MCUXpresso_LPC55S69/devices/LPC55S69/drivers/fsl_dma.h

902 lines
37 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2022 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef FSL_DMA_H_
#define FSL_DMA_H_
#include "fsl_common.h"
/*!
* @addtogroup dma
* @{
*/
/*! @file */
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @name Driver version */
/*! @{ */
/*! @brief DMA driver version */
#define FSL_DMA_DRIVER_VERSION (MAKE_VERSION(2, 5, 1)) /*!< Version 2.5.1. */
/*! @} */
/*! @brief DMA max transfer size */
#define DMA_MAX_TRANSFER_COUNT 0x400U
/*! @brief DMA channel numbers */
#if defined FSL_FEATURE_DMA_NUMBER_OF_CHANNELS
#define FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x) FSL_FEATURE_DMA_NUMBER_OF_CHANNELS
#define FSL_FEATURE_DMA_MAX_CHANNELS FSL_FEATURE_DMA_NUMBER_OF_CHANNELS
#define FSL_FEATURE_DMA_ALL_CHANNELS (FSL_FEATURE_DMA_NUMBER_OF_CHANNELS * FSL_FEATURE_SOC_DMA_COUNT)
#endif
/*! @brief DMA head link descriptor table align size */
#define FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE (16U)
/*! @brief DMA head descriptor table allocate macro
* To simplify user interface, this macro will help allocate descriptor memory,
* user just need to provide the name and the number for the allocate descriptor.
*
* @param name Allocate decriptor name.
* @param number Number of descriptor to be allocated.
*/
#define DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number) \
SDK_ALIGN(dma_descriptor_t name[number], FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZE)
/*! @brief DMA head descriptor table allocate macro at noncacheable section
* To simplify user interface, this macro will help allocate descriptor memory at noncacheable section,
* user just need to provide the name and the number for the allocate descriptor.
*
* @param name Allocate decriptor name.
* @param number Number of descriptor to be allocated.
*/
#define DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number) \
AT_NONCACHEABLE_SECTION_ALIGN(dma_descriptor_t name[number], FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZE)
/*! @brief DMA link descriptor table allocate macro
* To simplify user interface, this macro will help allocate descriptor memory,
* user just need to provide the name and the number for the allocate descriptor.
*
* @param name Allocate decriptor name.
* @param number Number of descriptor to be allocated.
*/
#define DMA_ALLOCATE_LINK_DESCRIPTORS(name, number) \
SDK_ALIGN(dma_descriptor_t name[number], FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE)
/*! @brief DMA link descriptor table allocate macro at noncacheable section
* To simplify user interface, this macro will help allocate descriptor memory at noncacheable section,
* user just need to provide the name and the number for the allocate descriptor.
*
* @param name Allocate decriptor name.
* @param number Number of descriptor to be allocated.
*/
#define DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number) \
AT_NONCACHEABLE_SECTION_ALIGN(dma_descriptor_t name[number], FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE)
/*! @brief DMA transfer buffer address need to align with the transfer width */
#define DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width) SDK_ALIGN(name, width)
/* Channel group consists of 32 channels. channel_group = 0 */
#define DMA_CHANNEL_GROUP(channel) (((uint8_t)(channel)) >> 5U)
/* Channel index in channel group. channel_index = (channel % (channel number per instance)) */
#define DMA_CHANNEL_INDEX(base, channel) (((uint8_t)(channel)) & 0x1FU)
/*! @brief DMA linked descriptor address algin size */
#define DMA_COMMON_REG_GET(base, channel, reg) \
(((volatile uint32_t *)(&((base)->COMMON[0].reg)))[DMA_CHANNEL_GROUP(channel)])
#define DMA_COMMON_CONST_REG_GET(base, channel, reg) \
(((volatile const uint32_t *)(&((base)->COMMON[0].reg)))[DMA_CHANNEL_GROUP(channel)])
