openocd/src/flash/at91sam3.c

2522 lines
58 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2009 by Duane Ellis *
* openocd@duaneellis.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. See the *
* GNU General public License for more details. *
* *
* You should have received a copy of the GNU General public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
****************************************************************************/
/* Some of the the lower level code was based on code supplied by
* ATMEL under this copyright. */
/* BEGIN ATMEL COPYRIGHT */
/* ----------------------------------------------------------------------------
* ATMEL Microcontroller Software Support
* ----------------------------------------------------------------------------
* Copyright (c) 2009, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ----------------------------------------------------------------------------
*/
/* END ATMEL COPYRIGHT */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include "log.h"
#include "types.h"
#include "flash.h"
#include "target.h"
#include "membuf.h"
#include "at91sam3.h"
#include "time_support.h"
#define REG_NAME_WIDTH (12)
#define FLASH_BANK0_BASE 0x00080000
#define FLASH_BANK1_BASE 0x00100000
#define AT91C_EFC_FCMD_GETD (0x0) // (EFC) Get Flash Descriptor
#define AT91C_EFC_FCMD_WP (0x1) // (EFC) Write Page
#define AT91C_EFC_FCMD_WPL (0x2) // (EFC) Write Page and Lock
#define AT91C_EFC_FCMD_EWP (0x3) // (EFC) Erase Page and Write Page
#define AT91C_EFC_FCMD_EWPL (0x4) // (EFC) Erase Page and Write Page then Lock
#define AT91C_EFC_FCMD_EA (0x5) // (EFC) Erase All
// cmd6 is not present int he at91sam3u4/2/1 data sheet table 17-2
// #define AT91C_EFC_FCMD_EPL (0x6) // (EFC) Erase plane?
// cmd7 is not present int he at91sam3u4/2/1 data sheet table 17-2
// #define AT91C_EFC_FCMD_EPA (0x7) // (EFC) Erase pages?
#define AT91C_EFC_FCMD_SLB (0x8) // (EFC) Set Lock Bit
#define AT91C_EFC_FCMD_CLB (0x9) // (EFC) Clear Lock Bit
#define AT91C_EFC_FCMD_GLB (0xA) // (EFC) Get Lock Bit
#define AT91C_EFC_FCMD_SFB (0xB) // (EFC) Set Fuse Bit
#define AT91C_EFC_FCMD_CFB (0xC) // (EFC) Clear Fuse Bit
#define AT91C_EFC_FCMD_GFB (0xD) // (EFC) Get Fuse Bit
#define AT91C_EFC_FCMD_STUI (0xE) // (EFC) Start Read Unique ID
#define AT91C_EFC_FCMD_SPUI (0xF) // (EFC) Stop Read Unique ID
#define offset_EFC_FMR 0
#define offset_EFC_FCR 4
#define offset_EFC_FSR 8
#define offset_EFC_FRR 12
static float
_tomhz(uint32_t freq_hz)
{
float f;
f = ((float)(freq_hz)) / 1000000.0;
return f;
}
// How the chip is configured.
struct sam3_cfg {
uint32_t unique_id[4];
uint32_t slow_freq;
uint32_t rc_freq;
uint32_t mainosc_freq;
uint32_t plla_freq;
uint32_t mclk_freq;
uint32_t cpu_freq;
uint32_t fclk_freq;
uint32_t pclk0_freq;
uint32_t pclk1_freq;
uint32_t pclk2_freq;
#define SAM3_CHIPID_CIDR (0x400E0740)
uint32_t CHIPID_CIDR;
#define SAM3_CHIPID_EXID (0x400E0744)
uint32_t CHIPID_EXID;
#define SAM3_SUPC_CR (0x400E1210)
uint32_t SUPC_CR;
#define SAM3_PMC_BASE (0x400E0400)
#define SAM3_PMC_SCSR (SAM3_PMC_BASE + 0x0008)
uint32_t PMC_SCSR;
#define SAM3_PMC_PCSR (SAM3_PMC_BASE + 0x0018)
uint32_t PMC_PCSR;
#define SAM3_CKGR_UCKR (SAM3_PMC_BASE + 0x001c)
uint32_t CKGR_UCKR;
#define SAM3_CKGR_MOR (SAM3_PMC_BASE + 0x0020)
uint32_t CKGR_MOR;
#define SAM3_CKGR_MCFR (SAM3_PMC_BASE + 0x0024)
uint32_t CKGR_MCFR;
#define SAM3_CKGR_PLLAR (SAM3_PMC_BASE + 0x0028)
uint32_t CKGR_PLLAR;
#define SAM3_PMC_MCKR (SAM3_PMC_BASE + 0x0030)
uint32_t PMC_MCKR;
#define SAM3_PMC_PCK0 (SAM3_PMC_BASE + 0x0040)
uint32_t PMC_PCK0;
#define SAM3_PMC_PCK1 (SAM3_PMC_BASE + 0x0044)
uint32_t PMC_PCK1;
#define SAM3_PMC_PCK2 (SAM3_PMC_BASE + 0x0048)
uint32_t PMC_PCK2;
#define SAM3_PMC_SR (SAM3_PMC_BASE + 0x0068)
uint32_t PMC_SR;
#define SAM3_PMC_IMR (SAM3_PMC_BASE + 0x006c)
uint32_t PMC_IMR;
#define SAM3_PMC_FSMR (SAM3_PMC_BASE + 0x0070)
uint32_t PMC_FSMR;
#define SAM3_PMC_FSPR (SAM3_PMC_BASE + 0x0074)
uint32_t PMC_FSPR;
};
struct sam3_bank_private {
int probed;
// DANGER: THERE ARE DRAGONS HERE..
// NOTE: If you add more 'ghost' pointers
// be aware that you must *manually* update
// these pointers in the function sam3_GetDetails()
// See the comment "Here there be dragons"
// so we can find the chip we belong to
struct sam3_chip *pChip;
// so we can find the orginal bank pointer
flash_bank_t *pBank;
unsigned bank_number;
uint32_t controller_address;
uint32_t base_address;
bool present;
unsigned size_bytes;
unsigned nsectors;
unsigned sector_size;
unsigned page_size;
};
struct sam3_chip_details {
// THERE ARE DRAGONS HERE..
