openocd/src/jtag/drivers/ft2232.c

4030 lines
103 KiB
C

/***************************************************************************
* Copyright (C) 2009 by Øyvind Harboe *
* Øyvind Harboe <oyvind.harboe@zylin.com> *
* *
* Copyright (C) 2009 by SoftPLC Corporation. http://softplc.com *
* Dick Hollenbeck <dick@softplc.com> *
* *
* Copyright (C) 2004, 2006 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/* This code uses information contained in the MPSSE specification which was
* found here:
* http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
* Hereafter this is called the "MPSSE Spec".
*
* The datasheet for the ftdichip.com's FT2232D part is here:
* http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* project specific includes */
#include <jtag/interface.h>
#include <jtag/commands.h>
#include <helper/time_support.h>
#if IS_CYGWIN == 1
#include <windows.h>
#endif
#include <assert.h>
#if (BUILD_FT2232_FTD2XX == 1 && BUILD_FT2232_LIBFTDI == 1)
#error "BUILD_FT2232_FTD2XX && BUILD_FT2232_LIBFTDI are mutually exclusive"
#elif (BUILD_FT2232_FTD2XX != 1 && BUILD_FT2232_LIBFTDI != 1)
#error "BUILD_FT2232_FTD2XX || BUILD_FT2232_LIBFTDI must be chosen"
#endif
/* FT2232 access library includes */
#if BUILD_FT2232_FTD2XX == 1
#include <ftd2xx.h>
#elif BUILD_FT2232_LIBFTDI == 1
#include <ftdi.h>
#endif
/* max TCK for the high speed devices 30000 kHz */
#define FTDI_2232H_4232H_MAX_TCK 30000
/* max TCK for the full speed devices 6000 kHz */
#define FTDI_2232C_MAX_TCK 6000
/* this speed value tells that RTCK is requested */
#define RTCK_SPEED -1
/*
* On my Athlon XP 1900+ EHCI host with FT2232H JTAG dongle I get read timeout
* errors with a retry count of 100. Increasing it solves the problem for me.
* - Dimitar
*
* FIXME There's likely an issue with the usb_read_timeout from libftdi.
* Fix that (libusb? kernel? libftdi? here?) and restore the retry count
* to something sane.
*/
#define LIBFTDI_READ_RETRY_COUNT 2000
#ifndef BUILD_FT2232_HIGHSPEED
#if BUILD_FT2232_FTD2XX == 1
enum { FT_DEVICE_2232H = 6, FT_DEVICE_4232H };
#elif BUILD_FT2232_LIBFTDI == 1
enum { TYPE_2232H = 4, TYPE_4232H = 5 };
#endif
#endif
/**
* Send out \a num_cycles on the TCK line while the TAP(s) are in a
* stable state. Calling code must ensure that current state is stable,
* that verification is not done in here.
*
* @param num_cycles The number of clocks cycles to send.
* @param cmd The command to send.
*
* @returns ERROR_OK on success, or ERROR_JTAG_QUEUE_FAILED on failure.
*/
static int ft2232_stableclocks(int num_cycles, struct jtag_command* cmd);
static char * ft2232_device_desc_A = NULL;
static char* ft2232_device_desc = NULL;
static char* ft2232_serial = NULL;
static char* ft2232_layout = NULL;
static uint8_t ft2232_latency = 2;
static unsigned ft2232_max_tck = FTDI_2232C_MAX_TCK;
#define MAX_USB_IDS 8
/* vid = pid = 0 marks the end of the list */
static uint16_t ft2232_vid[MAX_USB_IDS + 1] = { 0x0403, 0 };
static uint16_t ft2232_pid[MAX_USB_IDS + 1] = { 0x6010, 0 };
struct ft2232_layout {
char* name;
int (*init)(void);
void (*reset)(int trst, int srst);
void (*blink)(void);
};
/* init procedures for supported layouts */
static int usbjtag_init(void);
static int jtagkey_init(void);
static int olimex_jtag_init(void);
static int flyswatter_init(void);
static int turtle_init(void);
static int comstick_init(void);
static int stm32stick_init(void);
static int axm0432_jtag_init(void);
static int sheevaplug_init(void);
static int icebear_jtag_init(void);
static int cortino_jtag_init(void);
static int signalyzer_h_init(void);
static int ktlink_init(void);
/* reset procedures for supported layouts */
static void usbjtag_reset(int trst, int srst);
static void jtagkey_reset(int trst, int srst);
static void olimex_jtag_reset(int trst, int srst);
static void flyswatter_reset(int trst, int srst);
static void turtle_reset(int trst, int srst);
static void comstick_reset(int trst, int srst);
static void stm32stick_reset(int trst, int srst);
static void axm0432_jtag_reset(int trst, int srst);
static void sheevaplug_reset(int trst, int srst);
static void icebear_jtag_reset(int trst, int srst);
static void signalyzer_h_reset(int trst, int srst);
static void ktlink_reset(int trst, int srst);
/* blink procedures for layouts that support a blinking led */
static void olimex_jtag_blink(void);
static void flyswatter_jtag_blink(void);
static void turtle_jtag_blink(void);
static void signalyzer_h_blink(void);
static void ktlink_blink(void);
static const struct ft2232_layout ft2232_layouts[] =
{
{ "usbjtag", usbjtag_init, usbjtag_reset, NULL },
{ "jtagkey", jtagkey_init, jtagkey_reset, NULL },
{ "jtagkey_prototype_v1", jtagkey_init, jtagkey_reset, NULL },
{ "oocdlink", jtagkey_init, jtagkey_reset, NULL },
{ "signalyzer", usbjtag_init, usbjtag_reset, NULL },
{ "evb_lm3s811", usbjtag_init, usbjtag_reset, NULL },
{ "luminary_icdi", usbjtag_init, usbjtag_reset, NULL },
{ "olimex-jtag", olimex_jtag_init, olimex_jtag_reset, olimex_jtag_blink },
{ "flyswatter", flyswatter_init, flyswatter_reset, flyswatter_jtag_blink },
{ "turtelizer2", turtle_init, turtle_reset, turtle_jtag_blink },
{ "comstick", comstick_init, comstick_reset, NULL },
{ "stm32stick", stm32stick_init, stm32stick_reset, NULL },
{ "axm0432_jtag", axm0432_jtag_init, axm0432_jtag_reset, NULL },
{ "sheevaplug", sheevaplug_init, sheevaplug_reset, NULL },
{ "icebear", icebear_jtag_init, icebear_jtag_reset, NULL },
{ "cortino", cortino_jtag_init, comstick_reset, NULL },
{ "signalyzer-h", signalyzer_h_init, signalyzer_h_reset, signalyzer_h_blink },
{ "ktlink", ktlink_init, ktlink_reset, ktlink_blink },
{ NULL, NULL, NULL, NULL },
};
static uint8_t nTRST, nTRSTnOE, nSRST, nSRSTnOE;
static const struct ft2232_layout *layout;
static uint8_t low_output = 0x0;
static uint8_t low_direction = 0x0;
static uint8_t high_output = 0x0;
static uint8_t high_direction = 0x0;
#if BUILD_FT2232_FTD2XX == 1
static FT_HANDLE ftdih = NULL;
static FT_DEVICE ftdi_device = 0;
#elif BUILD_FT2232_LIBFTDI == 1
static struct ftdi_context ftdic;
static enum ftdi_chip_type ftdi_device;
#endif
static struct jtag_command* first_unsent; /* next command that has to be sent */
static int require_send;
/* http://urjtag.wiki.sourceforge.net/Cable + FT2232 says:
"There is a significant difference between libftdi and libftd2xx. The latter
one allows to schedule up to 64*64 bytes of result data while libftdi fails
with more than 4*64. As a consequence, the FT2232 driver is forced to
perform around 16x more USB transactions for long command streams with TDO
capture when running with libftdi."
No idea how we get
#define FT2232_BUFFER_SIZE 131072
a comment would have been nice.
*/
#define FT2232_BUFFER_SIZE 131072
static uint8_t* ft2232_buffer = NULL;
static int ft2232_buffer_size = 0;
static int ft2232_read_pointer = 0;
static int ft2232_expect_read = 0;
/**
* Function buffer_write
* writes a byte into the byte buffer, "ft2232_buffer", which must be sent later.
* @param val is the byte to send.
*/
static inline void buffer_write(uint8_t val)
{
assert(ft2232_buffer);
assert((unsigned) ft2232_buffer_size < (unsigned) FT2232_BUFFER_SIZE);
ft2232_buffer[ft2232_buffer_size++] = val;
}
/**
* Function buffer_read
* returns a byte from the byte buffer.
*/
static inline uint8_t buffer_read(void)
{
assert(ft2232_buffer);
assert(ft2232_read_pointer < ft2232_buffer_size);
return ft2232_buffer[ft2232_read_pointer++];
}
/**
* Clocks out \a bit_count bits on the TMS line, starting with the least
* significant bit of tms_bits and progressing to more significant bits.
* Rigorous state transition logging is done here via tap_set_state().
*
* @param mpsse_cmd One of the MPSSE TMS oriented commands such as
* 0x4b or 0x6b. See the MPSSE spec referenced above for their
* functionality. The MPSSE command "Clock Data to TMS/CS Pin (no Read)"
* is often used for this, 0x4b.
*
* @param tms_bits Holds the sequence of bits to send.
* @param tms_count Tells how many bits in the sequence.
* @param tdi_bit A single bit to pass on to TDI before the first TCK
* cycle and held static for the duration of TMS clocking.
*
* See the MPSSE spec referenced above.
*/
static void clock_tms(uint8_t mpsse_cmd, int tms_bits, int tms_count, bool tdi_bit)
{
uint8_t tms_byte;
int i;
int tms_ndx; /* bit index into tms_byte */
assert(tms_count > 0);
DEBUG_JTAG_IO("mpsse cmd=%02x, tms_bits = 0x%08x, bit_count=%d",
mpsse_cmd, tms_bits, tms_count);
for (tms_byte = tms_ndx = i = 0; i < tms_count; ++i, tms_bits>>=1)
{
bool bit = tms_bits & 1;
if (bit)
tms_byte |= (1 << tms_ndx);
/* always do state transitions in public view */
tap_set_state(tap_state_transition(tap_get_state(), bit));
/* we wrote a bit to tms_byte just above, increment bit index. if bit was zero
also increment.
*/
++tms_ndx;
if (tms_ndx == 7 || i == tms_count-1)
{
buffer_write(mpsse_cmd);
buffer_write(tms_ndx - 1);
/* Bit 7 of the byte is passed on to TDI/DO before the first TCK/SK of
TMS/CS and is held static for the duration of TMS/CS clocking.
*/
buffer_write(tms_byte | (tdi_bit << 7));
}
}
}
/**
* Function get_tms_buffer_requirements
* returns what clock_tms() will consume if called with
* same \a bit_count.
*/
static inline int get_tms_buffer_requirements(int bit_count)
{
return ((bit_count + 6)/7) * 3;
}
/**
* Function move_to_state
* moves the TAP controller from the current state to a
* \a goal_state through a path given by tap_get_tms_path(). State transition
* logging is performed by delegation to clock_tms().
*
* @param goal_state is the destination state for the move.
*/
static void move_to_state(tap_state_t goal_state)
{
tap_state_t start_state = tap_get_state();
/* goal_state is 1/2 of a tuple/pair of states which allow convenient
lookup of the required TMS pattern to move to this state from the
start state.
