openocd/tcl/target/stm32f7x.cfg

188 lines
6.4 KiB
INI
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-or-later
# script for stm32f7x family
#
# stm32f7 devices support both JTAG and SWD transports.
#
source [find target/swj-dp.tcl]
source [find mem_helper.tcl]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME stm32f7x
}
Flash, FRAM and EEPROM driver for STM32 QUAD-/OCTOSPI interface - write speed up to 150 kByte/s on STM32F469I-disco (due to SWD clock and USB connection), up to 1 MByte/s on Nucleo-F767ZI with external STLink-V3 or Nucleo-G474RE with two W25Q256FV in dual 4-line mode or STM32H73BI-Disco in octal mode - tested with STM32L476G-disco (64MBit flash, 3-byte addr), STM32F412G-Disco, STM32F469I-Disco, STM32F746G-Disco, and STM32L476G-Disco (all 128Mbit flash, 3-byte addr), STM32F723E-Disco, STM32F769I-Disco (512Mbit flash, 4-byte addr) STM32L4R9I-Disco, STM32L4P5G-Disco (512MBit octo-flash, DTR, 4-byte addr) STM32H745I-Disco, STM32H747I-Disco (two 512MBit flash, 4-byte addr) STM32H73BI-Disco, STM32H735G-Disco (512MBit octo-flash, DTR, 4-byte addr) - suitable cfg for Discovery boards included - limited parsing of SFDP data if flash device not hardcoded (tested only in single/quad mode as most devices either don't support SFDP at all or have empty(!) SFDP memory) - 'set' command for auto detection override (e. g. for EEPROMs) - 'cmd' command for arbitrary SPI commands (reconfiguration, testing etc.) - makefile for creation of binary loader files - tcl/board/stm32f469discovery.cfg superseded by stm32f469i-disco.cfg - tcl/board/stm32f7discovery.cfg removed as name is ambiguous (superseded by stm32f746g-disco.cfg vs. stm32f769i-disco.cfg) - dual 4-line mode tested on Nucleo-F767ZI, Nucleo-H743ZI and Nucleo-H7A3ZI-Q with two W25Q256FV, and on Nucleo-L496ZP-P and Nucleo-L4R5ZI with two W25Q128FV, sample cfg files included and on STM32H745I-Disco, STM32H747I-Disco, STM32H750B-Disco - read/verify/erase_check uses indirect read mode to work around silicon bug in H7, L4+ and MP1 memory mapped mode (last bytes not readable, accessing last bytes causes debug interface to hang) - octospi supported only in single/dual 1-line, 2-line, 4-line and single 8-line modes, (not in hyper flash mode) Requirements: GPIOs must be initialized appropriately, and SPI flash chip be configured appropriately (1-line ..., QPI, 4-byte addresses ...). This is board/chip specific, cf. included cfg files. The driver infers most parameters from current setting in CR, CCR, ... registers. Change-Id: I54858fbbe8758c3a5fe58812e93f5f39514704f8 Signed-off-by: Andreas Bolsch <hyphen0break@gmail.com> Reviewed-on: http://openocd.zylin.com/4321 Tested-by: jenkins Reviewed-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com> Reviewed-by: Tomas Vanek <vanekt@fbl.cz> Reviewed-by: Christopher Head <chead@zaber.com>
2016-12-21 09:35:58 +00:00
set _ENDIAN little
# Work-area is a space in RAM used for flash programming
# By default use 128kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x20000
}
#jtag scan chain
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
if { [using_jtag] } {
# See STM Document RM0385
# Section 40.6.3 - corresponds to Cortex-M7 with FPU r0p0
set _CPUTAPID 0x5ba00477
} {
set _CPUTAPID 0x5ba02477
}
}
swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu
if {[using_jtag]} {
jtag newtap $_CHIPNAME bs -irlen 5
}
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap
$_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME stm32f2x 0 0 0 0 $_TARGETNAME