// note: If you add pointers here
// becareful about them as they
// may need to be updated inside
// the function: "sam3_GetDetails()
// which copy/overwrites the
// 'runtime' copy of this structure
uint32_t chipid_cidr;
const char *name;
unsigned n_gpnvms;
#define SAM3_N_NVM_BITS 3
unsigned gpnvm[SAM3_N_NVM_BITS];
unsigned total_flash_size;
unsigned total_sram_size;
unsigned n_banks;
#define SAM3_MAX_FLASH_BANKS 2
// these are "initialized" from the global const data
struct sam3_bank_private bank[SAM3_MAX_FLASH_BANKS];
};
struct sam3_chip {
struct sam3_chip *next;
int probed;
// this is "initialized" from the global const structure
struct sam3_chip_details details;
target_t *target;
struct sam3_cfg cfg;
struct membuf *mbuf;
};
struct sam3_reg_list {
uint32_t address; size_t struct_offset; const char *name;
void (*explain_func)(struct sam3_chip *pInfo);
};
static struct sam3_chip *all_sam3_chips;
static struct sam3_chip *
get_current_sam3(struct command_context_s *cmd_ctx)
{
target_t *t;
static struct sam3_chip *p;
t = get_current_target(cmd_ctx);
if (!t) {
command_print(cmd_ctx, "No current target?");
return NULL;
}
p = all_sam3_chips;
if (!p) {
// this should not happen
// the command is not registered until the chip is created?
command_print(cmd_ctx, "No SAM3 chips exist?");
return NULL;
}
while (p) {
if (p->target == t) {
return p;
}
p = p->next;
}
command_print(cmd_ctx, "Cannot find SAM3 chip?");
return NULL;
}
// these are used to *initialize* the "pChip->details" structure.
static const struct sam3_chip_details all_sam3_details[] = {
{
.chipid_cidr = 0x28100960,
.name = "at91sam3u4e",
.total_flash_size = 256 * 1024,
.total_sram_size = 52 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
// System boots at address 0x0
// gpnvm[1] = selects boot code
// if gpnvm[1] == 0
// boot is via "SAMBA" (rom)
// else
// boot is via FLASH
// Selection is via gpnvm[2]
// endif
//
// NOTE: banks 0 & 1 switch places
// if gpnvm[2] == 0
// Bank0 is the boot rom
// else
// Bank1 is the boot rom
// endif
// .bank[0] = {
{
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE,
.controller_address = 0x400e0800,
.present = 1,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 256,
},
// .bank[1] = {
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE,
.controller_address = 0x400e0a00,
.present = 1,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 256,
},
},
},
{
.chipid_cidr = 0x281a0760,
.name = "at91sam3u2e",
.total_flash_size = 128 * 1024,
.total_sram_size = 36 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
// System boots at address 0x0
// gpnvm[1] = selects boot code
// if gpnvm[1] == 0
// boot is via "SAMBA" (rom)
// else
// boot is via FLASH
// Selection is via gpnvm[2]
// endif
// .bank[0] = {
{
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE,
.controller_address = 0x400e0800,
.present = 1,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 256,
},
// .bank[1] = {
{
.present = 0,
.probed = 0,
.bank_number = 1,
},
},
},
{
.chipid_cidr = 0x28190560,
.name = "at91sam3u1e",
.total_flash_size = 64 * 1024,
.total_sram_size = 20 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
// System boots at address 0x0
// gpnvm[1] = selects boot code
// if gpnvm[1] == 0
// boot is via "SAMBA" (rom)
// else
// boot is via FLASH
// Selection is via gpnvm[2]
// endif
//
// .bank[0] = {
{
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE,
.controller_address = 0x400e0800,
.present = 1,
.size_bytes = 64 * 1024,
.nsectors = 8,
.sector_size = 8192,
.page_size = 256,
},
// .bank[1] = {
{
.present = 0,
.probed = 0,
.bank_number = 1,
},
},
},
{
.chipid_cidr = 0x28000960,
.name = "at91sam3u4c",
.total_flash_size = 256 * 1024,
.total_sram_size = 52 * 1024,
.n_gpnvms = 3,
.n_banks = 2,
// System boots at address 0x0
// gpnvm[1] = selects boot code
// if gpnvm[1] == 0
// boot is via "SAMBA" (rom)
// else
// boot is via FLASH
// Selection is via gpnvm[2]
// endif
//
// NOTE: banks 0 & 1 switch places
// if gpnvm[2] == 0
// Bank0 is the boot rom
// else
// Bank1 is the boot rom
// endif
{
{
// .bank[0] = {
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE,
.controller_address = 0x400e0800,
.present = 1,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 256,
},
// .bank[1] = {
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 1,
.base_address = FLASH_BANK1_BASE,
.controller_address = 0x400e0a00,
.present = 1,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 256,
},
},
},
{
.chipid_cidr = 0x280a0760,
.name = "at91sam3u2c",
.total_flash_size = 128 * 1024,
.total_sram_size = 36 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
// System boots at address 0x0
// gpnvm[1] = selects boot code
// if gpnvm[1] == 0
// boot is via "SAMBA" (rom)
// else
// boot is via FLASH
// Selection is via gpnvm[2]
// endif
{
// .bank[0] = {
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE,
.controller_address = 0x400e0800,
.present = 1,
.size_bytes = 128 * 1024,
.nsectors = 16,
.sector_size = 8192,
.page_size = 256,
},
// .bank[1] = {
{
.present = 0,
.probed = 0,
.bank_number = 1,
},
},
},
{
.chipid_cidr = 0x28090560,
.name = "at91sam3u1c",
.total_flash_size = 64 * 1024,
.total_sram_size = 20 * 1024,
.n_gpnvms = 2,
.n_banks = 1,
// System boots at address 0x0
// gpnvm[1] = selects boot code
// if gpnvm[1] == 0
// boot is via "SAMBA" (rom)
// else
// boot is via FLASH
// Selection is via gpnvm[2]
// endif
//
{
// .bank[0] = {
{
.probed = 0,
.pChip = NULL,
.pBank = NULL,
.bank_number = 0,
.base_address = FLASH_BANK0_BASE,
.controller_address = 0x400e0800,
.present = 1,
.size_bytes = 64 * 1024,
.nsectors = 8,
.sector_size = 8192,
.page_size = 256,
},
// .bank[1] = {
{
.present = 0,
.probed = 0,
.bank_number = 1,
},
},
},
// terminate
{
.chipid_cidr = 0,
.name = NULL,
}
};
/* Globals above */
/***********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************/
/* *ATMEL* style code - from the SAM3 driver code */
/** Get the current status of the EEFC
*
* the value of some status bits (LOCKE, PROGE).