*/
/* do the 2 lookups */
int tms_bits = tap_get_tms_path(start_state, goal_state);
int tms_count = tap_get_tms_path_len(start_state, goal_state);
DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
clock_tms(0x4b, tms_bits, tms_count, 0);
}
static int ft2232_write(uint8_t* buf, int size, uint32_t* bytes_written)
{
#if BUILD_FT2232_FTD2XX == 1
FT_STATUS status;
DWORD dw_bytes_written;
if ((status = FT_Write(ftdih, buf, size, &dw_bytes_written)) != FT_OK)
{
*bytes_written = dw_bytes_written;
LOG_ERROR("FT_Write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
else
{
*bytes_written = dw_bytes_written;
return ERROR_OK;
}
#elif BUILD_FT2232_LIBFTDI == 1
int retval;
if ((retval = ftdi_write_data(&ftdic, buf, size)) < 0)
{
*bytes_written = 0;
LOG_ERROR("ftdi_write_data: %s", ftdi_get_error_string(&ftdic));
return ERROR_JTAG_DEVICE_ERROR;
}
else
{
*bytes_written = retval;
return ERROR_OK;
}
#endif
}
static int ft2232_read(uint8_t* buf, uint32_t size, uint32_t* bytes_read)
{
#if BUILD_FT2232_FTD2XX == 1
DWORD dw_bytes_read;
FT_STATUS status;
int timeout = 5;
*bytes_read = 0;
while ((*bytes_read < size) && timeout--)
{
if ((status = FT_Read(ftdih, buf + *bytes_read, size -
*bytes_read, &dw_bytes_read)) != FT_OK)
{
*bytes_read = 0;
LOG_ERROR("FT_Read returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
*bytes_read += dw_bytes_read;
}
#elif BUILD_FT2232_LIBFTDI == 1
int retval;
int timeout = LIBFTDI_READ_RETRY_COUNT;
*bytes_read = 0;
while ((*bytes_read < size) && timeout--)
{
if ((retval = ftdi_read_data(&ftdic, buf + *bytes_read, size - *bytes_read)) < 0)
{
*bytes_read = 0;
LOG_ERROR("ftdi_read_data: %s", ftdi_get_error_string(&ftdic));
return ERROR_JTAG_DEVICE_ERROR;
}
*bytes_read += retval;
}
#endif
if (*bytes_read < size)
{
LOG_ERROR("couldn't read enough bytes from "
"FT2232 device (%i < %i)",
(unsigned)*bytes_read,
(unsigned)size);
return ERROR_JTAG_DEVICE_ERROR;
}
return ERROR_OK;
}
static bool ft2232_device_is_highspeed(void)
{
#if BUILD_FT2232_FTD2XX == 1
return (ftdi_device == FT_DEVICE_2232H) || (ftdi_device == FT_DEVICE_4232H);
#elif BUILD_FT2232_LIBFTDI == 1
return (ftdi_device == TYPE_2232H || ftdi_device == TYPE_4232H);
#endif
}
/*
* Commands that only apply to the FT2232H and FT4232H devices.
* See chapter 6 in http://www.ftdichip.com/Documents/AppNotes/
* AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
*/
static int ft2232h_ft4232h_adaptive_clocking(bool enable)
{
uint8_t buf = enable ? 0x96 : 0x97;
LOG_DEBUG("%2.2x", buf);
uint32_t bytes_written;
int retval = ft2232_write(&buf, 1, &bytes_written);
if ((ERROR_OK != retval) || (bytes_written != 1))
{
LOG_ERROR("couldn't write command to %s adaptive clocking"
, enable ? "enable" : "disable");
return retval;
}
return ERROR_OK;
}
/**
* Enable/disable the clk divide by 5 of the 60MHz master clock.
* This result in a JTAG clock speed range of 91.553Hz-6MHz
* respective 457.763Hz-30MHz.
*/
static int ft2232h_ft4232h_clk_divide_by_5(bool enable)
{
uint32_t bytes_written;
uint8_t buf = enable ? 0x8b : 0x8a;
int retval = ft2232_write(&buf, 1, &bytes_written);
if ((ERROR_OK != retval) || (bytes_written != 1))
{
LOG_ERROR("couldn't write command to %s clk divide by 5"
, enable ? "enable" : "disable");
return ERROR_JTAG_INIT_FAILED;
}
ft2232_max_tck = enable ? FTDI_2232C_MAX_TCK : FTDI_2232H_4232H_MAX_TCK;
LOG_INFO("max TCK change to: %u kHz", ft2232_max_tck);
return ERROR_OK;
}
static int ft2232_speed(int speed)
{
uint8_t buf[3];
int retval;
uint32_t bytes_written;
retval = ERROR_OK;
bool enable_adaptive_clocking = (RTCK_SPEED == speed);
if (ft2232_device_is_highspeed())
retval = ft2232h_ft4232h_adaptive_clocking(enable_adaptive_clocking);
else if (enable_adaptive_clocking)
{
LOG_ERROR("ft2232 device %lu does not support RTCK"
, (long unsigned int)ftdi_device);
return ERROR_FAIL;
}
if ((enable_adaptive_clocking) || (ERROR_OK != retval))
return retval;
buf[0] = 0x86; /* command "set divisor" */
buf[1] = speed & 0xff; /* valueL (0 = 6MHz, 1 = 3MHz, 2 = 2.0MHz, ...*/
buf[2] = (speed >> 8) & 0xff; /* valueH */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((retval = ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't set FT2232 TCK speed");
return retval;
}
return ERROR_OK;
}
static int ft2232_speed_div(int speed, int* khz)
{
/* Take a look in the FT2232 manual,
* AN2232C-01 Command Processor for
* MPSSE and MCU Host Bus. Chapter 3.8 */
*khz = (RTCK_SPEED == speed) ? 0 : ft2232_max_tck / (1 + speed);
return ERROR_OK;
}
static int ft2232_khz(int khz, int* jtag_speed)
{
if (khz == 0)
{
if (ft2232_device_is_highspeed())
{
*jtag_speed = RTCK_SPEED;
return ERROR_OK;
}
else
{
LOG_DEBUG("RCLK not supported");
return ERROR_FAIL;
}
}
/* Take a look in the FT2232 manual,
* AN2232C-01 Command Processor for
* MPSSE and MCU Host Bus. Chapter 3.8
*
* We will calc here with a multiplier
* of 10 for better rounding later. */
/* Calc speed, (ft2232_max_tck / khz) - 1 */
/* Use 65000 for better rounding */
*jtag_speed = ((ft2232_max_tck*10) / khz) - 10;
/* Add 0.9 for rounding */
*jtag_speed += 9;
/* Calc real speed */
*jtag_speed = *jtag_speed / 10;
/* Check if speed is greater than 0 */
if (*jtag_speed < 0)
{
*jtag_speed = 0;
}
/* Check max value */
if (*jtag_speed > 0xFFFF)
{
*jtag_speed = 0xFFFF;
}
return ERROR_OK;
}
static void ft2232_end_state(tap_state_t state)
{
if (tap_is_state_stable(state))
tap_set_end_state(state);
else
{
LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
exit(-1);
}
}
static void ft2232_read_scan(enum scan_type type, uint8_t* buffer, int scan_size)
{
int num_bytes = (scan_size + 7) / 8;
int bits_left = scan_size;
int cur_byte = 0;
while (num_bytes-- > 1)
{
buffer[cur_byte++] = buffer_read();
bits_left -= 8;
}
buffer[cur_byte] = 0x0;
/* There is one more partial byte left from the clock data in/out instructions */
if (bits_left > 1)
{
buffer[cur_byte] = buffer_read() >> 1;
}
/* This shift depends on the length of the clock data to tms instruction, insterted at end of the scan, now fixed to a two step transition in ft2232_add_scan */
buffer[cur_byte] = (buffer[cur_byte] | (((buffer_read()) << 1) & 0x80)) >> (8 - bits_left);
}
static void ft2232_debug_dump_buffer(void)
{
int i;
char line[256];
char* line_p = line;
for (i = 0; i < ft2232_buffer_size; i++)
{
line_p += snprintf(line_p, 256 - (line_p - line), "%2.2x ", ft2232_buffer[i]);
if (i % 16 == 15)
{
LOG_DEBUG("%s", line);
line_p = line;
}
}
if (line_p != line)
LOG_DEBUG("%s", line);
}
static int ft2232_send_and_recv(struct jtag_command* first, struct jtag_command* last)
{
struct jtag_command* cmd;
uint8_t* buffer;
int scan_size;
enum scan_type type;
int retval;
uint32_t bytes_written = 0;
uint32_t bytes_read = 0;
#ifdef _DEBUG_USB_IO_
struct timeval start, inter, inter2, end;
struct timeval d_inter, d_inter2, d_end;
#endif
#ifdef _DEBUG_USB_COMMS_
LOG_DEBUG("write buffer (size %i):", ft2232_buffer_size);
ft2232_debug_dump_buffer();
#endif
#ifdef _DEBUG_USB_IO_
gettimeofday(&start, NULL);
#endif
if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
{
LOG_ERROR("couldn't write MPSSE commands to FT2232");
return retval;
}
#ifdef _DEBUG_USB_IO_
gettimeofday(&inter, NULL);
#endif
if (ft2232_expect_read)
{
/* FIXME this "timeout" is never changed ... */
int timeout = LIBFTDI_READ_RETRY_COUNT;
ft2232_buffer_size = 0;
#ifdef _DEBUG_USB_IO_
gettimeofday(&inter2, NULL);
#endif
if ((retval = ft2232_read(ft2232_buffer, ft2232_expect_read, &bytes_read)) != ERROR_OK)
{
LOG_ERROR("couldn't read from FT2232");
return retval;
}
#ifdef _DEBUG_USB_IO_
gettimeofday(&end, NULL);
timeval_subtract(&d_inter, &inter, &start);
timeval_subtract(&d_inter2, &inter2, &start);
timeval_subtract(&d_end, &end, &start);
LOG_INFO("inter: %u.%06u, inter2: %u.%06u end: %u.%06u",
(unsigned)d_inter.tv_sec, (unsigned)d_inter.tv_usec,
(unsigned)d_inter2.tv_sec, (unsigned)d_inter2.tv_usec,
(unsigned)d_end.tv_sec, (unsigned)d_end.tv_usec);
#endif
ft2232_buffer_size = bytes_read;
if (ft2232_expect_read != ft2232_buffer_size)
{
LOG_ERROR("ft2232_expect_read (%i) != "
"ft2232_buffer_size (%i) "
"(%i retries)",
ft2232_expect_read,
ft2232_buffer_size,
LIBFTDI_READ_RETRY_COUNT - timeout);
ft2232_debug_dump_buffer();
exit(-1);
}
#ifdef _DEBUG_USB_COMMS_
LOG_DEBUG("read buffer (%i retries): %i bytes",
LIBFTDI_READ_RETRY_COUNT - timeout,
ft2232_buffer_size);
ft2232_debug_dump_buffer();
#endif
}
ft2232_expect_read = 0;
ft2232_read_pointer = 0;
/* return ERROR_OK, unless a jtag_read_buffer returns a failed check
* that wasn't handled by a caller-provided error handler
*/
retval = ERROR_OK;
cmd = first;
while (cmd != last)
{
switch (cmd->type)
{
case JTAG_SCAN:
type = jtag_scan_type(cmd->cmd.scan);
if (type != SCAN_OUT)
{
scan_size = jtag_scan_size(cmd->cmd.scan);
buffer = calloc(DIV_ROUND_UP(scan_size, 8), 1);
ft2232_read_scan(type, buffer, scan_size);
if (jtag_read_buffer(buffer, cmd->cmd.scan) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
free(buffer);
}
break;
default:
break;
}
cmd = cmd->next;
}
ft2232_buffer_size = 0;
return retval;
}
/**
* Function ft2232_add_pathmove
* moves the TAP controller from the current state to a new state through the
* given path, where path is an array of tap_state_t's.
