only"); \
}
int riscv013_test_compliance(struct target *target)
{
LOG_INFO("Testing Compliance against RISC-V Debug Spec v0.13");
if (!riscv_rtos_enabled(target)) {
LOG_ERROR("Please run with -rtos riscv to run compliance test.");
return ERROR_FAIL;
}
int total_tests = 0;
int passed_tests = 0;
uint32_t dmcontrol_orig = DMI_DMCONTROL_DMACTIVE;
uint32_t dmcontrol;
uint32_t testvar;
uint32_t testvar_read;
riscv_reg_t value;
RISCV013_INFO(info);
/* All the bits of HARTSEL are covered by the examine sequence. */
/* hartreset */
/* This field is optional. Either we can read and write it to 1/0,
or it is tied to 0. This check doesn't really do anything, but
it does attempt to set the bit to 1 and then back to 0, which needs to
work if its implemented. */
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HARTRESET, 1));
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HARTRESET, 0));
COMPLIANCE_READ(target, &dmcontrol, DMI_DMCONTROL);
COMPLIANCE_TEST((get_field(dmcontrol, DMI_DMCONTROL_HARTRESET) == 0),
"DMCONTROL.hartreset can be 0 or RW.");
/* hasel */
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HASEL, 1));
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HASEL, 0));
COMPLIANCE_READ(target, &dmcontrol, DMI_DMCONTROL);
COMPLIANCE_TEST((get_field(dmcontrol, DMI_DMCONTROL_HASEL) == 0),
"DMCONTROL.hasel can be 0 or RW.");
/* TODO: test that hamask registers exist if hasel does. */
/* haltreq */
COMPLIANCE_MUST_PASS(riscv_halt_all_harts(target));
/* This bit is not actually readable according to the spec, so nothing to check.*/
/* DMSTATUS */
COMPLIANCE_CHECK_RO(target, DMI_DMSTATUS);
/* resumereq */
/* This bit is not actually readable according to the spec, so nothing to check.*/
COMPLIANCE_MUST_PASS(riscv_resume_all_harts(target));
/* Halt all harts again so the test can continue.*/
COMPLIANCE_MUST_PASS(riscv_halt_all_harts(target));
/* HARTINFO: Read-Only. This is per-hart, so need to adjust hartsel. */
uint32_t hartinfo;
COMPLIANCE_READ(target, &hartinfo, DMI_HARTINFO);
for (int hartsel = 0; hartsel < riscv_count_harts(target); hartsel++) {
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, hartsel));
COMPLIANCE_CHECK_RO(target, DMI_HARTINFO);
/* $dscratch CSRs */
uint32_t nscratch = get_field(hartinfo, DMI_HARTINFO_NSCRATCH);
for (unsigned int d = 0; d < nscratch; d++) {
riscv_reg_t testval, testval_read;
/* Because DSCRATCH is not guaranteed to last across PB executions, need to put
this all into one PB execution. Which may not be possible on all implementations.*/
if (info->progbufsize >= 5) {
for (testval = 0x0011223300112233;
testval != 0xDEAD;
testval = testval == 0x0011223300112233 ? ~testval : 0xDEAD) {
COMPLIANCE_TEST(register_write_direct(target, GDB_REGNO_S0, testval) == ERROR_OK,
"Need to be able to write S0 in order to test DSCRATCH.");
struct riscv_program program32;
riscv_program_init(&program32, target);
riscv_program_csrw(&program32, GDB_REGNO_S0, GDB_REGNO_DSCRATCH + d);
riscv_program_csrr(&program32, GDB_REGNO_S1, GDB_REGNO_DSCRATCH + d);
riscv_program_fence(&program32);
riscv_program_ebreak(&program32);
COMPLIANCE_TEST(riscv_program_exec(&program32, target) == ERROR_OK,
"Accessing DSCRATCH with program buffer should succeed.");
COMPLIANCE_TEST(register_read_direct(target, &testval_read, GDB_REGNO_S1) == ERROR_OK,
"Need to be able to read S1 in order to test DSCRATCH.");
if (riscv_xlen(target) > 32) {
COMPLIANCE_TEST(testval == testval_read,
"All DSCRATCH registers in HARTINFO must be R/W.");
} else {
COMPLIANCE_TEST(testval_read == (testval & 0xFFFFFFFF),
"All DSCRATCH registers in HARTINFO must be R/W.");
}
}
}
}
/* TODO: dataaccess */
if (get_field(hartinfo, DMI_HARTINFO_DATAACCESS)) {
/* TODO: Shadowed in memory map. */
/* TODO: datasize */
/* TODO: dataaddr */
} else {
/* TODO: Shadowed in CSRs. */
/* TODO: datasize */
/* TODO: dataaddr */
}
}
/* HALTSUM -- TODO: More than 32 harts. Would need to loop over this to set hartsel */
/* TODO: HALTSUM2, HALTSUM3 */
/* HALTSUM0 */
uint32_t expected_haltsum0 = 0;
