openocd/src/flash/nand.c

1641 lines
40 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Partially based on drivers/mtd/nand_ids.c from Linux. *
* Copyright (C) 2002 Thomas Gleixner <tglx@linutronix.de> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "nand.h"
#include "time_support.h"
#include "fileio.h"
static int nand_read_page(struct nand_device_s *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size);
//static int nand_read_plain(struct nand_device_s *nand, uint32_t address, uint8_t *data, uint32_t data_size);
static int nand_write_page(struct nand_device_s *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size);
/* NAND flash controller
*/
extern struct nand_flash_controller davinci_nand_controller;
extern struct nand_flash_controller lpc3180_nand_controller;
extern struct nand_flash_controller orion_nand_controller;
extern struct nand_flash_controller s3c2410_nand_controller;
extern struct nand_flash_controller s3c2412_nand_controller;
extern struct nand_flash_controller s3c2440_nand_controller;
extern struct nand_flash_controller s3c2443_nand_controller;
extern struct nand_flash_controller imx31_nand_flash_controller;
/* extern struct nand_flash_controller boundary_scan_nand_controller; */
static struct nand_flash_controller *nand_flash_controllers[] =
{
&davinci_nand_controller,
&lpc3180_nand_controller,
&orion_nand_controller,
&s3c2410_nand_controller,
&s3c2412_nand_controller,
&s3c2440_nand_controller,
&s3c2443_nand_controller,
&imx31_nand_flash_controller,
/* &boundary_scan_nand_controller, */
NULL
};
/* configured NAND devices and NAND Flash command handler */
static nand_device_t *nand_devices = NULL;
static command_t *nand_cmd;
/* Chip ID list
*
* Name, ID code, pagesize, chipsize in MegaByte, eraseblock size,
* options
*
* Pagesize; 0, 256, 512
* 0 get this information from the extended chip ID
* 256 256 Byte page size
* 512 512 Byte page size
*/
static struct nand_info nand_flash_ids[] =
{
/* start "museum" IDs */
{"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
{"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0},
{"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0},
{"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0},
{"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0},
{"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
{"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
{"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
{"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
{"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
{"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
{"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
/* end "museum" IDs */
{"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
{"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
{"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
{"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
{"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
{"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
{"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
{"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
{"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
{"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0},
{"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
{"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
{"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS},
{"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS},
{"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16},
{"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16},
{"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS},
{"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS},
{"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16},
{"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16},
{"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS},
{"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS},
{"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16},
{"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16},
{"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS},
{"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS},
{"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16},
{"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16},
{"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS},