*
* @param path is an array of tap_stat_t which gives the states to traverse through
* ending with the last state at path[num_states-1]
* @param num_states is the count of state steps to move through
*/
static void ft2232_add_pathmove(tap_state_t* path, int num_states)
{
int state_count = 0;
assert((unsigned) num_states <= 32u); /* tms_bits only holds 32 bits */
DEBUG_JTAG_IO("-");
/* this loop verifies that the path is legal and logs each state in the path */
while (num_states)
{
unsigned char tms_byte = 0; /* zero this on each MPSSE batch */
int bit_count = 0;
int num_states_batch = num_states > 7 ? 7 : num_states;
/* command "Clock Data to TMS/CS Pin (no Read)" */
buffer_write(0x4b);
/* number of states remaining */
buffer_write(num_states_batch - 1);
while (num_states_batch--) {
/* either TMS=0 or TMS=1 must work ... */
if (tap_state_transition(tap_get_state(), false)
== path[state_count])
buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
else if (tap_state_transition(tap_get_state(), true)
== path[state_count])
buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
/* ... or else the caller goofed BADLY */
else {
LOG_ERROR("BUG: %s -> %s isn't a valid "
"TAP state transition",
tap_state_name(tap_get_state()),
tap_state_name(path[state_count]));
exit(-1);
}
tap_set_state(path[state_count]);
state_count++;
num_states--;
}
buffer_write(tms_byte);
}
tap_set_end_state(tap_get_state());
}
static void ft2232_add_scan(bool ir_scan, enum scan_type type, uint8_t* buffer, int scan_size)
{
int num_bytes = (scan_size + 7) / 8;
int bits_left = scan_size;
int cur_byte = 0;
int last_bit;
if (!ir_scan)
{
if (tap_get_state() != TAP_DRSHIFT)
{
move_to_state(TAP_DRSHIFT);
}
}
else
{
if (tap_get_state() != TAP_IRSHIFT)
{
move_to_state(TAP_IRSHIFT);
}
}
/* add command for complete bytes */
while (num_bytes > 1)
{
int thisrun_bytes;
if (type == SCAN_IO)
{
/* Clock Data Bytes In and Out LSB First */
buffer_write(0x39);
/* LOG_DEBUG("added TDI bytes (io %i)", num_bytes); */
}
else if (type == SCAN_OUT)
{
/* Clock Data Bytes Out on -ve Clock Edge LSB First (no Read) */
buffer_write(0x19);
/* LOG_DEBUG("added TDI bytes (o)"); */
}
else if (type == SCAN_IN)
{
/* Clock Data Bytes In on +ve Clock Edge LSB First (no Write) */
buffer_write(0x28);
/* LOG_DEBUG("added TDI bytes (i %i)", num_bytes); */
}
thisrun_bytes = (num_bytes > 65537) ? 65536 : (num_bytes - 1);
num_bytes -= thisrun_bytes;
buffer_write((uint8_t) (thisrun_bytes - 1));
buffer_write((uint8_t) ((thisrun_bytes - 1) >> 8));
if (type != SCAN_IN)
{
/* add complete bytes */
while (thisrun_bytes-- > 0)
{
buffer_write(buffer[cur_byte++]);
bits_left -= 8;
}
}
else /* (type == SCAN_IN) */
{
bits_left -= 8 * (thisrun_bytes);
}
}
/* the most signifcant bit is scanned during TAP movement */
if (type != SCAN_IN)
last_bit = (buffer[cur_byte] >> (bits_left - 1)) & 0x1;
else
last_bit = 0;
/* process remaining bits but the last one */
if (bits_left > 1)
{
if (type == SCAN_IO)
{
/* Clock Data Bits In and Out LSB First */
buffer_write(0x3b);
/* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
}
else if (type == SCAN_OUT)
{
/* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
buffer_write(0x1b);
/* LOG_DEBUG("added TDI bits (o)"); */
}
else if (type == SCAN_IN)
{
/* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
buffer_write(0x2a);
/* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
}
buffer_write(bits_left - 2);
if (type != SCAN_IN)
buffer_write(buffer[cur_byte]);
}
if ((ir_scan && (tap_get_end_state() == TAP_IRSHIFT))
|| (!ir_scan && (tap_get_end_state() == TAP_DRSHIFT)))
{
if (type == SCAN_IO)
{
/* Clock Data Bits In and Out LSB First */
buffer_write(0x3b);
/* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
}
else if (type == SCAN_OUT)
{
/* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
buffer_write(0x1b);
/* LOG_DEBUG("added TDI bits (o)"); */
}
else if (type == SCAN_IN)
{
/* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
buffer_write(0x2a);
/* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
}
buffer_write(0x0);
buffer_write(last_bit);
}
else
{
int tms_bits;
int tms_count;
uint8_t mpsse_cmd;
/* move from Shift-IR/DR to end state */
if (type != SCAN_OUT)
{
/* We always go to the PAUSE state in two step at the end of an IN or IO scan */
/* This must be coordinated with the bit shifts in ft2232_read_scan */
tms_bits = 0x01;
tms_count = 2;
/* Clock Data to TMS/CS Pin with Read */
mpsse_cmd = 0x6b;
}
else
{
tms_bits = tap_get_tms_path(tap_get_state(), tap_get_end_state());
tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
/* Clock Data to TMS/CS Pin (no Read) */
mpsse_cmd = 0x4b;
}
DEBUG_JTAG_IO("finish %s", (type == SCAN_OUT) ? "without read" : "via PAUSE");
clock_tms(mpsse_cmd, tms_bits, tms_count, last_bit);
}
if (tap_get_state() != tap_get_end_state())
{
move_to_state(tap_get_end_state());
}
}
static int ft2232_large_scan(struct scan_command* cmd, enum scan_type type, uint8_t* buffer, int scan_size)
{
int num_bytes = (scan_size + 7) / 8;
int bits_left = scan_size;
int cur_byte = 0;
int last_bit;
uint8_t* receive_buffer = malloc(DIV_ROUND_UP(scan_size, 8));
uint8_t* receive_pointer = receive_buffer;
uint32_t bytes_written;
uint32_t bytes_read;
int retval;
int thisrun_read = 0;
if (cmd->ir_scan)
{
LOG_ERROR("BUG: large IR scans are not supported");
exit(-1);
}
if (tap_get_state() != TAP_DRSHIFT)
{
move_to_state(TAP_DRSHIFT);
}
if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
{
LOG_ERROR("couldn't write MPSSE commands to FT2232");
exit(-1);
}
LOG_DEBUG("ft2232_buffer_size: %i, bytes_written: %i",
ft2232_buffer_size, (int)bytes_written);
ft2232_buffer_size = 0;
/* add command for complete bytes */
while (num_bytes > 1)
{
int thisrun_bytes;
if (type == SCAN_IO)
{
/* Clock Data Bytes In and Out LSB First */
buffer_write(0x39);
/* LOG_DEBUG("added TDI bytes (io %i)", num_bytes); */
}
else if (type == SCAN_OUT)
{
/* Clock Data Bytes Out on -ve Clock Edge LSB First (no Read) */
buffer_write(0x19);
/* LOG_DEBUG("added TDI bytes (o)"); */
}
else if (type == SCAN_IN)
{
/* Clock Data Bytes In on +ve Clock Edge LSB First (no Write) */
buffer_write(0x28);
/* LOG_DEBUG("added TDI bytes (i %i)", num_bytes); */
}
thisrun_bytes = (num_bytes > 65537) ? 65536 : (num_bytes - 1);
thisrun_read = thisrun_bytes;
num_bytes -= thisrun_bytes;
buffer_write((uint8_t) (thisrun_bytes - 1));
buffer_write((uint8_t) ((thisrun_bytes - 1) >> 8));
if (type != SCAN_IN)
{
/* add complete bytes */
while (thisrun_bytes-- > 0)
{
buffer_write(buffer[cur_byte]);
cur_byte++;
bits_left -= 8;
}
}
else /* (type == SCAN_IN) */
{
bits_left -= 8 * (thisrun_bytes);
}
if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
{
LOG_ERROR("couldn't write MPSSE commands to FT2232");
exit(-1);
}
LOG_DEBUG("ft2232_buffer_size: %i, bytes_written: %i",
ft2232_buffer_size,
(int)bytes_written);
ft2232_buffer_size = 0;
if (type != SCAN_OUT)
{
if ((retval = ft2232_read(receive_pointer, thisrun_read, &bytes_read)) != ERROR_OK)
{
LOG_ERROR("couldn't read from FT2232");
exit(-1);
}
LOG_DEBUG("thisrun_read: %i, bytes_read: %i",
thisrun_read,
(int)bytes_read);
receive_pointer += bytes_read;
}
}
thisrun_read = 0;
/* the most signifcant bit is scanned during TAP movement */
if (type != SCAN_IN)
last_bit = (buffer[cur_byte] >> (bits_left - 1)) & 0x1;
else
last_bit = 0;
/* process remaining bits but the last one */
if (bits_left > 1)
{
if (type == SCAN_IO)
{
/* Clock Data Bits In and Out LSB First */
buffer_write(0x3b);
/* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
}
else if (type == SCAN_OUT)
{
/* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
buffer_write(0x1b);
/* LOG_DEBUG("added TDI bits (o)"); */
}
else if (type == SCAN_IN)
{
/* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
buffer_write(0x2a);
/* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
}
buffer_write(bits_left - 2);
if (type != SCAN_IN)
buffer_write(buffer[cur_byte]);
if (type != SCAN_OUT)
thisrun_read += 2;
}
if (tap_get_end_state() == TAP_DRSHIFT)
{
if (type == SCAN_IO)
{
/* Clock Data Bits In and Out LSB First */
buffer_write(0x3b);
/* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
}
else if (type == SCAN_OUT)
{
/* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
buffer_write(0x1b);
/* LOG_DEBUG("added TDI bits (o)"); */
}
else if (type == SCAN_IN)
{
/* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
buffer_write(0x2a);
/* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
}
buffer_write(0x0);
buffer_write(last_bit);
}
else
{
int tms_bits = tap_get_tms_path(tap_get_state(), tap_get_end_state());
int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
uint8_t mpsse_cmd;
/* move from Shift-IR/DR to end state */
if (type != SCAN_OUT)
{
/* Clock Data to TMS/CS Pin with Read */
mpsse_cmd = 0x6b;
/* LOG_DEBUG("added TMS scan (read)"); */
}
else
{
/* Clock Data to TMS/CS Pin (no Read) */
mpsse_cmd = 0x4b;
/* LOG_DEBUG("added TMS scan (no read)"); */
}
DEBUG_JTAG_IO("finish, %s", (type == SCAN_OUT) ? "no read" : "read");
clock_tms(mpsse_cmd, tms_bits, tms_count, last_bit);
}
if (type != SCAN_OUT)
thisrun_read += 1;
if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
{
LOG_ERROR("couldn't write MPSSE commands to FT2232");
exit(-1);
}
LOG_DEBUG("ft2232_buffer_size: %i, bytes_written: %i",
ft2232_buffer_size,
(int)bytes_written);
ft2232_buffer_size = 0;
if (type != SCAN_OUT)
{
if ((retval = ft2232_read(receive_pointer, thisrun_read, &bytes_read)) != ERROR_OK)
{
LOG_ERROR("couldn't read from FT2232");
exit(-1);
}
LOG_DEBUG("thisrun_read: %i, bytes_read: %i",
thisrun_read,
(int)bytes_read);
receive_pointer += bytes_read;
}
return ERROR_OK;
}
static int ft2232_predict_scan_out(int scan_size, enum scan_type type)
{
int predicted_size = 3;
int num_bytes = (scan_size - 1) / 8;
if (tap_get_state() != TAP_DRSHIFT)
predicted_size += get_tms_buffer_requirements(tap_get_tms_path_len(tap_get_state(), TAP_DRSHIFT));
if (type == SCAN_IN) /* only from device to host */
{
/* complete bytes */
predicted_size += DIV_ROUND_UP(num_bytes, 65536) * 3;
/* remaining bits - 1 (up to 7) */
predicted_size += ((scan_size - 1) % 8) ? 2 : 0;
}
else /* host to device, or bidirectional */
{
/* complete bytes */
predicted_size += num_bytes + DIV_ROUND_UP(num_bytes, 65536) * 3;
/* remaining bits -1 (up to 7) */
predicted_size += ((scan_size - 1) % 8) ? 3 : 0;
}
return predicted_size;
}
static int ft2232_predict_scan_in(int scan_size, enum scan_type type)
{
int predicted_size = 0;
if (type != SCAN_OUT)
{
/* complete bytes */
predicted_size += (DIV_ROUND_UP(scan_size, 8) > 1) ? (DIV_ROUND_UP(scan_size, 8) - 1) : 0;
/* remaining bits - 1 */
predicted_size += ((scan_size - 1) % 8) ? 1 : 0;
/* last bit (from TMS scan) */
predicted_size += 1;
}
/* LOG_DEBUG("scan_size: %i, predicted_size: %i", scan_size, predicted_size); */
return predicted_size;
}
static void usbjtag_reset(int trst, int srst)
{
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (trst == 1)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
low_direction |= nTRSTnOE; /* switch to output pin (output is low) */
else
low_output &= ~nTRST; /* switch output low */
}
else if (trst == 0)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
low_direction &= ~nTRSTnOE; /* switch to input pin (high-Z + internal and external pullup) */
else
low_output |= nTRST; /* switch output high */
}
if (srst == 1)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
low_output &= ~nSRST; /* switch output low */
else
low_direction |= nSRSTnOE; /* switch to output pin (output is low) */
}
else if (srst == 0)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
low_output |= nSRST; /* switch output high */
else
low_direction &= ~nSRSTnOE; /* switch to input pin (high-Z) */
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
}
static void jtagkey_reset(int trst, int srst)
{
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (trst == 1)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output &= ~nTRSTnOE;
else
high_output &= ~nTRST;
}
else if (trst == 0)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output |= nTRSTnOE;
else
high_output |= nTRST;
}
if (srst == 1)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