* @param pPrivate - info about the bank
* @param v - result goes here
*/
static int
EFC_GetStatus(struct sam3_bank_private *pPrivate, uint32_t *v)
{
int r;
r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FSR, v);
LOG_DEBUG("Status: 0x%08x (lockerror: %d, cmderror: %d, ready: %d)",
(unsigned int)(*v),
((unsigned int)((*v >> 2) & 1)),
((unsigned int)((*v >> 1) & 1)),
((unsigned int)((*v >> 0) & 1)));
return r;
}
/** Get the result of the last executed command.
* @param pPrivate - info about the bank
* @param v - result goes here
*/
static int
EFC_GetResult(struct sam3_bank_private *pPrivate, uint32_t *v)
{
int r;
uint32_t rv;
r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FRR, &rv);
if (v) {
*v = rv;
}
LOG_DEBUG("Result: 0x%08x", ((unsigned int)(rv)));
return r;
}
static int
EFC_StartCommand(struct sam3_bank_private *pPrivate,
unsigned command, unsigned argument)
{
uint32_t n,v;
int r;
int retry;
retry = 0;
do_retry:
// Check command & argument
switch (command) {
case AT91C_EFC_FCMD_WP:
case AT91C_EFC_FCMD_WPL:
case AT91C_EFC_FCMD_EWP:
case AT91C_EFC_FCMD_EWPL:
// case AT91C_EFC_FCMD_EPL:
// case AT91C_EFC_FCMD_EPA:
case AT91C_EFC_FCMD_SLB:
case AT91C_EFC_FCMD_CLB:
n = (pPrivate->size_bytes / pPrivate->page_size);
if (argument >= n) {
LOG_ERROR("*BUG*: Embedded flash has only %u pages", (unsigned)(n));
}
break;
case AT91C_EFC_FCMD_SFB:
case AT91C_EFC_FCMD_CFB:
if (argument >= pPrivate->pChip->details.n_gpnvms) {
LOG_ERROR("*BUG*: Embedded flash has only %d GPNVMs",
pPrivate->pChip->details.n_gpnvms);
}
break;
case AT91C_EFC_FCMD_GETD:
case AT91C_EFC_FCMD_EA:
case AT91C_EFC_FCMD_GLB:
case AT91C_EFC_FCMD_GFB:
case AT91C_EFC_FCMD_STUI:
case AT91C_EFC_FCMD_SPUI:
if (argument != 0) {
LOG_ERROR("Argument is meaningless for cmd: %d", command);
}
break;
default:
LOG_ERROR("Unknown command %d", command);
break;
}
if (command == AT91C_EFC_FCMD_SPUI) {
// this is a very special situation.
// Situation (1) - error/retry - see below
// And we are being called recursively
// Situation (2) - normal, finished reading unique id
} else {
// it should be "ready"
EFC_GetStatus(pPrivate, &v);
if (v & 1) {
// then it is ready
// we go on
} else {
if (retry) {
// we have done this before
// the controller is not responding.
LOG_ERROR("flash controller(%d) is not ready! Error", pPrivate->bank_number);
return ERROR_FAIL;
} else {
retry++;
LOG_ERROR("Flash controller(%d) is not ready, attempting reset",
pPrivate->bank_number);
// we do that by issuing the *STOP* command
EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0);
// above is recursive, and further recursion is blocked by
// if (command == AT91C_EFC_FCMD_SPUI) above
goto do_retry;
}
}
}
v = (0x5A << 24) | (argument << 8) | command;
LOG_DEBUG("Command: 0x%08x", ((unsigned int)(v)));
r = target_write_u32(pPrivate->pBank->target,
pPrivate->controller_address + offset_EFC_FCR,
v);
if (r != ERROR_OK) {
LOG_DEBUG("Error Write failed");
}
return r;
}
/** Performs the given command and wait until its completion (or an error).
*
* @param pPrivate - info about the bank
* @param command - Command to perform.
* @param argument - Optional command argument.
* @param status - put command status bits here
*/
static int
EFC_PerformCommand(struct sam3_bank_private *pPrivate,
unsigned command,
unsigned argument,
uint32_t *status)
{
int r;
uint32_t v;
long long ms_now, ms_end;
// default
if (status) {
*status = 0;
}
r = EFC_StartCommand(pPrivate, command, argument);
if (r != ERROR_OK) {
return r;
}
ms_end = 500 + timeval_ms();
do {
r = EFC_GetStatus(pPrivate, &v);
if (r != ERROR_OK) {
return r;
}
ms_now = timeval_ms();
if (ms_now > ms_end) {
// error
LOG_ERROR("Command timeout");
return ERROR_FAIL;
}
}
while ((v & 1) == 0)
;
// error bits..
if (status) {
*status = (v & 0x6);
}
return ERROR_OK;
}
/** Read the unique ID.
*
* \param pPrivate - info about the bank
*
* The unique ID is stored in the 'pPrivate' structure.
*/
static int
FLASHD_ReadUniqueID (struct sam3_bank_private *pPrivate)
{
int r;
uint32_t v;
int x;
// assume 0
pPrivate->pChip->cfg.unique_id[0] = 0;
pPrivate->pChip->cfg.unique_id[1] = 0;
pPrivate->pChip->cfg.unique_id[2] = 0;
pPrivate->pChip->cfg.unique_id[3] = 0;
LOG_DEBUG("Begin");
r = EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_STUI, 0);
if (r < 0) {
return r;
}
for (x = 0 ; x < 4 ; x++) {
r = target_read_u32(pPrivate->pChip->target,
pPrivate->pBank->base + (x * 4),
&v);
if (r < 0) {
return r;
}
pPrivate->pChip->cfg.unique_id[x] = v;
}
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0, NULL);
LOG_DEBUG("End: R=%d, id = 0x%08x, 0x%08x, 0x%08x, 0x%08x",
r,
(unsigned int)(pPrivate->pChip->cfg.unique_id[0]),
(unsigned int)(pPrivate->pChip->cfg.unique_id[1]),
(unsigned int)(pPrivate->pChip->cfg.unique_id[2]),
(unsigned int)(pPrivate->pChip->cfg.unique_id[3]));
return r;
}
/** Erases the entire flash.
* @param pPrivate - the info about the bank.
*/
static int
FLASHD_EraseEntireBank(struct sam3_bank_private *pPrivate)
{
LOG_DEBUG("Here");
return EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_EA, 0, NULL);
}
/** Gets current GPNVM state.
* @param pPrivate - info about the bank.
* @param gpnvm - GPNVM bit index.