#define DMA_COMMON_REG_SET(base, channel, reg, value) \
(((volatile uint32_t *)(&((base)->COMMON[0].reg)))[DMA_CHANNEL_GROUP(channel)] = (value))
/*! @brief DMA descriptor end address calculate
* @param start start address
* @param inc address interleave size
* @param bytes transfer bytes
* @param width transfer width
*/
#define DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width) \
((uint32_t *)((uint32_t)(start) + (inc) * (bytes) - (inc) * (width)))
#define DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes) \
(DMA_SetChannelXferConfig(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes))
/*! @brief _dma_transfer_status DMA transfer status */
enum
{
kStatus_DMA_Busy = MAKE_STATUS(kStatusGroup_DMA, 0), /*!< Channel is busy and can't handle the
transfer request. */
};
/*! @brief _dma_addr_interleave_size dma address interleave size */
enum
{
kDMA_AddressInterleave0xWidth = 0U, /*!< dma source/destination address no interleave */
kDMA_AddressInterleave1xWidth = 1U, /*!< dma source/destination address interleave 1xwidth */
kDMA_AddressInterleave2xWidth = 2U, /*!< dma source/destination address interleave 2xwidth */
kDMA_AddressInterleave4xWidth = 4U, /*!< dma source/destination address interleave 3xwidth */
};
/*! @brief _dma_transfer_width dma transfer width */
enum
{
kDMA_Transfer8BitWidth = 1U, /*!< dma channel transfer bit width is 8 bit */
kDMA_Transfer16BitWidth = 2U, /*!< dma channel transfer bit width is 16 bit */
kDMA_Transfer32BitWidth = 4U, /*!< dma channel transfer bit width is 32 bit */
};
/*! @brief DMA descriptor structure */
typedef struct _dma_descriptor
{
volatile uint32_t xfercfg; /*!< Transfer configuration */
void *srcEndAddr; /*!< Last source address of DMA transfer */
void *dstEndAddr; /*!< Last destination address of DMA transfer */
void *linkToNextDesc; /*!< Address of next DMA descriptor in chain */
} dma_descriptor_t;
/*! @brief DMA transfer configuration */
typedef struct _dma_xfercfg
{
bool valid; /*!< Descriptor is ready to transfer */
bool reload; /*!< Reload channel configuration register after
current descriptor is exhausted */
bool swtrig; /*!< Perform software trigger. Transfer if fired
when 'valid' is set */
bool clrtrig; /*!< Clear trigger */
bool intA; /*!< Raises IRQ when transfer is done and set IRQA status register flag */
bool intB; /*!< Raises IRQ when transfer is done and set IRQB status register flag */
uint8_t byteWidth; /*!< Byte width of data to transfer */
uint8_t srcInc; /*!< Increment source address by 'srcInc' x 'byteWidth' */
uint8_t dstInc; /*!< Increment destination address by 'dstInc' x 'byteWidth' */
uint16_t transferCount; /*!< Number of transfers */
} dma_xfercfg_t;
/*! @brief DMA channel priority */
typedef enum _dma_priority
{
kDMA_ChannelPriority0 = 0, /*!< Highest channel priority - priority 0 */
kDMA_ChannelPriority1, /*!< Channel priority 1 */
kDMA_ChannelPriority2, /*!< Channel priority 2 */
kDMA_ChannelPriority3, /*!< Channel priority 3 */
kDMA_ChannelPriority4, /*!< Channel priority 4 */
kDMA_ChannelPriority5, /*!< Channel priority 5 */
kDMA_ChannelPriority6, /*!< Channel priority 6 */
kDMA_ChannelPriority7, /*!< Lowest channel priority - priority 7 */
} dma_priority_t;
/*! @brief DMA interrupt flags */
typedef enum _dma_int
{
kDMA_IntA, /*!< DMA interrupt flag A */
kDMA_IntB, /*!< DMA interrupt flag B */
kDMA_IntError, /*!< DMA interrupt flag error */
} dma_irq_t;
/*! @brief DMA trigger type*/
typedef enum _dma_trigger_type
{
kDMA_NoTrigger = 0, /*!< Trigger is disabled */
kDMA_LowLevelTrigger = DMA_CHANNEL_CFG_HWTRIGEN(1) | DMA_CHANNEL_CFG_TRIGTYPE(1), /*!< Low level active trigger */
kDMA_HighLevelTrigger = DMA_CHANNEL_CFG_HWTRIGEN(1) | DMA_CHANNEL_CFG_TRIGTYPE(1) |
DMA_CHANNEL_CFG_TRIGPOL(1), /*!< High level active trigger */
kDMA_FallingEdgeTrigger = DMA_CHANNEL_CFG_HWTRIGEN(1), /*!< Falling edge active trigger */