flash bank $_CHIPNAME.otp stm32f2x 0x1ff0f000 0 0 0 $_TARGETNAME
# On the STM32F7, the Flash is mapped at address 0x08000000 via the AXI and
# also address 0x00200000 via the ITCM. The former mapping is read-write in
# hardware, while the latter is read-only. By presenting an alias, we
# accomplish two things:
# (1) We allow writing at 0x00200000 (because the alias acts identically to the
# original bank), which allows code intended to run from that address to
# also be linked for loading at that address, simplifying linking.
# (2) We allow the proper memory map to be delivered to GDB, which will cause
# it to use hardware breakpoints at the 0x00200000 mapping (correctly
# identifying it as Flash), which it would otherwise not do. Configuring
# the Flash via ITCM alias as virtual
flash bank $_CHIPNAME.itcm-flash.alias virtual 0x00200000 0 0 0 $_TARGETNAME $_FLASHNAME
Flash, FRAM and EEPROM driver for STM32 QUAD-/OCTOSPI interface - write speed up to 150 kByte/s on STM32F469I-disco (due to SWD clock and USB connection), up to 1 MByte/s on Nucleo-F767ZI with external STLink-V3 or Nucleo-G474RE with two W25Q256FV in dual 4-line mode or STM32H73BI-Disco in octal mode - tested with STM32L476G-disco (64MBit flash, 3-byte addr), STM32F412G-Disco, STM32F469I-Disco, STM32F746G-Disco, and STM32L476G-Disco (all 128Mbit flash, 3-byte addr), STM32F723E-Disco, STM32F769I-Disco (512Mbit flash, 4-byte addr) STM32L4R9I-Disco, STM32L4P5G-Disco (512MBit octo-flash, DTR, 4-byte addr) STM32H745I-Disco, STM32H747I-Disco (two 512MBit flash, 4-byte addr) STM32H73BI-Disco, STM32H735G-Disco (512MBit octo-flash, DTR, 4-byte addr) - suitable cfg for Discovery boards included - limited parsing of SFDP data if flash device not hardcoded (tested only in single/quad mode as most devices either don't support SFDP at all or have empty(!) SFDP memory) - 'set' command for auto detection override (e. g. for EEPROMs) - 'cmd' command for arbitrary SPI commands (reconfiguration, testing etc.) - makefile for creation of binary loader files - tcl/board/stm32f469discovery.cfg superseded by stm32f469i-disco.cfg - tcl/board/stm32f7discovery.cfg removed as name is ambiguous (superseded by stm32f746g-disco.cfg vs. stm32f769i-disco.cfg) - dual 4-line mode tested on Nucleo-F767ZI, Nucleo-H743ZI and Nucleo-H7A3ZI-Q with two W25Q256FV, and on Nucleo-L496ZP-P and Nucleo-L4R5ZI with two W25Q128FV, sample cfg files included and on STM32H745I-Disco, STM32H747I-Disco, STM32H750B-Disco - read/verify/erase_check uses indirect read mode to work around silicon bug in H7, L4+ and MP1 memory mapped mode (last bytes not readable, accessing last bytes causes debug interface to hang) - octospi supported only in single/dual 1-line, 2-line, 4-line and single 8-line modes, (not in hyper flash mode) Requirements: GPIOs must be initialized appropriately, and SPI flash chip be configured appropriately (1-line ..., QPI, 4-byte addresses ...). This is board/chip specific, cf. included cfg files. The driver infers most parameters from current setting in CR, CCR, ... registers. Change-Id: I54858fbbe8758c3a5fe58812e93f5f39514704f8 Signed-off-by: Andreas Bolsch <hyphen0break@gmail.com> Reviewed-on: http://openocd.zylin.com/4321 Tested-by: jenkins Reviewed-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com> Reviewed-by: Tomas Vanek <vanekt@fbl.cz> Reviewed-by: Christopher Head <chead@zaber.com>
2016-12-21 09:35:58 +00:00
if { [info exists QUADSPI] && $QUADSPI } {
set a [llength [flash list]]