* @param puthere - result stored here.
*
*/
//------------------------------------------------------------------------------
static int
FLASHD_GetGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm, unsigned *puthere)
{
uint32_t v;
int r;
LOG_DEBUG("Here");
if (pPrivate->bank_number != 0) {
LOG_ERROR("GPNVM only works with Bank0");
return ERROR_FAIL;
}
if (gpnvm >= pPrivate->pChip->details.n_gpnvms) {
LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
gpnvm,pPrivate->pChip->details.n_gpnvms);
return ERROR_FAIL;
}
// Get GPNVMs status
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GFB, 0, NULL);
if (r != ERROR_OK) {
LOG_ERROR("Failed");
return r;
}
r = EFC_GetResult(pPrivate, &v);
if (puthere) {
// Check if GPNVM is set
// get the bit and make it a 0/1
*puthere = (v >> gpnvm) & 1;
}
return r;
}
/** Clears the selected GPNVM bit.
* @param gpnvm GPNVM index.
*
* Returns 0 if successful; otherwise returns an error code.
*/
static int
FLASHD_ClrGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm)
{
int r;
unsigned v;
LOG_DEBUG("Here");
if (pPrivate->bank_number != 0) {
LOG_ERROR("GPNVM only works with Bank0");
return ERROR_FAIL;
}
if (gpnvm >= pPrivate->pChip->details.n_gpnvms) {
LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
gpnvm,pPrivate->pChip->details.n_gpnvms);
return ERROR_FAIL;
}
r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v);
if (r != ERROR_OK) {
LOG_DEBUG("Failed: %d",r);
return r;
}
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CFB, gpnvm, NULL);
LOG_DEBUG("End: %d",r);
return r;
}
/** Sets the selected GPNVM bit.
* @param gpnvm GPNVM index.
*
*/
static int
FLASHD_SetGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm)
{
int r;
unsigned v;
if (pPrivate->bank_number != 0) {
LOG_ERROR("GPNVM only works with Bank0");
return ERROR_FAIL;
}
if (gpnvm >= pPrivate->pChip->details.n_gpnvms) {
LOG_ERROR("Invalid GPNVM %d, max: %d, ignored",
gpnvm,pPrivate->pChip->details.n_gpnvms);
return ERROR_FAIL;
}
r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v);
if (r != ERROR_OK) {
return r;
}
if (v) {
// already set
r = ERROR_OK;
} else {
// set it
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SFB, gpnvm, NULL);
}
return r;
}
/** Returns a bit field (at most 64) of locked regions within a page.
* @param pPrivate - info about the bank
* @param v - where to store locked bits
* \param end End address of range.
*/
static int
FLASHD_GetLockBits(struct sam3_bank_private *pPrivate, uint32_t *v)
{
int r;
LOG_DEBUG("Here");
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GLB, 0, NULL);
if (r == ERROR_OK) {
r = EFC_GetResult(pPrivate, v);
}
LOG_DEBUG("End: %d",r);
return r;
}
/**Unlocks all the regions in the given address range.
*
* \param start_sector - first sector to unlock
* \param end_sector - last (inclusive) to unlock
*/
static int
FLASHD_Unlock(struct sam3_bank_private *pPrivate,
unsigned start_sector,
unsigned end_sector)
{
int r;
uint32_t status;
uint32_t pg;
uint32_t pages_per_sector;
pages_per_sector = pPrivate->sector_size / pPrivate->page_size;
/* Unlock all pages */
while (start_sector <= end_sector) {
pg = start_sector * pages_per_sector;
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CLB, pg, &status);
if (r != ERROR_OK) {
return r;
}
start_sector++;
}
return ERROR_OK;
}
/** Locks regions
*
* @param start_sector - first sector to lock
* @param end_sector - last sector (inclusive) to lock
*/
static int
FLASHD_Lock(struct sam3_bank_private *pPrivate,
unsigned start_sector,
unsigned end_sector)
{
uint32_t status;
uint32_t pg;
uint32_t pages_per_sector;
int r;
pages_per_sector = pPrivate->sector_size / pPrivate->page_size;
/* Lock all pages */
while (start_sector <= end_sector) {
pg = start_sector * pages_per_sector;
r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SLB, pg, &status);
if (r != ERROR_OK) {
return r;
}
start_sector++;
}
return ERROR_OK;
}
/****** END SAM3 CODE ********/
/* begin helpful debug code */
static void
sam3_sprintf(struct sam3_chip *pChip , const char *fmt, ...)
{
va_list ap;
va_start(ap,fmt);
if (pChip->mbuf == NULL) {
return;
}
membuf_vsprintf(pChip->mbuf, fmt, ap);
va_end(ap);
}
// print the fieldname, the field value, in dec & hex, and return field value
static uint32_t
sam3_reg_fieldname(struct sam3_chip *pChip,
const char *regname,
uint32_t value,
unsigned shift,
unsigned width)
{
uint32_t v;
int hwidth, dwidth;
// extract the field
v = value >> shift;
v = v & ((1 << width)-1);
if (width <= 16) {
hwidth = 4;
dwidth = 5;
} else {
hwidth = 8;
dwidth = 12;
}
// show the basics
sam3_sprintf(pChip, "\t%*s: %*d [0x%0*x] ",