kDMA_RisingEdgeTrigger =
DMA_CHANNEL_CFG_HWTRIGEN(1) | DMA_CHANNEL_CFG_TRIGPOL(1), /*!< Rising edge active trigger */
} dma_trigger_type_t;
/*! @brief _dma_burst_size DMA burst size*/
enum
{
kDMA_BurstSize1 = 0U, /*!< burst size 1 transfer */
kDMA_BurstSize2 = 1U, /*!< burst size 2 transfer */
kDMA_BurstSize4 = 2U, /*!< burst size 4 transfer */
kDMA_BurstSize8 = 3U, /*!< burst size 8 transfer */
kDMA_BurstSize16 = 4U, /*!< burst size 16 transfer */
kDMA_BurstSize32 = 5U, /*!< burst size 32 transfer */
kDMA_BurstSize64 = 6U, /*!< burst size 64 transfer */
kDMA_BurstSize128 = 7U, /*!< burst size 128 transfer */
kDMA_BurstSize256 = 8U, /*!< burst size 256 transfer */
kDMA_BurstSize512 = 9U, /*!< burst size 512 transfer */
kDMA_BurstSize1024 = 10U, /*!< burst size 1024 transfer */
};
/*! @brief DMA trigger burst */
typedef enum _dma_trigger_burst
{
kDMA_SingleTransfer = 0, /*!< Single transfer */
kDMA_LevelBurstTransfer = DMA_CHANNEL_CFG_TRIGBURST(1), /*!< Burst transfer driven by level trigger */
kDMA_EdgeBurstTransfer1 = DMA_CHANNEL_CFG_TRIGBURST(1), /*!< Perform 1 transfer by edge trigger */
kDMA_EdgeBurstTransfer2 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(1), /*!< Perform 2 transfers by edge trigger */
kDMA_EdgeBurstTransfer4 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(2), /*!< Perform 4 transfers by edge trigger */
kDMA_EdgeBurstTransfer8 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(3), /*!< Perform 8 transfers by edge trigger */
kDMA_EdgeBurstTransfer16 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(4), /*!< Perform 16 transfers by edge trigger */
kDMA_EdgeBurstTransfer32 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(5), /*!< Perform 32 transfers by edge trigger */
kDMA_EdgeBurstTransfer64 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(6), /*!< Perform 64 transfers by edge trigger */
kDMA_EdgeBurstTransfer128 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(7), /*!< Perform 128 transfers by edge trigger */
kDMA_EdgeBurstTransfer256 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(8), /*!< Perform 256 transfers by edge trigger */
kDMA_EdgeBurstTransfer512 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(9), /*!< Perform 512 transfers by edge trigger */
kDMA_EdgeBurstTransfer1024 =
DMA_CHANNEL_CFG_TRIGBURST(1) | DMA_CHANNEL_CFG_BURSTPOWER(10), /*!< Perform 1024 transfers by edge trigger */
} dma_trigger_burst_t;
/*! @brief DMA burst wrapping */
typedef enum _dma_burst_wrap
{
kDMA_NoWrap = 0, /*!< Wrapping is disabled */
kDMA_SrcWrap = DMA_CHANNEL_CFG_SRCBURSTWRAP(1), /*!< Wrapping is enabled for source */
kDMA_DstWrap = DMA_CHANNEL_CFG_DSTBURSTWRAP(1), /*!< Wrapping is enabled for destination */
kDMA_SrcAndDstWrap = DMA_CHANNEL_CFG_SRCBURSTWRAP(1) |
DMA_CHANNEL_CFG_DSTBURSTWRAP(1), /*!< Wrapping is enabled for source and destination */
} dma_burst_wrap_t;
/*! @brief DMA transfer type */
typedef enum _dma_transfer_type
{
kDMA_MemoryToMemory = 0x0U, /*!< Transfer from memory to memory (increment source and destination) */
kDMA_PeripheralToMemory, /*!< Transfer from peripheral to memory (increment only destination) */
kDMA_MemoryToPeripheral, /*!< Transfer from memory to peripheral (increment only source)*/
kDMA_StaticToStatic, /*!< Peripheral to static memory (do not increment source or destination) */
} dma_transfer_type_t;
/*! @brief DMA channel trigger */
typedef struct _dma_channel_trigger
{
dma_trigger_type_t type; /*!< Select hardware trigger as edge triggered or level triggered. */
dma_trigger_burst_t burst; /*!< Select whether hardware triggers cause a single or burst transfer. */
dma_burst_wrap_t wrap; /*!< Select wrap type, source wrap or dest wrap, or both. */
} dma_channel_trigger_t;
/*! @brief DMA channel trigger */
typedef struct _dma_channel_config
{
void *srcStartAddr; /*!< Source data address */