for (int i = 0; i < MIN(riscv_count_harts(target), 32); i++)
expected_haltsum0 |= (1 << i);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM0);
COMPLIANCE_TEST(testvar_read == expected_haltsum0,
"HALTSUM0 should report summary of up to 32 halted harts");
COMPLIANCE_WRITE(target, DMI_HALTSUM0, 0xffffffff);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM0);
COMPLIANCE_TEST(testvar_read == expected_haltsum0, "HALTSUM0 should be R/O");
COMPLIANCE_WRITE(target, DMI_HALTSUM0, 0x0);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM0);
COMPLIANCE_TEST(testvar_read == expected_haltsum0, "HALTSUM0 should be R/O");
/* HALTSUM1 */
uint32_t expected_haltsum1 = 0;
for (int i = 0; i < MIN(riscv_count_harts(target), 1024); i += 32)
expected_haltsum1 |= (1 << (i/32));
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM1);
COMPLIANCE_TEST(testvar_read == expected_haltsum1,
"HALTSUM1 should report summary of up to 1024 halted harts");
COMPLIANCE_WRITE(target, DMI_HALTSUM1, 0xffffffff);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM1);
COMPLIANCE_TEST(testvar_read == expected_haltsum1, "HALTSUM1 should be R/O");
COMPLIANCE_WRITE(target, DMI_HALTSUM1, 0x0);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM1);
COMPLIANCE_TEST(testvar_read == expected_haltsum1, "HALTSUM1 should be R/O");
/* TODO: HAWINDOWSEL */
/* TODO: HAWINDOW */
/* ABSTRACTCS */
uint32_t abstractcs;
COMPLIANCE_READ(target, &abstractcs, DMI_ABSTRACTCS);
/* Check that all reported Data Words are really R/W */
for (int invert = 0; invert < 2; invert++) {
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_WRITE(target, DMI_DATA0 + i, testvar);
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "All reported DATA words must be R/W");
}
}
/* Check that all reported ProgBuf words are really R/W */
for (int invert = 0; invert < 2; invert++) {
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_WRITE(target, DMI_PROGBUF0 + i, testvar);
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "All reported PROGBUF words must be R/W");
}
}
/* TODO: Cause and clear all error types */
/* COMMAND
According to the spec, this register is only W, so can't really check the read result.
But at any rate, this is not legal and should cause an error. */
COMPLIANCE_WRITE(target, DMI_COMMAND, 0xAAAAAAAA);
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == CMDERR_NOT_SUPPORTED, \
"Illegal COMMAND should result in UNSUPPORTED");
COMPLIANCE_WRITE(target, DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR);
COMPLIANCE_WRITE(target, DMI_COMMAND, 0x55555555);
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == CMDERR_NOT_SUPPORTED, \
"Illegal COMMAND should result in UNSUPPORTED");
COMPLIANCE_WRITE(target, DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR);
/* Basic Abstract Commands */
for (unsigned int i = 1; i < 32; i = i << 1) {
riscv_reg_t testval = i | ((i + 1ULL) << 32);
riscv_reg_t testval_read;
COMPLIANCE_TEST(ERROR_OK == register_write_direct(target, GDB_REGNO_ZERO + i, testval),
"GPR Writes should be supported.");
COMPLIANCE_MUST_PASS(write_abstract_arg(target, 0, 0xDEADBEEFDEADBEEF, 64));
COMPLIANCE_TEST(ERROR_OK == register_read_direct(target, &testval_read, GDB_REGNO_ZERO + i),
"GPR Reads should be supported.");
if (riscv_xlen(target) > 32) {
/* Dummy comment to satisfy linter, since removing the brances here doesn't actually compile. */
COMPLIANCE_TEST(testval == testval_read, "GPR Reads and writes should be supported.");
} else {
/* Dummy comment to satisfy linter, since removing the brances here doesn't actually compile. */
COMPLIANCE_TEST((testval & 0xFFFFFFFF) == testval_read, "GPR Reads and writes should be supported.");
}
}
/* ABSTRACTAUTO
See which bits are actually writable */
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0xFFFFFFFF);
uint32_t abstractauto;
uint32_t busy;
COMPLIANCE_READ(target, &abstractauto, DMI_ABSTRACTAUTO);
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0x0);
if (abstractauto > 0) {