{"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS},
{"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16},
{"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16},
{"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS},
{"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS},
{"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16},
{"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16},
{NULL, 0, 0, 0, 0, 0 }
};
/* Manufacturer ID list
*/
static struct nand_manufacturer nand_manuf_ids[] =
{
{0x0, "unknown"},
{NAND_MFR_TOSHIBA, "Toshiba"},
{NAND_MFR_SAMSUNG, "Samsung"},
{NAND_MFR_FUJITSU, "Fujitsu"},
{NAND_MFR_NATIONAL, "National"},
{NAND_MFR_RENESAS, "Renesas"},
{NAND_MFR_STMICRO, "ST Micro"},
{NAND_MFR_HYNIX, "Hynix"},
{NAND_MFR_MICRON, "Micron"},
{0x0, NULL},
};
/*
* Define default oob placement schemes for large and small page devices
*/
#if 0
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2}}
};
#endif
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = {
{.offset = 8,
. length = 8}}
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 24,
.eccpos = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 2,
.length = 38}}
};
/* nand device <nand_controller> [controller options]
*/
COMMAND_HANDLER(handle_nand_device_command)
{
int i;
int retval;
if (argc < 1)
{
LOG_WARNING("incomplete flash device nand configuration");
return ERROR_FLASH_BANK_INVALID;
}
for (i = 0; nand_flash_controllers[i]; i++)
{
nand_device_t *p, *c;
if (strcmp(args[0], nand_flash_controllers[i]->name) == 0)
{
/* register flash specific commands */
if ((retval = nand_flash_controllers[i]->register_commands(cmd_ctx)) != ERROR_OK)
{
LOG_ERROR("couldn't register '%s' commands", args[0]);
return retval;
}
c = malloc(sizeof(nand_device_t));
c->controller = nand_flash_controllers[i];
c->controller_priv = NULL;
c->manufacturer = NULL;
c->device = NULL;
c->bus_width = 0;
c->address_cycles = 0;
c->page_size = 0;
c->use_raw = 0;
c->next = NULL;
retval = CALL_COMMAND_HANDLER(nand_flash_controllers[i]->nand_device_command, c);
if (ERROR_OK != retval)
{
LOG_ERROR("'%s' driver rejected nand flash", c->controller->name);
free(c);
return ERROR_OK;
}
/* put NAND device in linked list */
if (nand_devices)
{
/* find last flash device */
for (p = nand_devices; p && p->next; p = p->next);
if (p)
p->next = c;
}
else
{
nand_devices = c;
}
return ERROR_OK;
}
}
/* no valid NAND controller was found (i.e. the configuration option,
* didn't match one of the compiled-in controllers)
*/
LOG_ERROR("No valid NAND flash controller found (%s)", args[0]);
LOG_ERROR("compiled-in NAND flash controllers:");
for (i = 0; nand_flash_controllers[i]; i++)
{
LOG_ERROR("%i: %s", i, nand_flash_controllers[i]->name);
}
return ERROR_OK;
}
int nand_register_commands(struct command_context_s *cmd_ctx)
{
nand_cmd = register_command(cmd_ctx, NULL, "nand", NULL, COMMAND_ANY, "NAND specific commands");
register_command(cmd_ctx, nand_cmd, "device", handle_nand_device_command, COMMAND_CONFIG, NULL);
return ERROR_OK;
}
nand_device_t *get_nand_device_by_num(int num)
{
nand_device_t *p;
int i = 0;
for (p = nand_devices; p; p = p->next)
{
if (i++ == num)
{
return p;
}
}
return NULL;
}
int nand_command_get_device_by_num(struct command_context_s *cmd_ctx,
const char *str, nand_device_t **nand)
{
unsigned num;
COMMAND_PARSE_NUMBER(uint, str, num);
*nand = get_nand_device_by_num(num);
if (!*nand) {
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", str);
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
static int nand_build_bbt(struct nand_device_s *nand, int first, int last)
{
uint32_t page = 0x0;
int i;
uint8_t oob[6];
if ((first < 0) || (first >= nand->num_blocks))
first = 0;
if ((last >= nand->num_blocks) || (last == -1))
last = nand->num_blocks - 1;
for (i = first; i < last; i++)
{
nand_read_page(nand, page, NULL, 0, oob, 6);
if (((nand->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff))
|| (((nand->page_size == 512) && (oob[5] != 0xff)) ||
((nand->page_size == 2048) && (oob[0] != 0xff))))
{
LOG_WARNING("bad block: %i", i);
nand->blocks[i].is_bad = 1;
}
else
{
nand->blocks[i].is_bad = 0;
}
page += (nand->erase_size / nand->page_size);
}
return ERROR_OK;
}
int nand_read_status(struct nand_device_s *nand, uint8_t *status)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
/* Send read status command */