high_output &= ~nSRST;
else
high_output &= ~nSRSTnOE;
}
else if (srst == 0)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
high_output |= nSRST;
else
high_output |= nSRSTnOE;
}
/* command "set data bits high byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
high_direction);
}
static void olimex_jtag_reset(int trst, int srst)
{
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (trst == 1)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output &= ~nTRSTnOE;
else
high_output &= ~nTRST;
}
else if (trst == 0)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output |= nTRSTnOE;
else
high_output |= nTRST;
}
if (srst == 1)
{
high_output |= nSRST;
}
else if (srst == 0)
{
high_output &= ~nSRST;
}
/* command "set data bits high byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
high_direction);
}
static void axm0432_jtag_reset(int trst, int srst)
{
if (trst == 1)
{
tap_set_state(TAP_RESET);
high_output &= ~nTRST;
}
else if (trst == 0)
{
high_output |= nTRST;
}
if (srst == 1)
{
high_output &= ~nSRST;
}
else if (srst == 0)
{
high_output |= nSRST;
}
/* command "set data bits low byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
high_direction);
}
static void flyswatter_reset(int trst, int srst)
{
if (trst == 1)
{
low_output &= ~nTRST;
}
else if (trst == 0)
{
low_output |= nTRST;
}
if (srst == 1)
{
low_output |= nSRST;
}
else if (srst == 0)
{
low_output &= ~nSRST;
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", trst, srst, low_output, low_direction);
}
static void turtle_reset(int trst, int srst)
{
trst = trst;
if (srst == 1)
{
low_output |= nSRST;
}
else if (srst == 0)
{
low_output &= ~nSRST;
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
LOG_DEBUG("srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", srst, low_output, low_direction);
}
static void comstick_reset(int trst, int srst)
{
if (trst == 1)
{
high_output &= ~nTRST;
}
else if (trst == 0)
{
high_output |= nTRST;
}
if (srst == 1)
{
high_output &= ~nSRST;
}
else if (srst == 0)
{
high_output |= nSRST;
}
/* command "set data bits high byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
high_direction);
}
static void stm32stick_reset(int trst, int srst)
{
if (trst == 1)
{
high_output &= ~nTRST;
}
else if (trst == 0)
{
high_output |= nTRST;
}
if (srst == 1)
{
low_output &= ~nSRST;
}
else if (srst == 0)
{
low_output |= nSRST;
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
/* command "set data bits high byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
high_direction);
}
static void sheevaplug_reset(int trst, int srst)
{
if (trst == 1)
high_output &= ~nTRST;
else if (trst == 0)
high_output |= nTRST;
if (srst == 1)
high_output &= ~nSRSTnOE;
else if (srst == 0)
high_output |= nSRSTnOE;
/* command "set data bits high byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output, high_direction);
}
static int ft2232_execute_runtest(struct jtag_command *cmd)
{
int retval;
int i;
int predicted_size = 0;
retval = ERROR_OK;
DEBUG_JTAG_IO("runtest %i cycles, end in %s",
cmd->cmd.runtest->num_cycles,
tap_state_name(cmd->cmd.runtest->end_state));
/* only send the maximum buffer size that FT2232C can handle */
predicted_size = 0;
if (tap_get_state() != TAP_IDLE)
predicted_size += 3;
predicted_size += 3 * DIV_ROUND_UP(cmd->cmd.runtest->num_cycles, 7);
if (cmd->cmd.runtest->end_state != TAP_IDLE)
predicted_size += 3;
if (tap_get_end_state() != TAP_IDLE)
predicted_size += 3;
if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
{
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
require_send = 0;
first_unsent = cmd;
}
if (tap_get_state() != TAP_IDLE)
{
move_to_state(TAP_IDLE);
require_send = 1;
}
i = cmd->cmd.runtest->num_cycles;
while (i > 0)
{
/* there are no state transitions in this code, so omit state tracking */
/* command "Clock Data to TMS/CS Pin (no Read)" */
buffer_write(0x4b);
/* scan 7 bits */
buffer_write((i > 7) ? 6 : (i - 1));
/* TMS data bits */
buffer_write(0x0);
i -= (i > 7) ? 7 : i;
/* LOG_DEBUG("added TMS scan (no read)"); */
}
ft2232_end_state(cmd->cmd.runtest->end_state);
if (tap_get_state() != tap_get_end_state())
{
move_to_state(tap_get_end_state());
}
require_send = 1;
DEBUG_JTAG_IO("runtest: %i, end in %s",
cmd->cmd.runtest->num_cycles,
tap_state_name(tap_get_end_state()));
return retval;
}
static int ft2232_execute_statemove(struct jtag_command *cmd)
{
int predicted_size = 0;
int retval = ERROR_OK;
DEBUG_JTAG_IO("statemove end in %s",
tap_state_name(cmd->cmd.statemove->end_state));
/* only send the maximum buffer size that FT2232C can handle */
predicted_size = 3;
if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
{
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
require_send = 0;
first_unsent = cmd;
}
ft2232_end_state(cmd->cmd.statemove->end_state);
/* For TAP_RESET, ignore the current recorded state. It's often
* wrong at server startup, and this transation is critical whenever
* it's requested.
*/
if (tap_get_end_state() == TAP_RESET) {
clock_tms(0x4b, 0xff, 5, 0);
require_send = 1;
/* shortest-path move to desired end state */
} else if (tap_get_state() != tap_get_end_state())
{
move_to_state(tap_get_end_state());
require_send = 1;
}
return retval;
}
static int ft2232_execute_pathmove(struct jtag_command *cmd)
{
int predicted_size = 0;
int retval = ERROR_OK;
tap_state_t* path = cmd->cmd.pathmove->path;
int num_states = cmd->cmd.pathmove->num_states;
DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
tap_state_name(tap_get_state()),
tap_state_name(path[num_states-1]));
/* only send the maximum buffer size that FT2232C can handle */
predicted_size = 3 * DIV_ROUND_UP(num_states, 7);
if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
{
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
require_send = 0;
first_unsent = cmd;
}
ft2232_add_pathmove(path, num_states);
require_send = 1;
return retval;
}
static int ft2232_execute_scan(struct jtag_command *cmd)
{
uint8_t* buffer;
int scan_size; /* size of IR or DR scan */
int predicted_size = 0;
int retval = ERROR_OK;
enum scan_type type = jtag_scan_type(cmd->cmd.scan);
DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN", type);
scan_size = jtag_build_buffer(cmd->cmd.scan, &buffer);
predicted_size = ft2232_predict_scan_out(scan_size, type);
if ((predicted_size + 1) > FT2232_BUFFER_SIZE)
{
LOG_DEBUG("oversized ft2232 scan (predicted_size > FT2232_BUFFER_SIZE)");
/* unsent commands before this */
if (first_unsent != cmd)
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
/* current command */
ft2232_end_state(cmd->cmd.scan->end_state);
ft2232_large_scan(cmd->cmd.scan, type, buffer, scan_size);
require_send = 0;
first_unsent = cmd->next;
if (buffer)
free(buffer);
return retval;
}
else if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
{
LOG_DEBUG("ft2232 buffer size reached, sending queued commands (first_unsent: %p, cmd: %p)",
first_unsent,
cmd);
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
require_send = 0;
first_unsent = cmd;
}
ft2232_expect_read += ft2232_predict_scan_in(scan_size, type);
/* LOG_DEBUG("new read size: %i", ft2232_expect_read); */
ft2232_end_state(cmd->cmd.scan->end_state);
ft2232_add_scan(cmd->cmd.scan->ir_scan, type, buffer, scan_size);
require_send = 1;
if (buffer)
free(buffer);
DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
(cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
tap_state_name(tap_get_end_state()));
return retval;
}
static int ft2232_execute_reset(struct jtag_command *cmd)
{
int retval;
int predicted_size = 0;
retval = ERROR_OK;
DEBUG_JTAG_IO("reset trst: %i srst %i",
cmd->cmd.reset->trst, cmd->cmd.reset->srst);
/* only send the maximum buffer size that FT2232C can handle */
predicted_size = 3;
if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
{
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
require_send = 0;
first_unsent = cmd;
}
if ((cmd->cmd.reset->trst == 1) || (cmd->cmd.reset->srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
{
tap_set_state(TAP_RESET);
}
layout->reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst);
require_send = 1;
DEBUG_JTAG_IO("trst: %i, srst: %i",
cmd->cmd.reset->trst, cmd->cmd.reset->srst);
return retval;
}
static int ft2232_execute_sleep(struct jtag_command *cmd)
{
int retval;
retval = ERROR_OK;
DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
first_unsent = cmd->next;
jtag_sleep(cmd->cmd.sleep->us);
DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
cmd->cmd.sleep->us,
tap_state_name(tap_get_state()));
return retval;
}
static int ft2232_execute_stableclocks(struct jtag_command *cmd)
{
int retval;
retval = ERROR_OK;
/* this is only allowed while in a stable state. A check for a stable
* state was done in jtag_add_clocks()
*/
if (ft2232_stableclocks(cmd->cmd.stableclocks->num_cycles, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
DEBUG_JTAG_IO("clocks %i while in %s",
cmd->cmd.stableclocks->num_cycles,
tap_state_name(tap_get_state()));
return retval;
}
static int ft2232_execute_command(struct jtag_command *cmd)
{
int retval;
retval = ERROR_OK;
switch (cmd->type)
{
case JTAG_RESET: retval = ft2232_execute_reset(cmd); break;
case JTAG_RUNTEST: retval = ft2232_execute_runtest(cmd); break;
case JTAG_STATEMOVE: retval = ft2232_execute_statemove(cmd); break;
case JTAG_PATHMOVE: retval = ft2232_execute_pathmove(cmd); break;
case JTAG_SCAN: retval = ft2232_execute_scan(cmd); break;
case JTAG_SLEEP: retval = ft2232_execute_sleep(cmd); break;
case JTAG_STABLECLOCKS: retval = ft2232_execute_stableclocks(cmd); break;
default:
LOG_ERROR("BUG: unknown JTAG command type encountered");
exit(-1);
}
return retval;
}
static int ft2232_execute_queue(void)
{
struct jtag_command* cmd = jtag_command_queue; /* currently processed command */
int retval;
first_unsent = cmd; /* next command that has to be sent */
require_send = 0;
/* return ERROR_OK, unless ft2232_send_and_recv reports a failed check
* that wasn't handled by a caller-provided error handler
*/
retval = ERROR_OK;
ft2232_buffer_size = 0;
ft2232_expect_read = 0;
/* blink, if the current layout has that feature */
if (layout->blink)
layout->blink();
while (cmd)
{
if (ft2232_execute_command(cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
/* Start reading input before FT2232 TX buffer fills up */
cmd = cmd->next;
if (ft2232_expect_read > 256)
{
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
first_unsent = cmd;
}
}
if (require_send > 0)
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
return retval;
}
#if BUILD_FT2232_FTD2XX == 1
static int ft2232_init_ftd2xx(uint16_t vid, uint16_t pid, int more, int* try_more)
{
FT_STATUS status;
DWORD deviceID;
char SerialNumber[16];
char Description[64];
DWORD openex_flags = 0;
char* openex_string = NULL;
uint8_t latency_timer;
LOG_DEBUG("'ft2232' interface using FTD2XX with '%s' layout (%4.4x:%4.4x)", ft2232_layout, vid, pid);
#if IS_WIN32 == 0
/* Add non-standard Vid/Pid to the linux driver */
if ((status = FT_SetVIDPID(vid, pid)) != FT_OK)
{
LOG_WARNING("couldn't add %4.4x:%4.4x", vid, pid);
}
#endif
if (ft2232_device_desc && ft2232_serial)
{
LOG_WARNING("can't open by device description and serial number, giving precedence to serial");
ft2232_device_desc = NULL;
}
if (ft2232_device_desc)
{
openex_string = ft2232_device_desc;
openex_flags = FT_OPEN_BY_DESCRIPTION;
}
else if (ft2232_serial)
{
openex_string = ft2232_serial;
openex_flags = FT_OPEN_BY_SERIAL_NUMBER;
}
else
{
LOG_ERROR("neither device description nor serial number specified");
LOG_ERROR("please add \"ft2232_device_desc <string>\" or \"ft2232_serial <string>\" to your .cfg file");
return ERROR_JTAG_INIT_FAILED;
}
status = FT_OpenEx(openex_string, openex_flags, &ftdih);
if (status != FT_OK) {
/* under Win32, the FTD2XX driver appends an "A" to the end
* of the description, if we tried by the desc, then
* try by the alternate "A" description. */
if (openex_string == ft2232_device_desc) {
/* Try the alternate method. */
openex_string = ft2232_device_desc_A;
status = FT_OpenEx(openex_string, openex_flags, &ftdih);
if (status == FT_OK) {
/* yea, the "alternate" method worked! */
} else {
/* drat, give the user a meaningfull message.