void *dstStartAddr; /*!< Destination data address */
void *nextDesc; /*!< Chain custom descriptor */
uint32_t xferCfg; /*!< channel transfer configurations */
dma_channel_trigger_t *trigger; /*!< DMA trigger type */
bool isPeriph; /*!< select the request type */
} dma_channel_config_t;
/*! @brief DMA transfer configuration */
typedef struct _dma_transfer_config
{
uint8_t *srcAddr; /*!< Source data address */
uint8_t *dstAddr; /*!< Destination data address */
uint8_t *nextDesc; /*!< Chain custom descriptor */
dma_xfercfg_t xfercfg; /*!< Transfer options */
bool isPeriph; /*!< DMA transfer is driven by peripheral */
} dma_transfer_config_t;
/*! @brief Callback for DMA */
struct _dma_handle;
/*! @brief Define Callback function for DMA. */
typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone, uint32_t intmode);
/*! @brief DMA transfer handle structure */
typedef struct _dma_handle
{
dma_callback callback; /*!< Callback function. Invoked when transfer
of descriptor with interrupt flag finishes */
void *userData; /*!< Callback function parameter */
DMA_Type *base; /*!< DMA peripheral base address */
uint8_t channel; /*!< DMA channel number */
} dma_handle_t;
/*******************************************************************************
* APIs
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
/*!
* @name DMA initialization and De-initialization
* @{
*/
/*!
* @brief Initializes DMA peripheral.
*
* This function enable the DMA clock, set descriptor table and
* enable DMA peripheral.
*
* @param base DMA peripheral base address.
*/
void DMA_Init(DMA_Type *base);
/*!
* @brief Deinitializes DMA peripheral.
*
* This function gates the DMA clock.
*
* @param base DMA peripheral base address.
*/
void DMA_Deinit(DMA_Type *base);
/*!
* @brief Install DMA descriptor memory.
*
* This function used to register DMA descriptor memory for linked transfer, a typical case is ping pong
* transfer which will request more than one DMA descriptor memory space, althrough current DMA driver has
* a default DMA descriptor buffer, but it support one DMA descriptor for one channel only.
*
* @param base DMA base address.
* @param addr DMA descriptor address
*/
void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr);
/*! @} */
/*!
* @name DMA Channel Operation
* @{
*/
/*!
* @brief Return whether DMA channel is processing transfer
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @return True for active state, false otherwise.
*/
static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
return (DMA_COMMON_CONST_REG_GET(base, channel, ACTIVE) & (1UL << DMA_CHANNEL_INDEX(base, channel))) != 0UL;
}
/*!
* @brief Return whether DMA channel is busy
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @return True for busy state, false otherwise.
*/
static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
return (DMA_COMMON_CONST_REG_GET(base, channel, BUSY) & (1UL << DMA_CHANNEL_INDEX(base, channel))) != 0UL;
}
/*!
* @brief Enables the interrupt source for the DMA transfer.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
DMA_COMMON_REG_GET(base, channel, INTENSET) |= 1UL << DMA_CHANNEL_INDEX(base, channel);
}
/*!
* @brief Disables the interrupt source for the DMA transfer.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
DMA_COMMON_REG_GET(base, channel, INTENCLR) |= 1UL << DMA_CHANNEL_INDEX(base, channel);
}
/*!
* @brief Enable DMA channel.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
DMA_COMMON_REG_GET(base, channel, ENABLESET) |= 1UL << DMA_CHANNEL_INDEX(base, channel);
}
/*!
* @brief Disable DMA channel.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
DMA_COMMON_REG_GET(base, channel, ENABLECLR) |= 1UL << DMA_CHANNEL_INDEX(base, channel);
}
/*!
* @brief Set PERIPHREQEN of channel configuration register.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
base->CHANNEL[channel].CFG |= DMA_CHANNEL_CFG_PERIPHREQEN_MASK;
}
/*!