nand->controller->command(nand, NAND_CMD_STATUS);
alive_sleep(1);
/* read status */
if (nand->device->options & NAND_BUSWIDTH_16)
{
uint16_t data;
nand->controller->read_data(nand, &data);
*status = data & 0xff;
}
else
{
nand->controller->read_data(nand, status);
}
return ERROR_OK;
}
static int nand_poll_ready(struct nand_device_s *nand, int timeout)
{
uint8_t status;
nand->controller->command(nand, NAND_CMD_STATUS);
do {
if (nand->device->options & NAND_BUSWIDTH_16) {
uint16_t data;
nand->controller->read_data(nand, &data);
status = data & 0xff;
} else {
nand->controller->read_data(nand, &status);
}
if (status & NAND_STATUS_READY)
break;
alive_sleep(1);
} while (timeout--);
return (status & NAND_STATUS_READY) != 0;
}
int nand_probe(struct nand_device_s *nand)
{
uint8_t manufacturer_id, device_id;
uint8_t id_buff[6];
int retval;
int i;
/* clear device data */
nand->device = NULL;
nand->manufacturer = NULL;
/* clear device parameters */
nand->bus_width = 0;
nand->address_cycles = 0;
nand->page_size = 0;
nand->erase_size = 0;
/* initialize controller (device parameters are zero, use controller default) */
if ((retval = nand->controller->init(nand) != ERROR_OK))
{
switch (retval)
{
case ERROR_NAND_OPERATION_FAILED:
LOG_DEBUG("controller initialization failed");
return ERROR_NAND_OPERATION_FAILED;
case ERROR_NAND_OPERATION_NOT_SUPPORTED:
LOG_ERROR("BUG: controller reported that it doesn't support default parameters");
return ERROR_NAND_OPERATION_FAILED;
default:
LOG_ERROR("BUG: unknown controller initialization failure");
return ERROR_NAND_OPERATION_FAILED;
}
}
nand->controller->command(nand, NAND_CMD_RESET);
nand->controller->reset(nand);
nand->controller->command(nand, NAND_CMD_READID);
nand->controller->address(nand, 0x0);
if (nand->bus_width == 8)
{
nand->controller->read_data(nand, &manufacturer_id);
nand->controller->read_data(nand, &device_id);
}
else
{
uint16_t data_buf;
nand->controller->read_data(nand, &data_buf);
manufacturer_id = data_buf & 0xff;
nand->controller->read_data(nand, &data_buf);
device_id = data_buf & 0xff;
}
for (i = 0; nand_flash_ids[i].name; i++)
{
if (nand_flash_ids[i].id == device_id)
{
nand->device = &nand_flash_ids[i];
break;
}
}
for (i = 0; nand_manuf_ids[i].name; i++)
{
if (nand_manuf_ids[i].id == manufacturer_id)
{
nand->manufacturer = &nand_manuf_ids[i];
break;
}
}
if (!nand->manufacturer)
{
nand->manufacturer = &nand_manuf_ids[0];
nand->manufacturer->id = manufacturer_id;
}
if (!nand->device)
{
LOG_ERROR("unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x",
manufacturer_id, device_id);
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("found %s (%s)", nand->device->name, nand->manufacturer->name);
/* initialize device parameters */
/* bus width */
if (nand->device->options & NAND_BUSWIDTH_16)
nand->bus_width = 16;
else
nand->bus_width = 8;
/* Do we need extended device probe information? */
if (nand->device->page_size == 0 ||
nand->device->erase_size == 0)
{
if (nand->bus_width == 8)
{
nand->controller->read_data(nand, id_buff + 3);
nand->controller->read_data(nand, id_buff + 4);
nand->controller->read_data(nand, id_buff + 5);
}
else
{
uint16_t data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[3] = data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[4] = data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[5] = data_buf >> 8;
}
}
/* page size */
if (nand->device->page_size == 0)
{
nand->page_size = 1 << (10 + (id_buff[4] & 3));
}
else if (nand->device->page_size == 256)
{
LOG_ERROR("NAND flashes with 256 byte pagesize are not supported");
return ERROR_NAND_OPERATION_FAILED;
}
else
{
nand->page_size = nand->device->page_size;
}
/* number of address cycles */
if (nand->page_size <= 512)
{
/* small page devices */
if (nand->device->chip_size <= 32)
nand->address_cycles = 3;
else if (nand->device->chip_size <= 8*1024)
nand->address_cycles = 4;
else
{
LOG_ERROR("BUG: small page NAND device with more than 8 GiB encountered");
nand->address_cycles = 5;
}
}
else
{
/* large page devices */
if (nand->device->chip_size <= 128)
nand->address_cycles = 4;
else if (nand->device->chip_size <= 32*1024)
nand->address_cycles = 5;
else
{
LOG_ERROR("BUG: large page NAND device with more than 32 GiB encountered");
nand->address_cycles = 6;
}
}
/* erase size */
if (nand->device->erase_size == 0)
{
switch ((id_buff[4] >> 4) & 3) {
case 0:
nand->erase_size = 64 << 10;