/* This mechanism only works when you have a reasonable sized progbuf, which is not
a true compliance requirement. */
if (info->progbufsize >= 3) {
testvar = 0;
COMPLIANCE_TEST(ERROR_OK == register_write_direct(target, GDB_REGNO_S0, 0),
"Need to be able to write S0 to test ABSTRACTAUTO");
struct riscv_program program;
COMPLIANCE_MUST_PASS(riscv_program_init(&program, target));
/* This is also testing that WFI() is a NOP during debug mode. */
COMPLIANCE_MUST_PASS(riscv_program_insert(&program, wfi()));
COMPLIANCE_MUST_PASS(riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, 1));
COMPLIANCE_MUST_PASS(riscv_program_ebreak(&program));
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0x0);
COMPLIANCE_MUST_PASS(riscv_program_exec(&program, target));
testvar++;
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0xFFFFFFFF);
COMPLIANCE_READ(target, &abstractauto, DMI_ABSTRACTAUTO);
uint32_t autoexec_data = get_field(abstractauto, DMI_ABSTRACTAUTO_AUTOEXECDATA);
uint32_t autoexec_progbuf = get_field(abstractauto, DMI_ABSTRACTAUTO_AUTOEXECPROGBUF);
for (unsigned int i = 0; i < 12; i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
do {
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
busy = get_field(testvar_read, DMI_ABSTRACTCS_BUSY);
} while (busy);
if (autoexec_data & (1 << i)) {
COMPLIANCE_TEST(i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT),
"AUTOEXEC may be writable up to DATACOUNT bits.");
testvar++;
}
}
for (unsigned int i = 0; i < 16; i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
do {
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
busy = get_field(testvar_read, DMI_ABSTRACTCS_BUSY);
} while (busy);
if (autoexec_progbuf & (1 << i)) {
COMPLIANCE_TEST(i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE),
"AUTOEXEC may be writable up to PROGBUFSIZE bits.");
testvar++;
}
}
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0);
COMPLIANCE_TEST(ERROR_OK == register_read_direct(target, &value, GDB_REGNO_S0),
"Need to be able to read S0 to test ABSTRACTAUTO");
COMPLIANCE_TEST(testvar == value,
"ABSTRACTAUTO should cause COMMAND to run the expected number of times.");
}
}
/* Single-Step each hart. */
for (int hartsel = 0; hartsel < riscv_count_harts(target); hartsel++) {
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, hartsel));
COMPLIANCE_MUST_PASS(riscv013_on_step(target));
COMPLIANCE_MUST_PASS(riscv013_step_current_hart(target));
COMPLIANCE_TEST(riscv_halt_reason(target, hartsel) == RISCV_HALT_SINGLESTEP,
"Single Step should result in SINGLESTEP");
}
/* Core Register Tests */
uint64_t bogus_dpc = 0xdeadbeef;
for (int hartsel = 0; hartsel < riscv_count_harts(target); hartsel++) {
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, hartsel));
/* DCSR Tests */
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DCSR, 0x0));
COMPLIANCE_MUST_PASS(register_read_direct(target, &value, GDB_REGNO_DCSR));
COMPLIANCE_TEST(value != 0, "Not all bits in DCSR are writable by Debugger");
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DCSR, 0xFFFFFFFF));
COMPLIANCE_MUST_PASS(register_read_direct(target, &value, GDB_REGNO_DCSR));
COMPLIANCE_TEST(value != 0, "At least some bits in DCSR must be 1");
/* DPC. Note that DPC is sign-extended. */
riscv_reg_t dpcmask = 0xFFFFFFFCUL;
riscv_reg_t dpc;
if (riscv_xlen(target) > 32)
dpcmask |= (0xFFFFFFFFULL << 32);
if (riscv_supports_extension(target, riscv_current_hartid(target), 'C'))
dpcmask |= 0x2;
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DPC, dpcmask));
COMPLIANCE_MUST_PASS(register_read_direct(target, &dpc, GDB_REGNO_DPC));
COMPLIANCE_TEST(dpcmask == dpc,
"DPC must be sign-extended to XLEN and writable to all-1s (except the least significant bits)");
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DPC, 0));
COMPLIANCE_MUST_PASS(register_read_direct(target, &dpc, GDB_REGNO_DPC));
COMPLIANCE_TEST(dpc == 0, "DPC must be writable to 0.");
if (hartsel == 0)
bogus_dpc = dpc; /* For a later test step */
}
/* NDMRESET
Asserting non-debug module reset should not reset Debug Module state.