* telling the use we tried *BOTH* methods. */
LOG_WARNING("Unable to open FTDI Device tried: '%s' and '%s'\n",
ft2232_device_desc,
ft2232_device_desc_A);
}
}
}
if (status != FT_OK)
{
DWORD num_devices;
if (more)
{
LOG_WARNING("unable to open ftdi device (trying more): %lu", status);
*try_more = 1;
return ERROR_JTAG_INIT_FAILED;
}
LOG_ERROR("unable to open ftdi device: %lu", status);
status = FT_ListDevices(&num_devices, NULL, FT_LIST_NUMBER_ONLY);
if (status == FT_OK)
{
char** desc_array = malloc(sizeof(char*) * (num_devices + 1));
uint32_t i;
for (i = 0; i < num_devices; i++)
desc_array[i] = malloc(64);
desc_array[num_devices] = NULL;
status = FT_ListDevices(desc_array, &num_devices, FT_LIST_ALL | openex_flags);
if (status == FT_OK)
{
LOG_ERROR("ListDevices: %lu\n", num_devices);
for (i = 0; i < num_devices; i++)
LOG_ERROR("%" PRIu32 ": \"%s\"", i, desc_array[i]);
}
for (i = 0; i < num_devices; i++)
free(desc_array[i]);
free(desc_array);
}
else
{
LOG_ERROR("ListDevices: NONE\n");
}
return ERROR_JTAG_INIT_FAILED;
}
if ((status = FT_SetLatencyTimer(ftdih, ft2232_latency)) != FT_OK)
{
LOG_ERROR("unable to set latency timer: %lu", status);
return ERROR_JTAG_INIT_FAILED;
}
if ((status = FT_GetLatencyTimer(ftdih, &latency_timer)) != FT_OK)
{
LOG_ERROR("unable to get latency timer: %lu", status);
return ERROR_JTAG_INIT_FAILED;
}
else
{
LOG_DEBUG("current latency timer: %i", latency_timer);
}
if ((status = FT_SetTimeouts(ftdih, 5000, 5000)) != FT_OK)
{
LOG_ERROR("unable to set timeouts: %lu", status);
return ERROR_JTAG_INIT_FAILED;
}
if ((status = FT_SetBitMode(ftdih, 0x0b, 2)) != FT_OK)
{
LOG_ERROR("unable to enable bit i/o mode: %lu", status);
return ERROR_JTAG_INIT_FAILED;
}
if ((status = FT_GetDeviceInfo(ftdih, &ftdi_device, &deviceID, SerialNumber, Description, NULL)) != FT_OK)
{
LOG_ERROR("unable to get FT_GetDeviceInfo: %lu", status);
return ERROR_JTAG_INIT_FAILED;
}
else
{
static const char* type_str[] =
{"BM", "AM", "100AX", "UNKNOWN", "2232C", "232R", "2232H", "4232H"};
unsigned no_of_known_types = ARRAY_SIZE(type_str) - 1;
unsigned type_index = ((unsigned)ftdi_device <= no_of_known_types)
? ftdi_device : FT_DEVICE_UNKNOWN;
LOG_INFO("device: %lu \"%s\"", ftdi_device, type_str[type_index]);
LOG_INFO("deviceID: %lu", deviceID);
LOG_INFO("SerialNumber: %s", SerialNumber);
LOG_INFO("Description: %s", Description);
}
return ERROR_OK;
}
static int ft2232_purge_ftd2xx(void)
{
FT_STATUS status;
if ((status = FT_Purge(ftdih, FT_PURGE_RX | FT_PURGE_TX)) != FT_OK)
{
LOG_ERROR("error purging ftd2xx device: %lu", status);
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
#endif /* BUILD_FT2232_FTD2XX == 1 */
#if BUILD_FT2232_LIBFTDI == 1
static int ft2232_init_libftdi(uint16_t vid, uint16_t pid, int more, int* try_more)
{
uint8_t latency_timer;
LOG_DEBUG("'ft2232' interface using libftdi with '%s' layout (%4.4x:%4.4x)",
ft2232_layout, vid, pid);
if (ftdi_init(&ftdic) < 0)
return ERROR_JTAG_INIT_FAILED;
if (ftdi_set_interface(&ftdic, INTERFACE_A) < 0)
{
LOG_ERROR("unable to select FT2232 channel A: %s", ftdic.error_str);
return ERROR_JTAG_INIT_FAILED;
}
/* context, vendor id, product id */
if (ftdi_usb_open_desc(&ftdic, vid, pid, ft2232_device_desc,
ft2232_serial) < 0)
{
if (more)
LOG_WARNING("unable to open ftdi device (trying more): %s",
ftdic.error_str);
else
LOG_ERROR("unable to open ftdi device: %s", ftdic.error_str);
*try_more = 1;
return ERROR_JTAG_INIT_FAILED;
}
/* There is already a reset in ftdi_usb_open_desc, this should be redundant */
if (ftdi_usb_reset(&ftdic) < 0)
{
LOG_ERROR("unable to reset ftdi device");
return ERROR_JTAG_INIT_FAILED;
}
if (ftdi_set_latency_timer(&ftdic, ft2232_latency) < 0)
{
LOG_ERROR("unable to set latency timer");
return ERROR_JTAG_INIT_FAILED;
}
if (ftdi_get_latency_timer(&ftdic, &latency_timer) < 0)
{
LOG_ERROR("unable to get latency timer");
return ERROR_JTAG_INIT_FAILED;
}
else
{
LOG_DEBUG("current latency timer: %i", latency_timer);
}
ftdi_set_bitmode(&ftdic, 0x0b, 2); /* ctx, JTAG I/O mask */
ftdi_device = ftdic.type;
static const char* type_str[] =
{"AM", "BM", "2232C", "R", "2232H", "4232H", "Unknown"};
unsigned no_of_known_types = ARRAY_SIZE(type_str) - 1;
unsigned type_index = ((unsigned)ftdi_device < no_of_known_types)
? ftdi_device : no_of_known_types;
LOG_DEBUG("FTDI chip type: %i \"%s\"", (int)ftdi_device, type_str[type_index]);
return ERROR_OK;
}
static int ft2232_purge_libftdi(void)
{
if (ftdi_usb_purge_buffers(&ftdic) < 0)
{
LOG_ERROR("ftdi_purge_buffers: %s", ftdic.error_str);
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
#endif /* BUILD_FT2232_LIBFTDI == 1 */
static int ft2232_init(void)
{
uint8_t buf[1];
int retval;
uint32_t bytes_written;
const struct ft2232_layout* cur_layout = ft2232_layouts;
int i;
if (tap_get_tms_path_len(TAP_IRPAUSE,TAP_IRPAUSE) == 7)
{
LOG_DEBUG("ft2232 interface using 7 step jtag state transitions");
}
else
{
LOG_DEBUG("ft2232 interface using shortest path jtag state transitions");
}
if ((ft2232_layout == NULL) || (ft2232_layout[0] == 0))
{
ft2232_layout = "usbjtag";
LOG_WARNING("No ft2232 layout specified, using default 'usbjtag'");
}
while (cur_layout->name)
{
if (strcmp(cur_layout->name, ft2232_layout) == 0)
{
layout = cur_layout;
break;
}
cur_layout++;
}
if (!layout)
{
LOG_ERROR("No matching layout found for %s", ft2232_layout);
return ERROR_JTAG_INIT_FAILED;
}
for (i = 0; 1; i++)
{
/*
* "more indicates that there are more IDs to try, so we should
* not print an error for an ID mismatch (but for anything
* else, we should).
*
* try_more indicates that the error code returned indicates an
* ID mismatch (and nothing else) and that we should proceeed
* with the next ID pair.
*/
int more = ft2232_vid[i + 1] || ft2232_pid[i + 1];
int try_more = 0;
#if BUILD_FT2232_FTD2XX == 1
retval = ft2232_init_ftd2xx(ft2232_vid[i], ft2232_pid[i],
more, &try_more);
#elif BUILD_FT2232_LIBFTDI == 1
retval = ft2232_init_libftdi(ft2232_vid[i], ft2232_pid[i],
more, &try_more);
#endif
if (retval >= 0)
break;
if (!more || !try_more)
return retval;
}
ft2232_buffer_size = 0;
ft2232_buffer = malloc(FT2232_BUFFER_SIZE);
if (layout->init() != ERROR_OK)
return ERROR_JTAG_INIT_FAILED;
if (ft2232_device_is_highspeed())
{
#ifndef BUILD_FT2232_HIGHSPEED
#if BUILD_FT2232_FTD2XX == 1
LOG_WARNING("High Speed device found - You need a newer FTD2XX driver (version 2.04.16 or later)");
#elif BUILD_FT2232_LIBFTDI == 1
LOG_WARNING("High Speed device found - You need a newer libftdi version (0.16 or later)");
#endif
#endif
/* make sure the legacy mode is disabled */
if (ft2232h_ft4232h_clk_divide_by_5(false) != ERROR_OK)
return ERROR_JTAG_INIT_FAILED;
}
ft2232_speed(jtag_get_speed());
buf[0] = 0x85; /* Disconnect TDI/DO to TDO/DI for Loopback */
if (((retval = ft2232_write(buf, 1, &bytes_written)) != ERROR_OK) || (bytes_written != 1))
{
LOG_ERROR("couldn't write to FT2232 to disable loopback");
return ERROR_JTAG_INIT_FAILED;
}
#if BUILD_FT2232_FTD2XX == 1
return ft2232_purge_ftd2xx();
#elif BUILD_FT2232_LIBFTDI == 1
return ft2232_purge_libftdi();
#endif
return ERROR_OK;
}
static int usbjtag_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x0b;
if (strcmp(ft2232_layout, "usbjtag") == 0)
{
nTRST = 0x10;
nTRSTnOE = 0x10;
nSRST = 0x40;
nSRSTnOE = 0x40;
}
else if (strcmp(ft2232_layout, "signalyzer") == 0)
{
nTRST = 0x10;
nTRSTnOE = 0x10;
nSRST = 0x20;
nSRSTnOE = 0x20;
}
else if (strcmp(ft2232_layout, "evb_lm3s811") == 0)
{
/* There are multiple revisions of LM3S811 eval boards:
* - Rev B (and older?) boards have no SWO trace support.
* - Rev C boards add ADBUS_6 DBG_ENn and BDBUS_4 SWO_EN;
* they should use the "luminary_icdi" layout instead.