break;
case 1:
nand->erase_size = 128 << 10;
break;
case 2:
nand->erase_size = 256 << 10;
break;
case 3:
nand->erase_size =512 << 10;
break;
}
}
else
{
nand->erase_size = nand->device->erase_size;
}
/* initialize controller, but leave parameters at the controllers default */
if ((retval = nand->controller->init(nand) != ERROR_OK))
{
switch (retval)
{
case ERROR_NAND_OPERATION_FAILED:
LOG_DEBUG("controller initialization failed");
return ERROR_NAND_OPERATION_FAILED;
case ERROR_NAND_OPERATION_NOT_SUPPORTED:
LOG_ERROR("controller doesn't support requested parameters (buswidth: %i, address cycles: %i, page size: %i)",
nand->bus_width, nand->address_cycles, nand->page_size);
return ERROR_NAND_OPERATION_FAILED;
default:
LOG_ERROR("BUG: unknown controller initialization failure");
return ERROR_NAND_OPERATION_FAILED;
}
}
nand->num_blocks = (nand->device->chip_size * 1024) / (nand->erase_size / 1024);
nand->blocks = malloc(sizeof(struct nand_block) * nand->num_blocks);
for (i = 0; i < nand->num_blocks; i++)
{
nand->blocks[i].size = nand->erase_size;
nand->blocks[i].offset = i * nand->erase_size;
nand->blocks[i].is_erased = -1;
nand->blocks[i].is_bad = -1;
}
return ERROR_OK;
}
static int nand_erase(struct nand_device_s *nand, int first_block, int last_block)
{
int i;
uint32_t page;
uint8_t status;
int retval;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if ((first_block < 0) || (last_block > nand->num_blocks))
return ERROR_INVALID_ARGUMENTS;
/* make sure we know if a block is bad before erasing it */
for (i = first_block; i <= last_block; i++)
{
if (nand->blocks[i].is_bad == -1)
{
nand_build_bbt(nand, i, last_block);
break;
}
}
for (i = first_block; i <= last_block; i++)
{
/* Send erase setup command */
nand->controller->command(nand, NAND_CMD_ERASE1);
page = i * (nand->erase_size / nand->page_size);
/* Send page address */
if (nand->page_size <= 512)
{
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 3rd cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 4th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
}
else
{
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 3rd cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
}
/* Send erase confirm command */
nand->controller->command(nand, NAND_CMD_ERASE2);
retval = nand->controller->nand_ready ?
nand->controller->nand_ready(nand, 1000) :
nand_poll_ready(nand, 1000);
if (!retval) {
LOG_ERROR("timeout waiting for NAND flash block erase to complete");
return ERROR_NAND_OPERATION_TIMEOUT;
}
if ((retval = nand_read_status(nand, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 0x1)
{
LOG_ERROR("didn't erase %sblock %d; status: 0x%2.2x",
(nand->blocks[i].is_bad == 1)
? "bad " : "",
i, status);
/* continue; other blocks might still be erasable */
}
nand->blocks[i].is_erased = 1;
}
return ERROR_OK;
}
#if 0
static int nand_read_plain(struct nand_device_s *nand, uint32_t address, uint8_t *data, uint32_t data_size)
{
uint8_t *page;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (address % nand->page_size)
{
LOG_ERROR("reads need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
page = malloc(nand->page_size);
while (data_size > 0)
{
uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size;
uint32_t page_address;
page_address = address / nand->page_size;
nand_read_page(nand, page_address, page, nand->page_size, NULL, 0);
memcpy(data, page, thisrun_size);
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
free(page);
return ERROR_OK;
}
static int nand_write_plain(struct nand_device_s *nand, uint32_t address, uint8_t *data, uint32_t data_size)
{
uint8_t *page;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (address % nand->page_size)
{
LOG_ERROR("writes need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
page = malloc(nand->page_size);
while (data_size > 0)
{
uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size;
uint32_t page_address;
memset(page, 0xff, nand->page_size);
memcpy(page, data, thisrun_size);
page_address = address / nand->page_size;
nand_write_page(nand, page_address, page, nand->page_size, NULL, 0);
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
free(page);
return ERROR_OK;
}
#endif
int nand_write_page(struct nand_device_s *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
uint32_t block;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