REG_NAME_WIDTH, regname,
dwidth, v,
hwidth, v);
return v;
}
static const char _unknown[] = "unknown";
static const char * const eproc_names[] = {
_unknown, // 0
"arm946es", // 1
"arm7tdmi", // 2
"cortex-m3", // 3
"arm920t", // 4
"arm926ejs", // 5
_unknown, // 6
_unknown, // 7
_unknown, // 8
_unknown, // 9
_unknown, // 10
_unknown, // 11
_unknown, // 12
_unknown, // 13
_unknown, // 14
_unknown, // 15
};
#define nvpsize2 nvpsize // these two tables are identical
static const char * const nvpsize[] = {
"none", // 0
"8K bytes", // 1
"16K bytes", // 2
"32K bytes", // 3
_unknown, // 4
"64K bytes", // 5
_unknown, // 6
"128K bytes", // 7
_unknown, // 8
"256K bytes", // 9
"512K bytes", // 10
_unknown, // 11
"1024K bytes", // 12
_unknown, // 13
"2048K bytes", // 14
_unknown, // 15
};
static const char * const sramsize[] = {
"48K Bytes", // 0
"1K Bytes", // 1
"2K Bytes", // 2
"6K Bytes", // 3
"112K Bytes", // 4
"4K Bytes", // 5
"80K Bytes", // 6
"160K Bytes", // 7
"8K Bytes", // 8
"16K Bytes", // 9
"32K Bytes", // 10
"64K Bytes", // 11
"128K Bytes", // 12
"256K Bytes", // 13
"96K Bytes", // 14
"512K Bytes", // 15
};
static const struct archnames { unsigned value; const char *name; } archnames[] = {
{ 0x19, "AT91SAM9xx Series" },
{ 0x29, "AT91SAM9XExx Series" },
{ 0x34, "AT91x34 Series" },
{ 0x37, "CAP7 Series" },
{ 0x39, "CAP9 Series" },
{ 0x3B, "CAP11 Series" },
{ 0x40, "AT91x40 Series" },
{ 0x42, "AT91x42 Series" },
{ 0x55, "AT91x55 Series" },
{ 0x60, "AT91SAM7Axx Series" },
{ 0x61, "AT91SAM7AQxx Series" },
{ 0x63, "AT91x63 Series" },
{ 0x70, "AT91SAM7Sxx Series" },
{ 0x71, "AT91SAM7XCxx Series" },
{ 0x72, "AT91SAM7SExx Series" },
{ 0x73, "AT91SAM7Lxx Series" },
{ 0x75, "AT91SAM7Xxx Series" },
{ 0x76, "AT91SAM7SLxx Series" },
{ 0x80, "ATSAM3UxC Series (100-pin version)" },
{ 0x81, "ATSAM3UxE Series (144-pin version)" },
{ 0x83, "ATSAM3AxC Series (100-pin version)" },
{ 0x84, "ATSAM3XxC Series (100-pin version)" },
{ 0x85, "ATSAM3XxE Series (144-pin version)" },
{ 0x86, "ATSAM3XxG Series (208/217-pin version)" },
{ 0x88, "ATSAM3SxA Series (48-pin version)" },
{ 0x89, "ATSAM3SxB Series (64-pin version)" },
{ 0x8A, "ATSAM3SxC Series (100-pin version)" },
{ 0x92, "AT91x92 Series" },
{ 0xF0, "AT75Cxx Series" },
{ -1, NULL },
};
static const char * const nvptype[] = {
"rom", // 0
"romless or onchip flash", // 1
"embedded flash memory", // 2
"rom(nvpsiz) + embedded flash (nvpsiz2)", //3
"sram emulating flash", // 4
_unknown, // 5
_unknown, // 6
_unknown, // 7
};
static const char *_yes_or_no(uint32_t v)
{
if (v) {
return "YES";
} else {
return "NO";
}
}
static const char * const _rc_freq[] = {
"4 MHz", "8 MHz", "12 MHz", "reserved"
};
static void
sam3_explain_ckgr_mor(struct sam3_chip *pChip)
{
uint32_t v;
uint32_t rcen;
v = sam3_reg_fieldname(pChip, "MOSCXTEN", pChip->cfg.CKGR_MOR, 0, 1);
sam3_sprintf(pChip, "(main xtal enabled: %s)\n",
_yes_or_no(v));
v = sam3_reg_fieldname(pChip, "MOSCXTBY", pChip->cfg.CKGR_MOR, 1, 1);
sam3_sprintf(pChip, "(main osc bypass: %s)\n",
_yes_or_no(v));
rcen = sam3_reg_fieldname(pChip, "MOSCRCEN", pChip->cfg.CKGR_MOR, 2, 1);
sam3_sprintf(pChip, "(onchip RC-OSC enabled: %s)\n",
_yes_or_no(rcen));
v = sam3_reg_fieldname(pChip, "MOSCRCF", pChip->cfg.CKGR_MOR, 4, 3);
sam3_sprintf(pChip, "(onchip RC-OSC freq: %s)\n",
_rc_freq[v]);
pChip->cfg.rc_freq = 0;
if (rcen) {
switch (v) {
default:
pChip->cfg.rc_freq = 0;
case 0:
pChip->cfg.rc_freq = 4 * 1000 * 1000;
break;
case 1:
pChip->cfg.rc_freq = 8 * 1000 * 1000;
break;
case 2:
pChip->cfg.rc_freq = 12* 1000 * 1000;
break;
}
}
v = sam3_reg_fieldname(pChip,"MOSCXTST", pChip->cfg.CKGR_MOR, 8, 8);
sam3_sprintf(pChip, "(startup clks, time= %f uSecs)\n",
((float)(v * 1000000)) / ((float)(pChip->cfg.slow_freq)));
v = sam3_reg_fieldname(pChip, "MOSCSEL", pChip->cfg.CKGR_MOR, 24, 1);
sam3_sprintf(pChip, "(mainosc source: %s)\n",
v ? "external xtal" : "internal RC");
v = sam3_reg_fieldname(pChip,"CFDEN", pChip->cfg.CKGR_MOR, 25, 1);
sam3_sprintf(pChip, "(clock failure enabled: %s)\n",
_yes_or_no(v));
}
static void
sam3_explain_chipid_cidr(struct sam3_chip *pChip)
{
int x;
uint32_t v;
const char *cp;
sam3_reg_fieldname(pChip, "Version", pChip->cfg.CHIPID_CIDR, 0, 5);
sam3_sprintf(pChip,"\n");
v = sam3_reg_fieldname(pChip, "EPROC", pChip->cfg.CHIPID_CIDR, 5, 3);
sam3_sprintf(pChip, "%s\n", eproc_names[v]);
v = sam3_reg_fieldname(pChip, "NVPSIZE", pChip->cfg.CHIPID_CIDR, 8, 4);
sam3_sprintf(pChip, "%s\n", nvpsize[v]);
v = sam3_reg_fieldname(pChip, "NVPSIZE2", pChip->cfg.CHIPID_CIDR, 12, 4);
sam3_sprintf(pChip, "%s\n", nvpsize2[v]);
v = sam3_reg_fieldname(pChip, "SRAMSIZE", pChip->cfg.CHIPID_CIDR, 16,4);