But it should reset Hart State, e.g. DPC should get a different value.
Also make sure that DCSR reports cause of 'HALT' even though previously we single-stepped.
*/
/* Write some registers. They should not be impacted by ndmreset. */
COMPLIANCE_WRITE(target, DMI_COMMAND, 0xFFFFFFFF);
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_WRITE(target, DMI_PROGBUF0 + i, testvar);
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_WRITE(target, DMI_DATA0 + i, testvar);
}
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0xFFFFFFFF);
COMPLIANCE_READ(target, &abstractauto, DMI_ABSTRACTAUTO);
/* Pulse reset. */
target->reset_halt = true;
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, 0));
COMPLIANCE_TEST(ERROR_OK == assert_reset(target), "Must be able to assert NDMRESET");
COMPLIANCE_TEST(ERROR_OK == deassert_reset(target), "Must be able to deassert NDMRESET");
/* Verify that most stuff is not affected by ndmreset. */
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == CMDERR_NOT_SUPPORTED,
"NDMRESET should not affect DMI_ABSTRACTCS");
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTAUTO);
COMPLIANCE_TEST(testvar_read == abstractauto, "NDMRESET should not affect DMI_ABSTRACTAUTO");
/* Clean up to avoid future test failures */
COMPLIANCE_WRITE(target, DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR);
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0);
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "PROGBUF words must not be affected by NDMRESET");
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "DATA words must not be affected by NDMRESET");
}
/* Verify that DPC *is* affected by ndmreset. Since we don't know what it *should* be,
just verify that at least it's not the bogus value anymore. */
COMPLIANCE_TEST(bogus_dpc != 0xdeadbeef, "BOGUS DPC should have been set somehow (bug in compliance test)");
COMPLIANCE_MUST_PASS(register_read_direct(target, &value, GDB_REGNO_DPC));
COMPLIANCE_TEST(bogus_dpc != value, "NDMRESET should move DPC to reset value.");
COMPLIANCE_TEST(riscv_halt_reason(target, 0) == RISCV_HALT_INTERRUPT,
"After NDMRESET halt, DCSR should report cause of halt");
/* DMACTIVE -- deasserting DMACTIVE should reset all the above values. */
/* Toggle dmactive */
COMPLIANCE_WRITE(target, DMI_DMCONTROL, 0);
COMPLIANCE_WRITE(target, DMI_DMCONTROL, DMI_DMCONTROL_DMACTIVE);
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == 0, "ABSTRACTCS.cmderr should reset to 0");
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTAUTO);
COMPLIANCE_TEST(testvar_read == 0, "ABSTRACTAUTO should reset to 0");
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
COMPLIANCE_TEST(testvar_read == 0, "PROGBUF words should reset to 0");
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
COMPLIANCE_TEST(testvar_read == 0, "DATA words should reset to 0");
}
/*
* TODO:
* DCSR.cause priorities
* DCSR.stoptime/stopcycle
* DCSR.stepie
* DCSR.ebreak
* DCSR.prv
*/
/* Halt every hart for any follow-up tests*/
COMPLIANCE_MUST_PASS(riscv_halt_all_harts(target));
uint32_t failed_tests = total_tests - passed_tests;
if (total_tests == passed_tests) {
LOG_INFO("ALL TESTS PASSED\n");
return ERROR_OK;
} else {
LOG_INFO("%d TESTS FAILED\n", failed_tests);
return ERROR_FAIL;
}
}