* @brief Get PERIPHREQEN value of channel configuration register.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @return True for enabled PeriphRq, false for disabled.
*/
static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
base->CHANNEL[channel].CFG &= ~DMA_CHANNEL_CFG_PERIPHREQEN_MASK;
}
/*!
* @brief Set trigger settings of DMA channel.
* @deprecated Do not use this function. It has been superceded by @ref DMA_SetChannelConfig.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @param trigger trigger configuration.
*/
void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger);
/*!
* @brief set channel config.
*
* This function provide a interface to configure channel configuration reisters.
*
* @param base DMA base address.
* @param channel DMA channel number.
* @param trigger channel configurations structure.
* @param isPeriph true is periph request, false is not.
*/
void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger, bool isPeriph);
/*! @brief DMA channel xfer transfer configurations
*
* @param reload true is reload link descriptor after current exhaust, false is not
* @param clrTrig true is clear trigger status, wait software trigger, false is not
* @param intA enable interruptA
* @param intB enable interruptB
* @param width transfer width
* @param srcInc source address interleave size
* @param dstInc destination address interleave size
* @param bytes transfer bytes
* @return The vaule of xfer config
*/
static inline uint32_t DMA_SetChannelXferConfig(
bool reload, bool clrTrig, bool intA, bool intB, uint8_t width, uint8_t srcInc, uint8_t dstInc, uint32_t bytes)
{
return (DMA_CHANNEL_XFERCFG_CFGVALID_MASK | DMA_CHANNEL_XFERCFG_RELOAD(reload) |
DMA_CHANNEL_XFERCFG_CLRTRIG(clrTrig) | DMA_CHANNEL_XFERCFG_SETINTA(intA) |
DMA_CHANNEL_XFERCFG_SETINTB(intB) |
DMA_CHANNEL_XFERCFG_WIDTH((uint32_t)width == 4UL ? 2UL : ((uint32_t)width - 1UL)) |
DMA_CHANNEL_XFERCFG_SRCINC((uint32_t)srcInc == 4UL ? ((uint32_t)srcInc - 1UL) : (uint32_t)srcInc) |
DMA_CHANNEL_XFERCFG_DSTINC((uint32_t)dstInc == 4UL ? ((uint32_t)dstInc - 1UL) : (uint32_t)dstInc) |
DMA_CHANNEL_XFERCFG_XFERCOUNT((uint32_t)bytes / (uint32_t)width - 1UL));
}
/*!
* @brief Gets the remaining bytes of the current DMA descriptor transfer.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @return The number of bytes which have not been transferred yet.
*/
uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel);
/*!
* @brief Set priority of channel configuration register.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @param priority Channel priority value.
*/
static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t priority)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
base->CHANNEL[channel].CFG =
(base->CHANNEL[channel].CFG & (~(DMA_CHANNEL_CFG_CHPRIORITY_MASK))) | DMA_CHANNEL_CFG_CHPRIORITY(priority);
}
/*!
* @brief Get priority of channel configuration register.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @return Channel priority value.
*/
static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)
{
assert((FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base) != -1) &&
(channel < (uint32_t)FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
return (dma_priority_t)(uint8_t)((base->CHANNEL[channel].CFG & DMA_CHANNEL_CFG_CHPRIORITY_MASK) >>
DMA_CHANNEL_CFG_CHPRIORITY_SHIFT);
}
/*!
* @brief Set channel configuration valid.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)
{
base->CHANNEL[channel].XFERCFG |= DMA_CHANNEL_XFERCFG_CFGVALID_MASK;
}
/*!
* @brief Do software trigger for the channel.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
{
base->CHANNEL[channel].XFERCFG |= DMA_CHANNEL_XFERCFG_SWTRIG_MASK;
}
/*!
* @brief Load channel transfer configurations.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @param xfer transfer configurations.
*/
static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t xfer)
{
base->CHANNEL[channel].XFERCFG = xfer;
}
/*!
* @brief Create application specific DMA descriptor
* to be used in a chain in transfer
* @deprecated Do not use this function. It has been superceded by @ref DMA_SetupDescriptor.
* @param desc DMA descriptor address.
* @param xfercfg Transfer configuration for DMA descriptor.
* @param srcAddr Address of last item to transmit
* @param dstAddr Address of last item to receive.
* @param nextDesc Address of next descriptor in chain.