block = page / (nand->erase_size / nand->page_size);
if (nand->blocks[block].is_erased == 1)
nand->blocks[block].is_erased = 0;
if (nand->use_raw || nand->controller->write_page == NULL)
return nand_write_page_raw(nand, page, data, data_size, oob, oob_size);
else
return nand->controller->write_page(nand, page, data, data_size, oob, oob_size);
}
static int nand_read_page(struct nand_device_s *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (nand->use_raw || nand->controller->read_page == NULL)
return nand_read_page_raw(nand, page, data, data_size, oob, oob_size);
else
return nand->controller->read_page(nand, page, data, data_size, oob, oob_size);
}
int nand_read_page_raw(struct nand_device_s *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
uint32_t i;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (nand->page_size <= 512)
{
/* small page device */
if (data)
nand->controller->command(nand, NAND_CMD_READ0);
else
nand->controller->command(nand, NAND_CMD_READOOB);
/* column (always 0, we start at the beginning of a page/OOB area) */
nand->controller->address(nand, 0x0);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 4th cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 5th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
}
else
{
/* large page device */
nand->controller->command(nand, NAND_CMD_READ0);
/* column (0 when we start at the beginning of a page,
* or 2048 for the beginning of OOB area)
*/
nand->controller->address(nand, 0x0);
if (data)
nand->controller->address(nand, 0x0);
else
nand->controller->address(nand, 0x8);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 5th cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
/* large page devices need a start command */
nand->controller->command(nand, NAND_CMD_READSTART);
}
if (nand->controller->nand_ready) {
if (!nand->controller->nand_ready(nand, 100))
return ERROR_NAND_OPERATION_TIMEOUT;
} else {
alive_sleep(1);
}
if (data)
{
if (nand->controller->read_block_data != NULL)
(nand->controller->read_block_data)(nand, data, data_size);
else
{
for (i = 0; i < data_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
nand->controller->read_data(nand, data);
data += 2;
i += 2;
}
else
{
nand->controller->read_data(nand, data);
data += 1;
i += 1;
}
}
}
}
if (oob)
{
if (nand->controller->read_block_data != NULL)
(nand->controller->read_block_data)(nand, oob, oob_size);
else
{
for (i = 0; i < oob_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
nand->controller->read_data(nand, oob);
oob += 2;
i += 2;
}
else
{
nand->controller->read_data(nand, oob);
oob += 1;
i += 1;
}
}
}
}
return ERROR_OK;
}
int nand_write_page_raw(struct nand_device_s *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size)
{
uint32_t i;
int retval;
uint8_t status;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
nand->controller->command(nand, NAND_CMD_SEQIN);
if (nand->page_size <= 512)
{
/* column (always 0, we start at the beginning of a page/OOB area) */
nand->controller->address(nand, 0x0);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 4th cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 5th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
}
else
{
/* column (0 when we start at the beginning of a page,
* or 2048 for the beginning of OOB area)
*/
nand->controller->address(nand, 0x0);
if (data)
nand->controller->address(nand, 0x0);
else
nand->controller->address(nand, 0x8);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 5th cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
}
if (data)
{
if (nand->controller->write_block_data != NULL)
(nand->controller->write_block_data)(nand, data, data_size);
else
{
for (i = 0; i < data_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
uint16_t data_buf = le_to_h_u16(data);
nand->controller->write_data(nand, data_buf);
data += 2;
i += 2;
}
else
{
nand->controller->write_data(nand, *data);
data += 1;
i += 1;
}
}
}
}
if (oob)
{
if (nand->controller->write_block_data != NULL)
(nand->controller->write_block_data)(nand, oob, oob_size);
else
{
for (i = 0; i < oob_size;)
{
if (nand->device->options & NAND_BUSWIDTH_16)
{
uint16_t oob_buf = le_to_h_u16(data);
nand->controller->write_data(nand, oob_buf);
oob += 2;
i += 2;
}
else
{
nand->controller->write_data(nand, *oob);
oob += 1;
i += 1;
}
}
}
}
nand->controller->command(nand, NAND_CMD_PAGEPROG);
retval = nand->controller->nand_ready ?