sam3_sprintf(pChip, "%s\n", sramsize[ v ]);
v = sam3_reg_fieldname(pChip, "ARCH", pChip->cfg.CHIPID_CIDR, 20, 8);
cp = _unknown;
for (x = 0 ; archnames[x].name ; x++) {
if (v == archnames[x].value) {
cp = archnames[x].name;
break;
}
}
sam3_sprintf(pChip, "%s\n", cp);
v = sam3_reg_fieldname(pChip, "NVPTYP", pChip->cfg.CHIPID_CIDR, 28, 3);
sam3_sprintf(pChip, "%s\n", nvptype[ v ]);
v = sam3_reg_fieldname(pChip, "EXTID", pChip->cfg.CHIPID_CIDR, 31, 1);
sam3_sprintf(pChip, "(exists: %s)\n", _yes_or_no(v));
}
static void
sam3_explain_ckgr_mcfr(struct sam3_chip *pChip)
{
uint32_t v;
v = sam3_reg_fieldname(pChip, "MAINFRDY", pChip->cfg.CKGR_MCFR, 16, 1);
sam3_sprintf(pChip, "(main ready: %s)\n", _yes_or_no(v));
v = sam3_reg_fieldname(pChip, "MAINF", pChip->cfg.CKGR_MCFR, 0, 16);
v = (v * pChip->cfg.slow_freq) / 16;
pChip->cfg.mainosc_freq = v;
sam3_sprintf(pChip, "(%3.03f Mhz (%d.%03dkhz slowclk)\n",
_tomhz(v),
pChip->cfg.slow_freq / 1000,
pChip->cfg.slow_freq % 1000);
}
static void
sam3_explain_ckgr_plla(struct sam3_chip *pChip)
{
uint32_t mula,diva;
diva = sam3_reg_fieldname(pChip, "DIVA", pChip->cfg.CKGR_PLLAR, 0, 8);
sam3_sprintf(pChip,"\n");
mula = sam3_reg_fieldname(pChip, "MULA", pChip->cfg.CKGR_PLLAR, 16, 11);
sam3_sprintf(pChip,"\n");
pChip->cfg.plla_freq = 0;
if (mula == 0) {
sam3_sprintf(pChip,"\tPLLA Freq: (Disabled,mula = 0)\n");
} else if (diva == 0) {
sam3_sprintf(pChip,"\tPLLA Freq: (Disabled,diva = 0)\n");
} else if (diva == 1) {
pChip->cfg.plla_freq = (pChip->cfg.mainosc_freq * (mula + 1));
sam3_sprintf(pChip,"\tPLLA Freq: %3.03f MHz\n",
_tomhz(pChip->cfg.plla_freq));
}
}
static void
sam3_explain_mckr(struct sam3_chip *pChip)
{
uint32_t css, pres,fin;
int pdiv;
const char *cp;
css = sam3_reg_fieldname(pChip, "CSS", pChip->cfg.PMC_MCKR, 0, 2);
switch (css & 3) {
case 0:
fin = pChip->cfg.slow_freq;
cp = "slowclk";
break;
case 1:
fin = pChip->cfg.mainosc_freq;
cp = "mainosc";
break;
case 2:
fin = pChip->cfg.plla_freq;
cp = "plla";
break;
case 3:
if (pChip->cfg.CKGR_UCKR & (1 << 16)) {
fin = 480 * 1000 * 1000;
cp = "upll";
} else {
fin = 0;
cp = "upll (*ERROR* UPLL is disabled)";
}
break;
default:
assert(0);
break;
}
sam3_sprintf(pChip, "%s (%3.03f Mhz)\n",
cp,
_tomhz(fin));
pres = sam3_reg_fieldname(pChip, "PRES", pChip->cfg.PMC_MCKR, 4, 3);
switch (pres & 0x07) {
case 0:
pdiv = 1;
cp = "selected clock";
case 1:
pdiv = 2;
cp = "clock/2";
break;
case 2:
pdiv = 4;
cp = "clock/4";
break;
case 3:
pdiv = 8;
cp = "clock/8";
break;
case 4:
pdiv = 16;
cp = "clock/16";
break;
case 5:
pdiv = 32;
cp = "clock/32";
break;
case 6:
pdiv = 64;
cp = "clock/64";
break;
case 7:
pdiv = 6;
cp = "clock/6";
break;
default:
assert(0);
break;
}
sam3_sprintf(pChip, "(%s)\n", cp);
fin = fin / pdiv;
// sam3 has a *SINGLE* clock -
// other at91 series parts have divisors for these.
pChip->cfg.cpu_freq = fin;
pChip->cfg.mclk_freq = fin;
pChip->cfg.fclk_freq = fin;
sam3_sprintf(pChip, "\t\tResult CPU Freq: %3.03f\n",
_tomhz(fin));
}
#if 0
static struct sam3_chip *
target2sam3(target_t *pTarget)
{
struct sam3_chip *pChip;
if (pTarget == NULL) {
return NULL;
}
pChip = all_sam3_chips;
while (pChip) {
if (pChip->target == pTarget) {
break; // return below
} else {
pChip = pChip->next;
}
}
return pChip;
}
#endif
static uint32_t *
sam3_get_reg_ptr(struct sam3_cfg *pCfg, const struct sam3_reg_list *pList)
{
// this function exists to help
// keep funky offsetof() errors
// and casting from causing bugs
// By using prototypes - we can detect what would
// be casting errors.
return ((uint32_t *)(((char *)(pCfg)) + pList->struct_offset));
}
#define SAM3_ENTRY(NAME, FUNC) { .address = SAM3_ ## NAME, .struct_offset = offsetof(struct sam3_cfg, NAME), #NAME, FUNC }
static const struct sam3_reg_list sam3_all_regs[] = {
SAM3_ENTRY(CKGR_MOR , sam3_explain_ckgr_mor),
SAM3_ENTRY(CKGR_MCFR , sam3_explain_ckgr_mcfr),
SAM3_ENTRY(CKGR_PLLAR , sam3_explain_ckgr_plla),
SAM3_ENTRY(CKGR_UCKR , NULL),
SAM3_ENTRY(PMC_FSMR , NULL),
SAM3_ENTRY(PMC_FSPR , NULL),
SAM3_ENTRY(PMC_IMR , NULL),
SAM3_ENTRY(PMC_MCKR , sam3_explain_mckr),
SAM3_ENTRY(PMC_PCK0 , NULL),
SAM3_ENTRY(PMC_PCK1 , NULL),
SAM3_ENTRY(PMC_PCK2 , NULL),
SAM3_ENTRY(PMC_PCSR , NULL),
SAM3_ENTRY(PMC_SCSR , NULL),
SAM3_ENTRY(PMC_SR , NULL),
SAM3_ENTRY(CHIPID_CIDR , sam3_explain_chipid_cidr),
SAM3_ENTRY(CHIPID_EXID , NULL),
SAM3_ENTRY(SUPC_CR, NULL),
// TERMINATE THE LIST
{ .name = NULL }
};
#undef SAM3_ENTRY
static struct sam3_bank_private *
get_sam3_bank_private(flash_bank_t *bank)
{
return (struct sam3_bank_private *)(bank->driver_priv);
}
/*
* Given a pointer to where it goes in the structure..