*/
void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void *dstAddr, void *nextDesc);
/*!
* @brief setup dma descriptor
*
* Note: This function do not support configure wrap descriptor.
*
* @param desc DMA descriptor address.
* @param xfercfg Transfer configuration for DMA descriptor.
* @param srcStartAddr Start address of source address.
* @param dstStartAddr Start address of destination address.
* @param nextDesc Address of next descriptor in chain.
*/
void DMA_SetupDescriptor(
dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc);
/*!
* @brief setup dma channel descriptor
*
* Note: This function support configure wrap descriptor.
*
* @param desc DMA descriptor address.
* @param xfercfg Transfer configuration for DMA descriptor.
* @param srcStartAddr Start address of source address.
* @param dstStartAddr Start address of destination address.
* @param nextDesc Address of next descriptor in chain.
* @param wrapType burst wrap type.
* @param burstSize burst size, reference _dma_burst_size.
*/
void DMA_SetupChannelDescriptor(dma_descriptor_t *desc,
uint32_t xfercfg,
void *srcStartAddr,
void *dstStartAddr,
void *nextDesc,
dma_burst_wrap_t wrapType,
uint32_t burstSize);
/*!
* @brief load channel transfer decriptor.
*
* This function can be used to load desscriptor to driver internal channel descriptor that is used to start DMA
* transfer, the head descriptor table is defined in DMA driver, it is useful for the case:
* 1. for the polling transfer, application can allocate a local descriptor memory table to prepare a descriptor firstly
* and then call this api to load the configured descriptor to driver descriptor table.
* @code
* DMA_Init(DMA0);
* DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL);
* DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL);
* DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc);
* DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL);
* while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL))
* {}
* @endcode
*
* @param base DMA base address.
* @param channel DMA channel.
* @param descriptor configured DMA descriptor.
*/
void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t *descriptor);
/*! @} */
/*!
* @name DMA Transactional Operation
* @{
*/
/*!
* @brief Abort running transfer by handle.
*
* This function aborts DMA transfer specified by handle.
*
* @param handle DMA handle pointer.
*/
void DMA_AbortTransfer(dma_handle_t *handle);
/*!
* @brief Creates the DMA handle.
*
* This function is called if using transaction API for DMA. This function
* initializes the internal state of DMA handle.
*
* @param handle DMA handle pointer. The DMA handle stores callback function and
* parameters.
* @param base DMA peripheral base address.
* @param channel DMA channel number.
*/
void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel);
/*!
* @brief Installs a callback function for the DMA transfer.
*
* This callback is called in DMA IRQ handler. Use the callback to do something after
* the current major loop transfer completes.
*
* @param handle DMA handle pointer.
* @param callback DMA callback function pointer.
* @param userData Parameter for callback function.
*/
void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData);
/*!
* @brief Prepares the DMA transfer structure.
* @deprecated Do not use this function. It has been superceded by @ref DMA_PrepareChannelTransfer.
* This function prepares the transfer configuration structure according to the user input.
*
* @param config The user configuration structure of type dma_transfer_t.
* @param srcAddr DMA transfer source address.
* @param dstAddr DMA transfer destination address.
* @param byteWidth DMA transfer destination address width(bytes).
* @param transferBytes DMA transfer bytes to be transferred.
* @param type DMA transfer type.
* @param nextDesc Chain custom descriptor to transfer.
* @note The data address and the data width must be consistent. For example, if the SRC
* is 4 bytes, so the source address must be 4 bytes aligned, or it shall result in
* source address error(SAE).
*/
void DMA_PrepareTransfer(dma_transfer_config_t *config,
void *srcAddr,
void *dstAddr,
uint32_t byteWidth,
uint32_t transferBytes,
dma_transfer_type_t type,
void *nextDesc);
/*!
* @brief Prepare channel transfer configurations.
*
* This function used to prepare channel transfer configurations.
*
* @param config Pointer to DMA channel transfer configuration structure.
* @param srcStartAddr source start address.
* @param dstStartAddr destination start address.
* @param xferCfg xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.
* @param type transfer type.
* @param trigger DMA channel trigger configurations.
* @param nextDesc address of next descriptor.
*/
void DMA_PrepareChannelTransfer(dma_channel_config_t *config,
void *srcStartAddr,
void *dstStartAddr,
uint32_t xferCfg,
dma_transfer_type_t type,
dma_channel_trigger_t *trigger,
void *nextDesc);
/*!