nand->controller->nand_ready(nand, 100) :
nand_poll_ready(nand, 100);
if (!retval)
return ERROR_NAND_OPERATION_TIMEOUT;
if ((retval = nand_read_status(nand, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL)
{
LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_list_command)
{
nand_device_t *p;
int i;
if (!nand_devices)
{
command_print(cmd_ctx, "no NAND flash devices configured");
return ERROR_OK;
}
for (p = nand_devices, i = 0; p; p = p->next, i++)
{
if (p->device)
command_print(cmd_ctx, "#%i: %s (%s) "
"pagesize: %i, buswidth: %i,\n\t"
"blocksize: %i, blocks: %i",
i, p->device->name, p->manufacturer->name,
p->page_size, p->bus_width,
p->erase_size, p->num_blocks);
else
command_print(cmd_ctx, "#%i: not probed", i);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_info_command)
{
int i = 0;
int j = 0;
int first = -1;
int last = -1;
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
switch (argc) {
default:
return ERROR_COMMAND_SYNTAX_ERROR;
case 1:
first = 0;
last = INT32_MAX;
break;
case 2:
COMMAND_PARSE_NUMBER(int, args[1], i);
first = last = i;
i = 0;
break;
case 3:
COMMAND_PARSE_NUMBER(int, args[1], first);
COMMAND_PARSE_NUMBER(int, args[2], last);
break;
}
if (NULL == p->device)
{
command_print(cmd_ctx, "#%s: not probed", args[0]);
return ERROR_OK;
}
if (first >= p->num_blocks)
first = p->num_blocks - 1;
if (last >= p->num_blocks)
last = p->num_blocks - 1;
command_print(cmd_ctx, "#%i: %s (%s) pagesize: %i, buswidth: %i, erasesize: %i",
i++, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size);
for (j = first; j <= last; j++)
{
char *erase_state, *bad_state;
if (p->blocks[j].is_erased == 0)
erase_state = "not erased";
else if (p->blocks[j].is_erased == 1)
erase_state = "erased";
else
erase_state = "erase state unknown";
if (p->blocks[j].is_bad == 0)
bad_state = "";
else if (p->blocks[j].is_bad == 1)
bad_state = " (marked bad)";
else
bad_state = " (block condition unknown)";
command_print(cmd_ctx,
"\t#%i: 0x%8.8" PRIx32 " (%" PRId32 "kB) %s%s",
j,
p->blocks[j].offset,
p->blocks[j].size / 1024,
erase_state,
bad_state);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_probe_command)
{
if (argc != 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
if ((retval = nand_probe(p)) == ERROR_OK)
{
command_print(cmd_ctx, "NAND flash device '%s' found", p->device->name);
}
else if (retval == ERROR_NAND_OPERATION_FAILED)
{
command_print(cmd_ctx, "probing failed for NAND flash device");
}
else
{
command_print(cmd_ctx, "unknown error when probing NAND flash device");
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_erase_command)
{
if (argc != 1 && argc != 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
unsigned long offset;
unsigned long length;
/* erase specified part of the chip; or else everything */
if (argc == 3) {
unsigned long size = p->erase_size * p->num_blocks;
COMMAND_PARSE_NUMBER(ulong, args[1], offset);
if ((offset % p->erase_size) != 0 || offset >= size)
return ERROR_INVALID_ARGUMENTS;
COMMAND_PARSE_NUMBER(ulong, args[2], length);
if ((length == 0) || (length % p->erase_size) != 0
|| (length + offset) > size)
return ERROR_INVALID_ARGUMENTS;
offset /= p->erase_size;
length /= p->erase_size;
} else {
offset = 0;
length = p->num_blocks;
}
retval = nand_erase(p, offset, offset + length - 1);
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "erased blocks %lu to %lu "
"on NAND flash device #%s '%s'",
offset, offset + length,
args[0], p->device->name);
}
else if (retval == ERROR_NAND_OPERATION_FAILED)
{
command_print(cmd_ctx, "erase failed");
}
else
{
command_print(cmd_ctx, "unknown error when erasing NAND flash device");
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_check_bad_blocks_command)
{
int first = -1;
int last = -1;
if ((argc < 1) || (argc > 3) || (argc == 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
if (argc == 3)
{
unsigned long offset;
unsigned long length;
COMMAND_PARSE_NUMBER(ulong, args[1], offset);
if (offset % p->erase_size)
return ERROR_INVALID_ARGUMENTS;
offset /= p->erase_size;