* Determine the register name, address from the all registers table.
*/
static const struct sam3_reg_list *
sam3_GetReg(struct sam3_chip *pChip, uint32_t *goes_here)
{
const struct sam3_reg_list *pReg;
pReg = &(sam3_all_regs[0]);
while (pReg->name) {
uint32_t *pPossible;
// calculate where this one go..
// it is "possibly" this register.
pPossible = ((uint32_t *)(((char *)(&(pChip->cfg))) + pReg->struct_offset));
// well? Is it this register
if (pPossible == goes_here) {
// Jump for joy!
return pReg;
}
// next...
pReg++;
}
// This is *TOTAL*PANIC* - we are totally screwed.
LOG_ERROR("INVALID SAM3 REGISTER");
return NULL;
}
static int
sam3_ReadThisReg(struct sam3_chip *pChip, uint32_t *goes_here)
{
const struct sam3_reg_list *pReg;
int r;
pReg = sam3_GetReg(pChip, goes_here);
if (!pReg) {
return ERROR_FAIL;
}
r = target_read_u32(pChip->target, pReg->address, goes_here);
if (r != ERROR_OK) {
LOG_ERROR("Cannot read SAM3 register: %s @ 0x%08x, Err: %d\n",
pReg->name, (unsigned)(pReg->address), r);
}
return r;
}
static int
sam3_ReadAllRegs(struct sam3_chip *pChip)
{
int r;
const struct sam3_reg_list *pReg;
pReg = &(sam3_all_regs[0]);
while (pReg->name) {
r = sam3_ReadThisReg(pChip,
sam3_get_reg_ptr(&(pChip->cfg), pReg));
if (r != ERROR_OK) {
LOG_ERROR("Cannot read SAM3 registere: %s @ 0x%08x, Error: %d\n",
pReg->name, ((unsigned)(pReg->address)), r);
return r;
}
pReg++;
}
return ERROR_OK;
}
static int
sam3_GetInfo(struct sam3_chip *pChip)
{
const struct sam3_reg_list *pReg;
uint32_t regval;
membuf_reset(pChip->mbuf);
pReg = &(sam3_all_regs[0]);
while (pReg->name) {
// display all regs
LOG_DEBUG("Start: %s", pReg->name);
regval = *sam3_get_reg_ptr(&(pChip->cfg), pReg);
sam3_sprintf(pChip, "%*s: [0x%08x] -> 0x%08x\n",
REG_NAME_WIDTH,
pReg->name,
pReg->address,
regval);
if (pReg->explain_func) {
(*(pReg->explain_func))(pChip);
}
LOG_DEBUG("End: %s", pReg->name);
pReg++;
}
sam3_sprintf(pChip," rc-osc: %3.03f MHz\n", _tomhz(pChip->cfg.rc_freq));
sam3_sprintf(pChip," mainosc: %3.03f MHz\n", _tomhz(pChip->cfg.mainosc_freq));
sam3_sprintf(pChip," plla: %3.03f MHz\n", _tomhz(pChip->cfg.plla_freq));
sam3_sprintf(pChip," cpu-freq: %3.03f MHz\n", _tomhz(pChip->cfg.cpu_freq));
sam3_sprintf(pChip,"mclk-freq: %3.03f MHz\n", _tomhz(pChip->cfg.mclk_freq));
sam3_sprintf(pChip, " UniqueId: 0x%08x 0x%08x 0x%08x 0x%08x\n",
pChip->cfg.unique_id[0],
pChip->cfg.unique_id[1],
pChip->cfg.unique_id[2],
pChip->cfg.unique_id[3]);
return ERROR_OK;
}
static int
sam3_erase_check(struct flash_bank_s *bank)
{
int x;
LOG_DEBUG("Here");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (0 == bank->num_sectors) {
LOG_ERROR("Target: not supported/not probed\n");
return ERROR_FAIL;
}
LOG_INFO("sam3 - supports auto-erase, erase_check ignored");
for (x = 0 ; x < bank->num_sectors ; x++) {
bank->sectors[x].is_erased = 1;
}
LOG_DEBUG("Done");
return ERROR_OK;
}
static int
sam3_protect_check(struct flash_bank_s *bank)
{
int r;
uint32_t v;
unsigned x;
struct sam3_bank_private *pPrivate;
LOG_DEBUG("Begin");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
pPrivate = get_sam3_bank_private(bank);
if (!pPrivate) {
LOG_ERROR("no private for this bank?");
return ERROR_FAIL;
}
if (!(pPrivate->probed)) {
return ERROR_FLASH_BANK_NOT_PROBED;
}
r = FLASHD_GetLockBits(pPrivate , &v);
if (r != ERROR_OK) {
LOG_DEBUG("Failed: %d",r);
return r;
}
for (x = 0 ; x < pPrivate->nsectors ; x++) {
bank->sectors[x].is_protected = (!!(v & (1 << x)));
}
LOG_DEBUG("Done");
return ERROR_OK;
}
static int
sam3_flash_bank_command(struct command_context_s *cmd_ctx,
char *cmd,
char **args,
int argc,
struct flash_bank_s *bank)
{
struct sam3_chip *pChip;
pChip = all_sam3_chips;
// is this an existing chip?
while (pChip) {
if (pChip->target == bank->target) {
break;
}
pChip = pChip->next;
}
if (!pChip) {
// this is a *NEW* chip
pChip = calloc(1, sizeof(struct sam3_chip));
if (!pChip) {
LOG_ERROR("NO RAM!");
return ERROR_FAIL;
}
pChip->target = bank->target;
// insert at head
pChip->next = all_sam3_chips;
all_sam3_chips = pChip;
pChip->target = bank->target;
// assumption is this runs at 32khz
pChip->cfg.slow_freq = 32768;
pChip->probed = 0;
pChip->mbuf = membuf_new();
if (!(pChip->mbuf)) {
LOG_ERROR("no memory");
return ERROR_FAIL;
}
}
switch (bank->base) {
default:
LOG_ERROR("Address 0x%08x invalid bank address (try 0x%08x or 0x%08x)",
((unsigned int)(bank->base)),
((unsigned int)(FLASH_BANK0_BASE)),
((unsigned int)(FLASH_BANK1_BASE)));
return ERROR_FAIL;
break;
case FLASH_BANK0_BASE:
bank->driver_priv = &(pChip->details.bank[0]);
bank->bank_number = 0;
pChip->details.bank[0].pChip = pChip;
pChip->details.bank[0].pBank = bank;
break;
case FLASH_BANK1_BASE:
bank->driver_priv = &(pChip->details.bank[1]);
bank->bank_number = 1;
pChip->details.bank[1].pChip = pChip;
pChip->details.bank[1].pBank = bank;
break;
}
// we initialize after probing.