* @brief Submits the DMA transfer request.
* @deprecated Do not use this function. It has been superceded by @ref DMA_SubmitChannelTransfer.
*
* This function submits the DMA transfer request according to the transfer configuration structure.
* If the user submits the transfer request repeatedly, this function packs an unprocessed request as
* a TCD and enables scatter/gather feature to process it in the next time.
*
* @param handle DMA handle pointer.
* @param config Pointer to DMA transfer configuration structure.
* @retval kStatus_DMA_Success It means submit transfer request succeed.
* @retval kStatus_DMA_QueueFull It means TCD queue is full. Submit transfer request is not allowed.
* @retval kStatus_DMA_Busy It means the given channel is busy, need to submit request later.
*/
status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config);
/*!
* @brief Submit channel transfer paramter directly.
*
* This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table
* is defined in DMA driver, it is useful for the case:
* 1. for the single transfer, application doesn't need to allocate descriptor table, the head descriptor can be used
for it.
* @code
DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, NULL);
DMA_StartTransfer(handle)
* @endcode
*
* 2. for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is
required, then application should prepare
* three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.
* @code
define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);
DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);
DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);
DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, nextDesc0);
DMA_StartTransfer(handle);
* @endcode
*
* @param handle Pointer to DMA handle.
* @param xferCfg xfer configuration, user can reference DMA_CHANNEL_XFER about to how to get xferCfg value.
* @param srcStartAddr source start address.
* @param dstStartAddr destination start address.
* @param nextDesc address of next descriptor.
*/
void DMA_SubmitChannelTransferParameter(
dma_handle_t *handle, uint32_t xferCfg, void *srcStartAddr, void *dstStartAddr, void *nextDesc);
/*!
* @brief Submit channel descriptor.
*
* This function used to configue channel head descriptor that is used to start DMA transfer, the head descriptor table
is defined in
* DMA driver, this functiono is typical for the ping pong case:
*
* 1. for the ping pong case, application should responsible for the descriptor, for example, application should
* prepare two descriptor table with macro.
* @code
define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);
DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);
DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelDescriptor(handle, nextDesc0);
DMA_StartTransfer(handle);
* @endcode
*
* @param handle Pointer to DMA handle.
* @param descriptor descriptor to submit.
*/
void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor);
/*!
* @brief Submits the DMA channel transfer request.
*
* This function submits the DMA transfer request according to the transfer configuration structure.
* If the user submits the transfer request repeatedly, this function packs an unprocessed request as
* a TCD and enables scatter/gather feature to process it in the next time.
* It is used for the case:
* 1. for the single transfer, application doesn't need to allocate descriptor table, the head descriptor can be used
for it.
* @code
DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)
* @endcode
*
* 2. for the linked transfer, application should responsible for link descriptor, for example, if 4 transfer is
required, then application should prepare
* three descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.
* @code
define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);
DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);
DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);
DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)
* @endcode
*
* 3. for the ping pong case, application should responsible for link descriptor, for example, application should
prepare
* two descriptor table with macro , the head descriptor in driver can be used for the first transfer descriptor.
* @code
define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);
DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);
DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)
* @endcode
* @param handle DMA handle pointer.
* @param config Pointer to DMA transfer configuration structure.
* @retval kStatus_DMA_Success It means submit transfer request succeed.
* @retval kStatus_DMA_QueueFull It means TCD queue is full. Submit transfer request is not allowed.
* @retval kStatus_DMA_Busy It means the given channel is busy, need to submit request later.
*/
status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config);
/*!
* @brief DMA start transfer.
*
* This function enables the channel request. User can call this function after submitting the transfer request
* It will trigger transfer start with software trigger only when hardware trigger is not used.
*
* @param handle DMA handle pointer.
*/
void DMA_StartTransfer(dma_handle_t *handle);
/*!
* @brief DMA IRQ handler for descriptor transfer complete.
*
* This function clears the channel major interrupt flag and call
* the callback function if it is not NULL.
*
* @param base DMA base address.
*/
void DMA_IRQHandle(DMA_Type *base);
/*! @} */
#if defined(__cplusplus)
}
#endif /* __cplusplus */
/*! @} */
#endif /*FSL_DMA_H_*/