COMMAND_PARSE_NUMBER(ulong, args[2], length);
if (length % p->erase_size)
return ERROR_INVALID_ARGUMENTS;
length -= 1;
length /= p->erase_size;
first = offset;
last = offset + length;
}
retval = nand_build_bbt(p, first, last);
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "checked NAND flash device for bad blocks, "
"use \"nand info\" command to list blocks");
}
else if (retval == ERROR_NAND_OPERATION_FAILED)
{
command_print(cmd_ctx, "error when checking for bad blocks on "
"NAND flash device");
}
else
{
command_print(cmd_ctx, "unknown error when checking for bad "
"blocks on NAND flash device");
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_write_command)
{
uint32_t offset;
uint32_t binary_size;
uint32_t buf_cnt;
enum oob_formats oob_format = NAND_OOB_NONE;
struct fileio fileio;
if (argc < 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
uint8_t *page = NULL;
uint32_t page_size = 0;
uint8_t *oob = NULL;
uint32_t oob_size = 0;
const int *eccpos = NULL;
COMMAND_PARSE_NUMBER(u32, args[2], offset);
if (argc > 3)
{
for (unsigned i = 3; i < argc; i++)
{
if (!strcmp(args[i], "oob_raw"))
oob_format |= NAND_OOB_RAW;
else if (!strcmp(args[i], "oob_only"))
oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY;
else if (!strcmp(args[i], "oob_softecc"))
oob_format |= NAND_OOB_SW_ECC;
else if (!strcmp(args[i], "oob_softecc_kw"))
oob_format |= NAND_OOB_SW_ECC_KW;
else
{
command_print(cmd_ctx, "unknown option: %s", args[i]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
}
struct duration bench;
duration_start(&bench);
if (fileio_open(&fileio, args[1], FILEIO_READ, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
buf_cnt = binary_size = fileio.size;
if (!(oob_format & NAND_OOB_ONLY))
{
page_size = p->page_size;
page = malloc(p->page_size);
}
if (oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC | NAND_OOB_SW_ECC_KW))
{
if (p->page_size == 512) {
oob_size = 16;
eccpos = nand_oob_16.eccpos;
} else if (p->page_size == 2048) {
oob_size = 64;
eccpos = nand_oob_64.eccpos;
}
oob = malloc(oob_size);
}
if (offset % p->page_size)
{
command_print(cmd_ctx, "only page size aligned offsets and sizes are supported");
fileio_close(&fileio);
free(oob);
free(page);
return ERROR_OK;
}
while (buf_cnt > 0)
{
uint32_t size_read;
if (NULL != page)
{
fileio_read(&fileio, page_size, page, &size_read);
buf_cnt -= size_read;
if (size_read < page_size)
{
memset(page + size_read, 0xff, page_size - size_read);
}
}
if (oob_format & NAND_OOB_SW_ECC)
{
uint32_t i, j;
uint8_t ecc[3];
memset(oob, 0xff, oob_size);
for (i = 0, j = 0; i < page_size; i += 256) {
nand_calculate_ecc(p, page + i, ecc);
oob[eccpos[j++]] = ecc[0];
oob[eccpos[j++]] = ecc[1];
oob[eccpos[j++]] = ecc[2];
}
} else if (oob_format & NAND_OOB_SW_ECC_KW)
{
/*
* In this case eccpos is not used as
* the ECC data is always stored contigously
* at the end of the OOB area. It consists
* of 10 bytes per 512-byte data block.
*/
uint32_t i;
uint8_t *ecc = oob + oob_size - page_size/512 * 10;
memset(oob, 0xff, oob_size);
for (i = 0; i < page_size; i += 512) {
nand_calculate_ecc_kw(p, page + i, ecc);
ecc += 10;
}
}
else if (NULL != oob)
{
fileio_read(&fileio, oob_size, oob, &size_read);
buf_cnt -= size_read;
if (size_read < oob_size)
{
memset(oob + size_read, 0xff, oob_size - size_read);
}
}
if (nand_write_page(p, offset / p->page_size, page, page_size, oob, oob_size) != ERROR_OK)
{
command_print(cmd_ctx, "failed writing file %s to NAND flash %s at offset 0x%8.8" PRIx32 "",
args[1], args[0], offset);
fileio_close(&fileio);
free(oob);
free(page);
return ERROR_OK;
}
offset += page_size;
}
fileio_close(&fileio);
free(oob);
free(page);
oob = NULL;
page = NULL;
if (duration_measure(&bench) == ERROR_OK)
{
command_print(cmd_ctx, "wrote file %s to NAND flash %s "
"up to offset 0x%8.8" PRIx32 " in %fs (%0.3f kb/s)",
args[1], args[0], offset, duration_elapsed(&bench),
duration_kbps(&bench, fileio.size));
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_dump_command)
{
if (argc < 4)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