*/
nTRST = 0x0;
nTRSTnOE = 0x00;
nSRST = 0x20;
nSRSTnOE = 0x20;
low_output = 0x88;
low_direction = 0x8b;
}
else if (strcmp(ft2232_layout, "luminary_icdi") == 0)
{
/* Most Luminary eval boards support SWO trace output,
* and should use this "luminary_icdi" layout.
*/
nTRST = 0x0;
nTRSTnOE = 0x00;
nSRST = 0x20;
nSRSTnOE = 0x20;
low_output = 0x88;
low_direction = 0xcb;
}
else
{
LOG_ERROR("BUG: usbjtag_init called for unknown layout '%s'", ft2232_layout);
return ERROR_JTAG_INIT_FAILED;
}
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
low_direction &= ~nTRSTnOE; /* nTRST input */
low_output &= ~nTRST; /* nTRST = 0 */
}
else
{
low_direction |= nTRSTnOE; /* nTRST output */
low_output |= nTRST; /* nTRST = 1 */
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
low_direction |= nSRSTnOE; /* nSRST output */
low_output |= nSRST; /* nSRST = 1 */
}
else
{
low_direction &= ~nSRSTnOE; /* nSRST input */
low_output &= ~nSRST; /* nSRST = 0 */
}
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, xRST high) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'USBJTAG' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int axm0432_jtag_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x2b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'JTAGkey' layout");
return ERROR_JTAG_INIT_FAILED;
}
if (strcmp(layout->name, "axm0432_jtag") == 0)
{
nTRST = 0x08;
nTRSTnOE = 0x0; /* No output enable for TRST*/
nSRST = 0x04;
nSRSTnOE = 0x0; /* No output enable for SRST*/
}
else
{
LOG_ERROR("BUG: axm0432_jtag_init called for non axm0432 layout");
exit(-1);
}
high_output = 0x0;
high_direction = 0x0c;
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
LOG_ERROR("can't set nTRSTOE to push-pull on the Dicarlo jtag");
}
else
{
high_output |= nTRST;
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
LOG_ERROR("can't set nSRST to push-pull on the Dicarlo jtag");
}
else
{
high_output |= nSRST;
}
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output; /* value */
buf[2] = high_direction; /* all outputs (xRST and xRSTnOE) */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'Dicarlo' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int jtagkey_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x1b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'JTAGkey' layout");
return ERROR_JTAG_INIT_FAILED;
}
if (strcmp(layout->name, "jtagkey") == 0)
{
nTRST = 0x01;
nTRSTnOE = 0x4;
nSRST = 0x02;
nSRSTnOE = 0x08;
}
else if ((strcmp(layout->name, "jtagkey_prototype_v1") == 0)
|| (strcmp(layout->name, "oocdlink") == 0))
{
nTRST = 0x02;
nTRSTnOE = 0x1;
nSRST = 0x08;
nSRSTnOE = 0x04;
}
else
{
LOG_ERROR("BUG: jtagkey_init called for non jtagkey layout");
exit(-1);
}
high_output = 0x0;
high_direction = 0x0f;
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
high_output |= nTRSTnOE;
high_output &= ~nTRST;
}
else
{
high_output &= ~nTRSTnOE;
high_output |= nTRST;
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
high_output &= ~nSRSTnOE;
high_output |= nSRST;
}
else
{
high_output |= nSRSTnOE;
high_output &= ~nSRST;
}
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output; /* value */
buf[2] = high_direction; /* all outputs (xRST and xRSTnOE) */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'JTAGkey' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int olimex_jtag_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x1b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'Olimex' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRST = 0x01;
nTRSTnOE = 0x4;
nSRST = 0x02;
nSRSTnOE = 0x00; /* no output enable for nSRST */
high_output = 0x0;
high_direction = 0x0f;
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
high_output |= nTRSTnOE;
high_output &= ~nTRST;
}
else
{
high_output &= ~nTRSTnOE;
high_output |= nTRST;
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
LOG_ERROR("can't set nSRST to push-pull on the Olimex ARM-USB-OCD");
}
else
{
high_output &= ~nSRST;
}
/* turn red LED on */
high_output |= 0x08;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output; /* value */
buf[2] = high_direction; /* all outputs (xRST and xRSTnOE) */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if ((ft2232_write(buf, 3, &bytes_written) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'Olimex' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int flyswatter_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x18;
low_direction = 0xfb;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE[12]=out, n[ST]srst = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'flyswatter' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRST = 0x10;
nTRSTnOE = 0x0; /* not output enable for nTRST */
nSRST = 0x20;
nSRSTnOE = 0x00; /* no output enable for nSRST */
high_output = 0x00;
high_direction = 0x0c;
/* turn red LED3 on, LED2 off */
high_output |= 0x08;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output; /* value */
buf[2] = high_direction; /* all outputs (xRST and xRSTnOE) */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'flyswatter' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int turtle_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x5b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'turtelizer2' layout");
return ERROR_JTAG_INIT_FAILED;
}
nSRST = 0x40;
high_output = 0x00;
high_direction = 0x0C;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output;
buf[2] = high_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'turtelizer2' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int comstick_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x0b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'comstick' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRST = 0x01;
nTRSTnOE = 0x00; /* no output enable for nTRST */
nSRST = 0x02;
nSRSTnOE = 0x00; /* no output enable for nSRST */
high_output = 0x03;
high_direction = 0x03;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output;
buf[2] = high_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'comstick' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int stm32stick_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x88;
low_direction = 0x8b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'stm32stick' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRST = 0x01;
nTRSTnOE = 0x00; /* no output enable for nTRST */
nSRST = 0x80;
nSRSTnOE = 0x00; /* no output enable for nSRST */
high_output = 0x01;
high_direction = 0x03;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output;
buf[2] = high_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'stm32stick' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int sheevaplug_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x1b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'sheevaplug' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRSTnOE = 0x1;
nTRST = 0x02;
nSRSTnOE = 0x4;
nSRST = 0x08;
high_output = 0x0;
high_direction = 0x0f;
/* nTRST is always push-pull */
high_output &= ~nTRSTnOE;
high_output |= nTRST;
/* nSRST is always open-drain */
high_output |= nSRSTnOE;
high_output &= ~nSRST;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output; /* value */
buf[2] = high_direction; /* all outputs - xRST */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'sheevaplug' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int cortino_jtag_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
low_output = 0x08;
low_direction = 0x1b;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output; /* value (TMS = 1,TCK = 0, TDI = 0, nOE = 0) */
buf[2] = low_direction; /* dir (output = 1), TCK/TDI/TMS = out, TDO = in, nOE = out */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'cortino' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRST = 0x01;
nTRSTnOE = 0x00; /* no output enable for nTRST */
nSRST = 0x02;
nSRSTnOE = 0x00; /* no output enable for nSRST */
high_output = 0x03;
high_direction = 0x03;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output;
buf[2] = high_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'stm32stick' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static void olimex_jtag_blink(void)
{
/* Olimex ARM-USB-OCD has a LED connected to ACBUS3
* ACBUS3 is bit 3 of the GPIOH port
*/
if (high_output & 0x08)
{
/* set port pin high */
high_output &= 0x07;
}
else
{
/* set port pin low */
high_output |= 0x08;
}
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
}
static void flyswatter_jtag_blink(void)
{
/*
* Flyswatter has two LEDs connected to ACBUS2 and ACBUS3
*/
high_output ^= 0x0c;
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
}
static void turtle_jtag_blink(void)
{
/*
* Turtelizer2 has two LEDs connected to ACBUS2 and ACBUS3
*/
if (high_output & 0x08)
{
high_output = 0x04;
}
else
{
high_output = 0x08;
}
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
}
static int ft2232_quit(void)
{
#if BUILD_FT2232_FTD2XX == 1
FT_STATUS status;
status = FT_Close(ftdih);
#elif BUILD_FT2232_LIBFTDI == 1
ftdi_usb_close(&ftdic);
ftdi_deinit(&ftdic);
#endif
free(ft2232_buffer);
ft2232_buffer = NULL;
return ERROR_OK;
}
COMMAND_HANDLER(ft2232_handle_device_desc_command)
{
char *cp;
char buf[200];
if (CMD_ARGC == 1)
{
ft2232_device_desc = strdup(CMD_ARGV[0]);
cp = strchr(ft2232_device_desc, 0);
/* under Win32, the FTD2XX driver appends an "A" to the end
* of the description, this examines the given desc
* and creates the 'missing' _A or non_A variable. */
if ((cp[-1] == 'A') && (cp[-2]==' ')) {
/* it was, so make this the "A" version. */
ft2232_device_desc_A = ft2232_device_desc;
/* and *CREATE* the non-A version. */
strcpy(buf, ft2232_device_desc);
cp = strchr(buf, 0);
cp[-2] = 0;
ft2232_device_desc = strdup(buf);
} else {
/* <space > A not defined
* so create it */
sprintf(buf, "%s A", ft2232_device_desc);
ft2232_device_desc_A = strdup(buf);
}
}
else
{
LOG_ERROR("expected exactly one argument to ft2232_device_desc <description>");
}
return ERROR_OK;
}
COMMAND_HANDLER(ft2232_handle_serial_command)
{
if (CMD_ARGC == 1)
{
ft2232_serial = strdup(CMD_ARGV[0]);
}
else
{
LOG_ERROR("expected exactly one argument to ft2232_serial <serial-number>");
}
return ERROR_OK;
}
COMMAND_HANDLER(ft2232_handle_layout_command)
{
if (CMD_ARGC == 0)
return ERROR_OK;
ft2232_layout = malloc(strlen(CMD_ARGV[0]) + 1);
strcpy(ft2232_layout, CMD_ARGV[0]);
return ERROR_OK;
}
COMMAND_HANDLER(ft2232_handle_vid_pid_command)
{
if (CMD_ARGC > MAX_USB_IDS * 2)
{
LOG_WARNING("ignoring extra IDs in ft2232_vid_pid "
"(maximum is %d pairs)", MAX_USB_IDS);
CMD_ARGC = MAX_USB_IDS * 2;
}
if (CMD_ARGC < 2 || (CMD_ARGC & 1))
{
LOG_WARNING("incomplete ft2232_vid_pid configuration directive");
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
/* remove the incomplete trailing id */
CMD_ARGC -= 1;
}
unsigned i;
for (i = 0; i < CMD_ARGC; i += 2)
{
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ft2232_vid[i >> 1]);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ft2232_pid[i >> 1]);
}
/*
* Explicitly terminate, in case there are multiples instances of
* ft2232_vid_pid.
*/
ft2232_vid[i >> 1] = ft2232_pid[i >> 1] = 0;
return ERROR_OK;
}
COMMAND_HANDLER(ft2232_handle_latency_command)
{
if (CMD_ARGC == 1)
{
ft2232_latency = atoi(CMD_ARGV[0]);
}
else
{
LOG_ERROR("expected exactly one argument to ft2232_latency <ms>");
}
return ERROR_OK;
}
static int ft2232_stableclocks(int num_cycles, struct jtag_command* cmd)
{
int retval = 0;
/* 7 bits of either ones or zeros. */
uint8_t tms = (tap_get_state() == TAP_RESET ? 0x7F : 0x00);
while (num_cycles > 0)
{
/* the command 0x4b, "Clock Data to TMS/CS Pin (no Read)" handles
* at most 7 bits per invocation. Here we invoke it potentially
* several times.
*/
int bitcount_per_command = (num_cycles > 7) ? 7 : num_cycles;
if (ft2232_buffer_size + 3 >= FT2232_BUFFER_SIZE)
{
if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
first_unsent = cmd;
}
/* there are no state transitions in this code, so omit state tracking */
/* command "Clock Data to TMS/CS Pin (no Read)" */
buffer_write(0x4b);
/* scan 7 bit */
buffer_write(bitcount_per_command - 1);
/* TMS data bits are either all zeros or ones to stay in the current stable state */
buffer_write(tms);
require_send = 1;
num_cycles -= bitcount_per_command;
}
return retval;
}
/* ---------------------------------------------------------------------
* Support for IceBear JTAG adapter from Section5:
* http://section5.ch/icebear
*
* Author: Sten, debian@sansys-electronic.com
*/
/* Icebear pin layout
*
* ADBUS5 (nEMU) nSRST | 2 1| GND (10k->VCC)
* GND GND | 4 3| n.c.