set _QSPINAME $_CHIPNAME.qspi
flash bank $_QSPINAME stmqspi 0x90000000 0 0 0 $_TARGETNAME 0xA0001000
}
# adapter speed should be <= F_CPU/6. F_CPU after reset is 16MHz, so use F_JTAG = 2MHz
adapter speed 2000
adapter srst delay 100
if {[using_jtag]} {
jtag_ntrst_delay 100
}
# Use hardware reset.
#
# This target is compatible with connect_assert_srst, which may be set in a
# board file.
reset_config srst_nogate
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
cortex_m reset_config sysresetreq
# Set CSW[27], which according to ARM ADI v5 appendix E1.4 maps to AHB signal
# HPROT[3], which according to AMBA AHB/ASB/APB specification chapter 3.7.3
# makes the data access cacheable. This allows reading and writing data in the
# CPU cache from the debugger, which is far more useful than going straight to
# RAM when operating on typical variables, and is generally no worse when
# operating on special memory locations.
$_CHIPNAME.dap apcsw 0x08000000 0x08000000
}
$_TARGETNAME configure -event examine-end {
# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP
mmw 0xE0042004 0x00000007 0
# Stop watchdog counters during halt
# DBGMCU_APB1_FZ |= DBG_IWDG_STOP | DBG_WWDG_STOP
mmw 0xE0042008 0x00001800 0
}
tpiu create $_CHIPNAME.tpiu -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0xE0040000
lappend _telnet_autocomplete_skip _proc_pre_enable_$_CHIPNAME.tpiu
proc _proc_pre_enable_$_CHIPNAME.tpiu {_targetname} {
targets $_targetname
# Set TRACE_IOEN; TRACE_MODE is set to async; when using sync
# change this value accordingly to configure trace pins
# assignment
mmw 0xE0042004 0x00000020 0
}
$_CHIPNAME.tpiu configure -event pre-enable "_proc_pre_enable_$_CHIPNAME.tpiu $_TARGETNAME"
$_TARGETNAME configure -event reset-init {
# If the HSE was previously enabled and the external clock source
# disappeared, RCC_CR.HSERDY can get stuck at 1 and the PLL cannot be
# properly switched back to HSI. This situation persists even over a system
# reset, including a pin reset via SRST. However, activating the clock
# security system will detect the problem and clear HSERDY to 0, which in
# turn allows the PLL to switch back to HSI properly. Since we just came
# out of reset, HSEON should be 0. If HSERDY is 1, then this situation must
# have happened; in that case, activate the clock security system to clear
# HSERDY.
if {[mrw 0x40023800] & 0x00020000} {
mmw 0x40023800 0x00090000 0 ;# RCC_CR = CSSON | HSEON
sleep 10 ;# Wait for CSS to fire, if it wants to
mmw 0x40023800 0 0x00090000 ;# RCC_CR &= ~CSSON & ~HSEON
mww 0x4002380C 0x00800000 ;# RCC_CIR = CSSC
sleep 1 ;# Wait for CSSF to clear
}
# If the clock security system fired, it will pend an NMI. A pending NMI
# will cause a bad time for any subsequent executing code, such as a
# programming algorithm.
if {[mrw 0xE000ED04] & 0x80000000} {
# ICSR.NMIPENDSET reads as 1. Need to clear it. A pending NMI cant be
# cleared by any normal means (such as ICSR or NVIC). It can only be
# cleared by entering the NMI handler or by resetting the processor.
echo "[target current]: Clock security system generated NMI. Clearing."
# Keep the old DEMCR value.
set old [mrw 0xE000EDFC]
# Enable vector catch on reset.
mww 0xE000EDFC 0x01000001
# Issue local reset via AIRCR.
mww 0xE000ED0C 0x05FA0001
# Restore old DEMCR value.
mww 0xE000EDFC $old
}
# Configure PLL to boost clock to HSI x 10 (160 MHz)
mww 0x40023804 0x08002808 ;# RCC_PLLCFGR 16 Mhz /10 (M) * 128 (N) /2(P)
mww 0x40023C00 0x00000107 ;# FLASH_ACR = PRFTBE | 7(Latency)
mmw 0x40023800 0x01000000 0 ;# RCC_CR |= PLLON
sleep 10 ;# Wait for PLL to lock
mww 0x40023808 0x00009400 ;# RCC_CFGR_PPRE1 = 5(div 4), PPRE2 = 4(div 2)
mmw 0x40023808 0x00000002 0 ;# RCC_CFGR |= RCC_CFGR_SW_PLL
# Boost SWD frequency
# Do not boost JTAG frequency and slow down JTAG memory access or flash write algo
# suffers from DAP WAITs
if {[using_jtag]} {
[[target current] cget -dap] memaccess 16
} {
adapter speed 8000
}
}
$_TARGETNAME configure -event reset-start {
# Reduce speed since CPU speed will slow down to 16MHz with the reset
adapter speed 2000
}