if (NULL == p->device)
{
command_print(cmd_ctx, "#%s: not probed", args[0]);
return ERROR_OK;
}
struct fileio fileio;
uint8_t *page = NULL;
uint32_t page_size = 0;
uint8_t *oob = NULL;
uint32_t oob_size = 0;
uint32_t address;
COMMAND_PARSE_NUMBER(u32, args[2], address);
uint32_t size;
COMMAND_PARSE_NUMBER(u32, args[3], size);
uint32_t bytes_done = 0;
enum oob_formats oob_format = NAND_OOB_NONE;
if (argc > 4)
{
for (unsigned i = 4; i < argc; i++)
{
if (!strcmp(args[i], "oob_raw"))
oob_format |= NAND_OOB_RAW;
else if (!strcmp(args[i], "oob_only"))
oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY;
else
command_print(cmd_ctx, "unknown option: '%s'", args[i]);
}
}
if ((address % p->page_size) || (size % p->page_size))
{
command_print(cmd_ctx, "only page size aligned addresses and sizes are supported");
return ERROR_OK;
}
if (!(oob_format & NAND_OOB_ONLY))
{
page_size = p->page_size;
page = malloc(p->page_size);
}
if (oob_format & NAND_OOB_RAW)
{
if (p->page_size == 512)
oob_size = 16;
else if (p->page_size == 2048)
oob_size = 64;
oob = malloc(oob_size);
}
if (fileio_open(&fileio, args[1], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
struct duration bench;
duration_start(&bench);
while (size > 0)
{
uint32_t size_written;
if ((retval = nand_read_page(p, address / p->page_size, page, page_size, oob, oob_size)) != ERROR_OK)
{
command_print(cmd_ctx, "reading NAND flash page failed");
free(page);
free(oob);
fileio_close(&fileio);
return ERROR_OK;
}
if (NULL != page)
{
fileio_write(&fileio, page_size, page, &size_written);
bytes_done += page_size;
}
if (NULL != oob)
{
fileio_write(&fileio, oob_size, oob, &size_written);
bytes_done += oob_size;
}
size -= p->page_size;
address += p->page_size;
}
free(page);
page = NULL;
free(oob);
oob = NULL;
fileio_close(&fileio);
if (duration_measure(&bench) == ERROR_OK)
{
command_print(cmd_ctx, "dumped %lld byte in %fs (%0.3f kb/s)",
fileio.size, duration_elapsed(&bench),
duration_kbps(&bench, fileio.size));
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_nand_raw_access_command)
{
if ((argc < 1) || (argc > 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
nand_device_t *p;
int retval = nand_command_get_device_by_num(cmd_ctx, args[0], &p);
if (ERROR_OK != retval)
return retval;
if (NULL == p->device)
{
command_print(cmd_ctx, "#%s: not probed", args[0]);
return ERROR_OK;
}
if (argc == 2)
{
if (strcmp("enable", args[1]) == 0)
p->use_raw = 1;
else if (strcmp("disable", args[1]) == 0)
p->use_raw = 0;
else
return ERROR_COMMAND_SYNTAX_ERROR;
}
const char *msg = p->use_raw ? "enabled" : "disabled";
command_print(cmd_ctx, "raw access is %s", msg);
return ERROR_OK;
}
int nand_init(struct command_context_s *cmd_ctx)
{
if (!nand_devices)
return ERROR_OK;
register_command(cmd_ctx, nand_cmd, "list",
handle_nand_list_command, COMMAND_EXEC,
"list configured NAND flash devices");
register_command(cmd_ctx, nand_cmd, "info",
handle_nand_info_command, COMMAND_EXEC,
"print info about NAND flash device <num>");
register_command(cmd_ctx, nand_cmd, "probe",
handle_nand_probe_command, COMMAND_EXEC,
"identify NAND flash device <num>");
register_command(cmd_ctx, nand_cmd, "check_bad_blocks",
handle_nand_check_bad_blocks_command, COMMAND_EXEC,
"check NAND flash device <num> for bad blocks [<offset> <length>]");
register_command(cmd_ctx, nand_cmd, "erase",
handle_nand_erase_command, COMMAND_EXEC,
"erase blocks on NAND flash device <num> [<offset> <length>]");
register_command(cmd_ctx, nand_cmd, "dump",
handle_nand_dump_command, COMMAND_EXEC,
"dump from NAND flash device <num> <filename> "
"<offset> <length> [oob_raw | oob_only]");
register_command(cmd_ctx, nand_cmd, "write",
handle_nand_write_command, COMMAND_EXEC,
"write to NAND flash device <num> <filename> <offset> "
"[oob_raw | oob_only | oob_softecc | oob_softecc_kw]");
register_command(cmd_ctx, nand_cmd, "raw_access",
handle_nand_raw_access_command, COMMAND_EXEC,
"raw access to NAND flash device <num> ['enable'|'disable']");
return ERROR_OK;
}