* ADBUS3 TMS | 6 5| ADBUS6 VCC
* ADBUS0 TCK | 8 7| ADBUS7 (GND)
* ADBUS4 nTRST |10 9| ACBUS0 (GND)
* ADBUS1 TDI |12 11| ACBUS1 (GND)
* ADBUS2 TDO |14 13| GND GND
*
* ADBUS0 O L TCK ACBUS0 GND
* ADBUS1 O L TDI ACBUS1 GND
* ADBUS2 I TDO ACBUS2 n.c.
* ADBUS3 O H TMS ACBUS3 n.c.
* ADBUS4 O H nTRST
* ADBUS5 O H nSRST
* ADBUS6 - VCC
* ADBUS7 - GND
*/
static int icebear_jtag_init(void) {
uint8_t buf[3];
uint32_t bytes_written;
low_direction = 0x0b; /* output: TCK TDI TMS; input: TDO */
low_output = 0x08; /* high: TMS; low: TCK TDI */
nTRST = 0x10;
nSRST = 0x20;
enum reset_types jtag_reset_config = jtag_get_reset_config();
if ((jtag_reset_config & RESET_TRST_OPEN_DRAIN) != 0) {
low_direction &= ~nTRST; /* nTRST high impedance */
}
else {
low_direction |= nTRST;
low_output |= nTRST;
}
low_direction |= nSRST;
low_output |= nSRST;
/* initialize low byte for jtag */
buf[0] = 0x80; /* command "set data bits low byte" */
buf[1] = low_output;
buf[2] = low_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3)) {
LOG_ERROR("couldn't initialize FT2232 with 'IceBear' layout (low)");
return ERROR_JTAG_INIT_FAILED;
}
high_output = 0x0;
high_direction = 0x00;
/* initialize high port */
buf[0] = 0x82; /* command "set data bits high byte" */
buf[1] = high_output; /* value */
buf[2] = high_direction; /* all outputs (xRST and xRSTnOE) */
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3)) {
LOG_ERROR("couldn't initialize FT2232 with 'IceBear' layout (high)");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static void icebear_jtag_reset(int trst, int srst) {
if (trst == 1) {
low_direction |= nTRST;
low_output &= ~nTRST;
}
else if (trst == 0) {
enum reset_types jtag_reset_config = jtag_get_reset_config();
if ((jtag_reset_config & RESET_TRST_OPEN_DRAIN) != 0)
low_direction &= ~nTRST;
else
low_output |= nTRST;
}
if (srst == 1) {
low_output &= ~nSRST;
}
else if (srst == 0) {
low_output |= nSRST;
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", trst, srst, low_output, low_direction);
}
/* ---------------------------------------------------------------------
* Support for Signalyzer H2 and Signalyzer H4
* JTAG adapter from Xverve Technologies Inc.
* http://www.signalyzer.com or http://www.xverve.com
*
* Author: Oleg Seiljus, oleg@signalyzer.com
*/
static unsigned char signalyzer_h_side;
static unsigned int signalyzer_h_adapter_type;
static int signalyzer_h_ctrl_write(int address, unsigned short value);
#if BUILD_FT2232_FTD2XX == 1
static int signalyzer_h_ctrl_read(int address, unsigned short *value);
#endif
#define SIGNALYZER_COMMAND_ADDR 128
#define SIGNALYZER_DATA_BUFFER_ADDR 129
#define SIGNALYZER_COMMAND_VERSION 0x41
#define SIGNALYZER_COMMAND_RESET 0x42
#define SIGNALYZER_COMMAND_POWERCONTROL_GET 0x50
#define SIGNALYZER_COMMAND_POWERCONTROL_SET 0x51
#define SIGNALYZER_COMMAND_PWM_SET 0x52
#define SIGNALYZER_COMMAND_LED_SET 0x53
#define SIGNALYZER_COMMAND_ADC 0x54
#define SIGNALYZER_COMMAND_GPIO_STATE 0x55
#define SIGNALYZER_COMMAND_GPIO_MODE 0x56
#define SIGNALYZER_COMMAND_GPIO_PORT 0x57
#define SIGNALYZER_COMMAND_I2C 0x58
#define SIGNALYZER_CHAN_A 1
#define SIGNALYZER_CHAN_B 2
/* LEDS use channel C */
#define SIGNALYZER_CHAN_C 4
#define SIGNALYZER_LED_GREEN 1
#define SIGNALYZER_LED_RED 2
#define SIGNALYZER_MODULE_TYPE_EM_LT16_A 0x0301
#define SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG 0x0302
#define SIGNALYZER_MODULE_TYPE_EM_JTAG 0x0303
#define SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P 0x0304
#define SIGNALYZER_MODULE_TYPE_EM_JTAG_P 0x0305
static int signalyzer_h_ctrl_write(int address, unsigned short value)
{
#if BUILD_FT2232_FTD2XX == 1
return FT_WriteEE(ftdih, address, value);
#elif BUILD_FT2232_LIBFTDI == 1
return 0;
#endif
}
#if BUILD_FT2232_FTD2XX == 1
static int signalyzer_h_ctrl_read(int address, unsigned short *value)
{
return FT_ReadEE(ftdih, address, value);
}
#endif
static int signalyzer_h_led_set(unsigned char channel, unsigned char led,
int on_time_ms, int off_time_ms, unsigned char cycles)
{
unsigned char on_time;
unsigned char off_time;
if (on_time_ms < 0xFFFF)
on_time = (unsigned char)(on_time_ms / 62);
else
on_time = 0xFF;
off_time = (unsigned char)(off_time_ms / 62);
#if BUILD_FT2232_FTD2XX == 1
FT_STATUS status;
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
((uint32_t)(channel << 8) | led))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
(SIGNALYZER_DATA_BUFFER_ADDR + 1),
((uint32_t)(on_time << 8) | off_time))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
(SIGNALYZER_DATA_BUFFER_ADDR + 2),
((uint32_t)cycles))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_LED_SET)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
return ERROR_OK;
#elif BUILD_FT2232_LIBFTDI == 1
int retval;
if ((retval = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
((uint32_t)(channel << 8) | led))) < 0)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
ftdi_get_error_string(&ftdic));
return ERROR_JTAG_DEVICE_ERROR;
}
if ((retval = signalyzer_h_ctrl_write(
(SIGNALYZER_DATA_BUFFER_ADDR + 1),
((uint32_t)(on_time << 8) | off_time))) < 0)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
ftdi_get_error_string(&ftdic));
return ERROR_JTAG_DEVICE_ERROR;
}
if ((retval = signalyzer_h_ctrl_write(
(SIGNALYZER_DATA_BUFFER_ADDR + 2),
(uint32_t)cycles)) < 0)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
ftdi_get_error_string(&ftdic));
return ERROR_JTAG_DEVICE_ERROR;
}
if ((retval = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_LED_SET)) < 0)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
ftdi_get_error_string(&ftdic));
return ERROR_JTAG_DEVICE_ERROR;
}
return ERROR_OK;
#endif
}
static int signalyzer_h_init(void)
{
#if BUILD_FT2232_FTD2XX == 1
FT_STATUS status;
int i;
#endif
char *end_of_desc;
uint16_t read_buf[12] = { 0 };
uint8_t buf[3];
uint32_t bytes_written;
/* turn on center green led */
signalyzer_h_led_set(SIGNALYZER_CHAN_C, SIGNALYZER_LED_GREEN,
0xFFFF, 0x00, 0x00);
/* determine what channel config wants to open
* TODO: change me... current implementation is made to work
* with openocd description parsing.
*/
end_of_desc = strrchr(ft2232_device_desc, 0x00);
if (end_of_desc)
{
signalyzer_h_side = *(end_of_desc - 1);
if (signalyzer_h_side == 'B')
signalyzer_h_side = SIGNALYZER_CHAN_B;
else
signalyzer_h_side = SIGNALYZER_CHAN_A;
}
else
{
LOG_ERROR("No Channel was specified");
return ERROR_FAIL;
}
signalyzer_h_led_set(signalyzer_h_side, SIGNALYZER_LED_GREEN,
1000, 1000, 0xFF);
#if BUILD_FT2232_FTD2XX == 1
/* read signalyzer versionining information */
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_VERSION)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
for (i = 0; i < 10; i++)
{
if ((status = signalyzer_h_ctrl_read(
(SIGNALYZER_DATA_BUFFER_ADDR + i),
&read_buf[i])) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_read returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
}
LOG_INFO("Signalyzer: ID info: { %.4x %.4x %.4x %.4x %.4x %.4x %.4x }",
read_buf[0], read_buf[1], read_buf[2], read_buf[3],
read_buf[4], read_buf[5], read_buf[6]);
/* set gpio register */
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
(uint32_t)(signalyzer_h_side << 8))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR + 1,
0x0404)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_GPIO_STATE)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
/* read adapter type information */
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
((uint32_t)(signalyzer_h_side << 8) | 0x01))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
(SIGNALYZER_DATA_BUFFER_ADDR + 1), 0xA000)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
(SIGNALYZER_DATA_BUFFER_ADDR + 2), 0x0008)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_I2C)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
usleep(100000);
if ((status = signalyzer_h_ctrl_read(SIGNALYZER_COMMAND_ADDR,
&read_buf[0])) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_read returned: %lu", status);
return ERROR_JTAG_DEVICE_ERROR;
}
if (read_buf[0] != 0x0498)
signalyzer_h_adapter_type = 0x0000;
else
{
for (i = 0; i < 4; i++)
{
if ((status = signalyzer_h_ctrl_read(
(SIGNALYZER_DATA_BUFFER_ADDR + i),
&read_buf[i])) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_read returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
}
signalyzer_h_adapter_type = read_buf[0];
}
#elif BUILD_FT2232_LIBFTDI == 1
/* currently libftdi does not allow reading individual eeprom
* locations, therefore adapter type cannot be detected.
* override with most common type
*/
signalyzer_h_adapter_type = SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG;
#endif
enum reset_types jtag_reset_config = jtag_get_reset_config();
/* ADAPTOR: EM_LT16_A */
if (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_LT16_A)
{
LOG_INFO("Signalyzer: EM-LT (16-channel level translator) "
"detected. (HW: %2x).", (read_buf[1] >> 8));
nTRST = 0x10;
nTRSTnOE = 0x10;
nSRST = 0x20;
nSRSTnOE = 0x20;
low_output = 0x08;
low_direction = 0x1b;
high_output = 0x0;
high_direction = 0x0;
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
low_direction &= ~nTRSTnOE; /* nTRST input */
low_output &= ~nTRST; /* nTRST = 0 */
}
else
{
low_direction |= nTRSTnOE; /* nTRST output */
low_output |= nTRST; /* nTRST = 1 */
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
low_direction |= nSRSTnOE; /* nSRST output */
low_output |= nSRST; /* nSRST = 1 */
}
else
{
low_direction &= ~nSRSTnOE; /* nSRST input */
low_output &= ~nSRST; /* nSRST = 0 */
}
#if BUILD_FT2232_FTD2XX == 1
/* enable power to the module */
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR,
((uint32_t)(signalyzer_h_side << 8) | 0x01)))
!= FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_POWERCONTROL_SET)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
/* set gpio mode register */
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR,
(uint32_t)(signalyzer_h_side << 8))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x0000))
!= FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_GPIO_MODE)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
/* set gpio register */
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR,
(uint32_t)(signalyzer_h_side << 8))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x4040))
!= FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_GPIO_STATE)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
#endif
}
/* ADAPTOR: EM_ARM_JTAG, EM_ARM_JTAG_P, EM_JTAG, EM_JTAG_P */
else if ((signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG) ||
(signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P) ||
(signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG) ||
(signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG_P))
{
if (signalyzer_h_adapter_type
== SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG)
LOG_INFO("Signalyzer: EM-ARM-JTAG (ARM JTAG) "
"detected. (HW: %2x).", (read_buf[1] >> 8));
else if (signalyzer_h_adapter_type
== SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P)
LOG_INFO("Signalyzer: EM-ARM-JTAG_P "
"(ARM JTAG with PSU) detected. (HW: %2x).",
(read_buf[1] >> 8));
else if (signalyzer_h_adapter_type
== SIGNALYZER_MODULE_TYPE_EM_JTAG)
LOG_INFO("Signalyzer: EM-JTAG (Generic JTAG) "
"detected. (HW: %2x).", (read_buf[1] >> 8));
else if (signalyzer_h_adapter_type
== SIGNALYZER_MODULE_TYPE_EM_JTAG_P)
LOG_INFO("Signalyzer: EM-JTAG-P "
"(Generic JTAG with PSU) detected. (HW: %2x).",
(read_buf[1] >> 8));
nTRST = 0x02;
nTRSTnOE = 0x04;
nSRST = 0x08;
nSRSTnOE = 0x10;
low_output = 0x08;
low_direction = 0x1b;
high_output = 0x0;
high_direction = 0x1f;
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
high_output |= nTRSTnOE;
high_output &= ~nTRST;
}
else
{
high_output &= ~nTRSTnOE;
high_output |= nTRST;
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
high_output &= ~nSRSTnOE;
high_output |= nSRST;
}
else
{
high_output |= nSRSTnOE;
high_output &= ~nSRST;
}
#if BUILD_FT2232_FTD2XX == 1
/* enable power to the module */
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR,
((uint32_t)(signalyzer_h_side << 8) | 0x01)))
!= FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_POWERCONTROL_SET)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
/* set gpio mode register (IO_16 and IO_17 set as analog
* inputs, other is gpio)
*/
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR,
(uint32_t)(signalyzer_h_side << 8))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x0060))
!= FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_GPIO_MODE)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
/* set gpio register (all inputs, for -P modules,
* PSU will be turned off)
*/
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR,
(uint32_t)(signalyzer_h_side << 8))) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x0000))
!= FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
if ((status = signalyzer_h_ctrl_write(
SIGNALYZER_COMMAND_ADDR,
SIGNALYZER_COMMAND_GPIO_STATE)) != FT_OK)
{
LOG_ERROR("signalyzer_h_ctrl_write returned: %lu",
status);
return ERROR_JTAG_DEVICE_ERROR;
}
#endif
}
else if (signalyzer_h_adapter_type == 0x0000)
{
LOG_INFO("Signalyzer: No external modules were detected.");
nTRST = 0x10;
nTRSTnOE = 0x10;
nSRST = 0x20;
nSRSTnOE = 0x20;
low_output = 0x08;
low_direction = 0x1b;
high_output = 0x0;
high_direction = 0x0;
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
{
low_direction &= ~nTRSTnOE; /* nTRST input */
low_output &= ~nTRST; /* nTRST = 0 */
}
else
{
low_direction |= nTRSTnOE; /* nTRST output */
low_output |= nTRST; /* nTRST = 1 */
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
{
low_direction |= nSRSTnOE; /* nSRST output */
low_output |= nSRST; /* nSRST = 1 */
}
else
{
low_direction &= ~nSRSTnOE; /* nSRST input */
low_output &= ~nSRST; /* nSRST = 0 */
}
}
else
{
LOG_ERROR("Unknown module type is detected: %.4x",
signalyzer_h_adapter_type);
return ERROR_JTAG_DEVICE_ERROR;
}
/* initialize low byte of controller for jtag operation */
buf[0] = 0x80;
buf[1] = low_output;
buf[2] = low_direction;
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK)
|| (bytes_written != 3))
{
LOG_ERROR("couldn't initialize Signalyzer-H layout");
return ERROR_JTAG_INIT_FAILED;
}
#if BUILD_FT2232_FTD2XX == 1
if (ftdi_device == FT_DEVICE_2232H)
{
/* initialize high byte of controller for jtag operation */
buf[0] = 0x82;
buf[1] = high_output;
buf[2] = high_direction;
if ((ft2232_write(buf, 3, &bytes_written) != ERROR_OK)
|| (bytes_written != 3))
{
LOG_ERROR("couldn't initialize Signalyzer-H layout");
return ERROR_JTAG_INIT_FAILED;
}
}
#elif BUILD_FT2232_LIBFTDI == 1
if (ftdi_device == TYPE_2232H)
{
/* initialize high byte of controller for jtag operation */
buf[0] = 0x82;
buf[1] = high_output;
buf[2] = high_direction;
if ((ft2232_write(buf, 3, &bytes_written) != ERROR_OK)
|| (bytes_written != 3))
{
LOG_ERROR("couldn't initialize Signalyzer-H layout");
return ERROR_JTAG_INIT_FAILED;
}
}
#endif
return ERROR_OK;
}
static void signalyzer_h_reset(int trst, int srst)
{
enum reset_types jtag_reset_config = jtag_get_reset_config();
/* ADAPTOR: EM_LT16_A */
if (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_LT16_A)
{
if (trst == 1)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
/* switch to output pin (output is low) */
low_direction |= nTRSTnOE;
else
/* switch output low */
low_output &= ~nTRST;
}
else if (trst == 0)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
/* switch to input pin (high-Z + internal
* and external pullup) */
low_direction &= ~nTRSTnOE;
else
/* switch output high */
low_output |= nTRST;
}
if (srst == 1)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
/* switch output low */
low_output &= ~nSRST;
else
/* switch to output pin (output is low) */
low_direction |= nSRSTnOE;
}
else if (srst == 0)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
/* switch output high */
low_output |= nSRST;
else
/* switch to input pin (high-Z) */
low_direction &= ~nSRSTnOE;
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, "
"low_direction: 0x%2.2x",
trst, srst, low_output, low_direction);
}
/* ADAPTOR: EM_ARM_JTAG, EM_ARM_JTAG_P, EM_JTAG, EM_JTAG_P */
else if ((signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG) ||
(signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P) ||
(signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG) ||
(signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG_P))
{
if (trst == 1)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output &= ~nTRSTnOE;
else
high_output &= ~nTRST;
}
else if (trst == 0)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output |= nTRSTnOE;
else
high_output |= nTRST;
}
if (srst == 1)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
high_output &= ~nSRST;
else
high_output &= ~nSRSTnOE;
}
else if (srst == 0)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
high_output |= nSRST;
else
high_output |= nSRSTnOE;
}
/* command "set data bits high byte" */
buffer_write(0x82);
buffer_write(high_output);
buffer_write(high_direction);
LOG_INFO("trst: %i, srst: %i, high_output: 0x%2.2x, "
"high_direction: 0x%2.2x",
trst, srst, high_output, high_direction);
}
else if (signalyzer_h_adapter_type == 0x0000)
{
if (trst == 1)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
/* switch to output pin (output is low) */
low_direction |= nTRSTnOE;
else
/* switch output low */
low_output &= ~nTRST;
}
else if (trst == 0)
{
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
/* switch to input pin (high-Z + internal
* and external pullup) */
low_direction &= ~nTRSTnOE;
else
/* switch output high */
low_output |= nTRST;
}
if (srst == 1)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
/* switch output low */
low_output &= ~nSRST;
else
/* switch to output pin (output is low) */
low_direction |= nSRSTnOE;
}
else if (srst == 0)
{
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
/* switch output high */
low_output |= nSRST;
else
/* switch to input pin (high-Z) */
low_direction &= ~nSRSTnOE;
}
/* command "set data bits low byte" */
buffer_write(0x80);
buffer_write(low_output);
buffer_write(low_direction);
LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, "
"low_direction: 0x%2.2x",
trst, srst, low_output, low_direction);
}
}
static void signalyzer_h_blink(void)
{
signalyzer_h_led_set(signalyzer_h_side, SIGNALYZER_LED_RED, 100, 0, 1);
}
/********************************************************************
* Support for KT-LINK
* JTAG adapter from KRISTECH
* http://www.kristech.eu
*******************************************************************/
static int ktlink_init(void)
{
uint8_t buf[3];
uint32_t bytes_written;
uint8_t swd_en = 0x20; //0x20 SWD disable, 0x00 SWD enable (ADBUS5)
low_output = 0x08 | swd_en; // value; TMS=1,TCK=0,TDI=0,SWD=swd_en
low_direction = 0x3B; // out=1; TCK/TDI/TMS=out,TDO=in,SWD=out,RTCK=in,SRSTIN=in
// initialize low port
buf[0] = 0x80; // command "set data bits low byte"
buf[1] = low_output;
buf[2] = low_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'ktlink' layout");
return ERROR_JTAG_INIT_FAILED;
}
nTRST = 0x01;
nSRST = 0x02;
nTRSTnOE = 0x04;
nSRSTnOE = 0x08;
high_output = 0x80; // turn LED on
high_direction = 0xFF; // all outputs
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN) {
high_output |= nTRSTnOE;
high_output &= ~nTRST;
} else {
high_output &= ~nTRSTnOE;
high_output |= nTRST;
}
if (jtag_reset_config & RESET_SRST_PUSH_PULL) {
high_output &= ~nSRSTnOE;
high_output |= nSRST;
} else {
high_output |= nSRSTnOE;
high_output &= ~nSRST;
}
// initialize high port
buf[0] = 0x82; // command "set data bits high byte"
buf[1] = high_output; // value
buf[2] = high_direction;
LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
if (((ft2232_write(buf, 3, &bytes_written)) != ERROR_OK) || (bytes_written != 3))
{
LOG_ERROR("couldn't initialize FT2232 with 'ktlink' layout");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static void ktlink_reset(int trst, int srst)
{
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (trst == 1) {
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output &= ~nTRSTnOE;
else
high_output &= ~nTRST;
} else if (trst == 0) {
if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
high_output |= nTRSTnOE;
else
high_output |= nTRST;
}
if (srst == 1) {
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
high_output &= ~nSRST;
else
high_output &= ~nSRSTnOE;
} else if (srst == 0) {
if (jtag_reset_config & RESET_SRST_PUSH_PULL)
high_output |= nSRST;
else
high_output |= nSRSTnOE;
}
buffer_write(0x82); // command "set data bits high byte"
buffer_write(high_output);
buffer_write(high_direction);
LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,high_direction);
}
static void ktlink_blink(void)
{
/* LED connected to ACBUS7 */
if (high_output & 0x80)
high_output &= 0x7F;
else
high_output |= 0x80;
buffer_write(0x82); // command "set data bits high byte"
buffer_write(high_output);
buffer_write(high_direction);
}
static const struct command_registration ft2232_command_handlers[] = {
{
.name = "ft2232_device_desc",
.handler = &ft2232_handle_device_desc_command,
.mode = COMMAND_CONFIG,
.help = "set the USB device description of the FTDI FT2232 device",
.usage = "<description>",
},
{
.name = "ft2232_serial",
.handler = &ft2232_handle_serial_command,
.mode = COMMAND_CONFIG,
.help = "set the serial number of the FTDI FT2232 device",
.usage = "<serial#>",
},
{
.name = "ft2232_layout",
.handler = &ft2232_handle_layout_command,
.mode = COMMAND_CONFIG,
.help = "set the layout of the FT2232 GPIO signals used "
"to control output-enables and reset signals",
.usage = "<layout>",
},
{
.name = "ft2232_vid_pid",
.handler = &ft2232_handle_vid_pid_command,
.mode = COMMAND_CONFIG,
.help = "the vendor ID and product ID of the FTDI FT2232 device",
.usage = "<vid> <pid> [...]",
},
{
.name = "ft2232_latency",
.handler = &ft2232_handle_latency_command,
.mode = COMMAND_CONFIG,
.help = "set the FT2232 latency timer to a new value",
.usage = "<vid> <pid> [...]",
},
COMMAND_REGISTRATION_DONE
};
struct jtag_interface ft2232_interface = {
.name = "ft2232",
.commands = ft2232_command_handlers,
.init = &ft2232_init,
.quit = &ft2232_quit,
.speed = &ft2232_speed,
.speed_div = &ft2232_speed_div,
.khz = &ft2232_khz,
.execute_queue = &ft2232_execute_queue,
};