return ERROR_OK;
}
static int
sam3_GetDetails(struct sam3_bank_private *pPrivate)
{
const struct sam3_chip_details *pDetails;
struct sam3_chip *pChip;
void *vp;
flash_bank_t *saved_banks[SAM3_MAX_FLASH_BANKS];
unsigned x;
const char *cp;
LOG_DEBUG("Begin");
pDetails = all_sam3_details;
while (pDetails->name) {
if (pDetails->chipid_cidr == pPrivate->pChip->cfg.CHIPID_CIDR) {
break;
} else {
pDetails++;
}
}
if (pDetails->name == NULL) {
LOG_ERROR("SAM3 ChipID 0x%08x not found in table (perhaps you can this chip?)",
(unsigned int)(pPrivate->pChip->cfg.CHIPID_CIDR));
// Help the victim, print details about the chip
membuf_reset(pPrivate->pChip->mbuf);
membuf_sprintf(pPrivate->pChip->mbuf,
"SAM3 CHIPID_CIDR: 0x%08x decodes as follows\n",
pPrivate->pChip->cfg.CHIPID_CIDR);
sam3_explain_chipid_cidr(pPrivate->pChip);
cp = membuf_strtok(pPrivate->pChip->mbuf, "\n", &vp);
while (cp) {
LOG_INFO("%s", cp);
cp = membuf_strtok(NULL, "\n", &vp);
}
return ERROR_FAIL;
}
// DANGER: THERE ARE DRAGONS HERE
// get our pChip - it is going
// to be over-written shortly
pChip = pPrivate->pChip;
// Note that, in reality:
//
// pPrivate = &(pChip->details.bank[0])
// or pPrivate = &(pChip->details.bank[1])
//
// save the "bank" pointers
for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
saved_banks[ x ] = pChip->details.bank[x].pBank;
}
// Overwrite the "details" structure.
memcpy(&(pPrivate->pChip->details),
pDetails,
sizeof(pPrivate->pChip->details));
// now fix the ghosted pointers
for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
pChip->details.bank[x].pChip = pChip;
pChip->details.bank[x].pBank = saved_banks[x];
}
// update the *BANK*SIZE*
LOG_DEBUG("End");
return ERROR_OK;
}
static int
_sam3_probe(struct flash_bank_s *bank, int noise)
{
unsigned x;
int r;
struct sam3_bank_private *pPrivate;
LOG_DEBUG("Begin: Bank: %d, Noise: %d", bank->bank_number, noise);
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
pPrivate = get_sam3_bank_private(bank);
if (!pPrivate) {
LOG_ERROR("Invalid/unknown bank number\n");
return ERROR_FAIL;
}
r = sam3_ReadAllRegs(pPrivate->pChip);
if (r != ERROR_OK) {
return r;
}
LOG_DEBUG("Here");
r = sam3_GetInfo(pPrivate->pChip);
if (r != ERROR_OK) {
return r;
}
if (!(pPrivate->pChip->probed)) {
pPrivate->pChip->probed = 1;
LOG_DEBUG("Here");
r = sam3_GetDetails(pPrivate);
if (r != ERROR_OK) {
return r;
}
}
// update the flash bank size
for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
if (bank->base == pPrivate->pChip->details.bank[0].base_address) {
bank->size = pPrivate->pChip->details.bank[0].size_bytes;
break;
}
}
if (bank->sectors == NULL) {
bank->sectors = calloc(pPrivate->nsectors, (sizeof((bank->sectors)[0])));
if (bank->sectors == NULL) {
LOG_ERROR("No memory!");
return ERROR_FAIL;
}
bank->num_sectors = pPrivate->nsectors;
for (x = 0 ; ((int)(x)) < bank->num_sectors ; x++) {
bank->sectors[x].size = pPrivate->sector_size;
bank->sectors[x].offset = x * (pPrivate->sector_size);
// mark as unknown
bank->sectors[x].is_erased = -1;
bank->sectors[x].is_protected = -1;
}
}
pPrivate->probed = 1;
r = sam3_protect_check(bank);
if (r != ERROR_OK) {
return r;
}
LOG_DEBUG("Bank = %d, nbanks = %d",
pPrivate->bank_number , pPrivate->pChip->details.n_banks);
if ((pPrivate->bank_number + 1) == pPrivate->pChip->details.n_banks) {
// read unique id,
// it appears to be associated with the *last* flash bank.
FLASHD_ReadUniqueID(pPrivate);
}
return r;
}
static int
sam3_probe(struct flash_bank_s *bank)
{
return _sam3_probe(bank, 1);
}
static int
sam3_auto_probe(struct flash_bank_s *bank)
{
return _sam3_probe(bank, 0);
}
static int
sam3_erase(struct flash_bank_s *bank, int first, int last)
{
struct sam3_bank_private *pPrivate;
int r;
LOG_DEBUG("Here");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
r = sam3_auto_probe(bank);
if (r != ERROR_OK) {
LOG_DEBUG("Here,r=%d",r);
return r;
}
pPrivate = get_sam3_bank_private(bank);
if (!(pPrivate->probed)) {
return ERROR_FLASH_BANK_NOT_PROBED;
}
if ((first == 0) && ((last + 1)== ((int)(pPrivate->nsectors)))) {
// whole chip
LOG_DEBUG("Here");
return FLASHD_EraseEntireBank(pPrivate);
}
LOG_INFO("sam3 auto-erases while programing (request ignored)");
return ERROR_OK;
}
static int
sam3_protect(struct flash_bank_s *bank, int set, int first, int last)
{
struct sam3_bank_private *pPrivate;
int r;
LOG_DEBUG("Here");
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
pPrivate = get_sam3_bank_private(bank);
if (!(pPrivate->probed)) {
return ERROR_FLASH_BANK_NOT_PROBED;
}
if (set) {
r = FLASHD_Lock(pPrivate, (unsigned)(first), (unsigned)(last));
} else {
r = FLASHD_Unlock(pPrivate, (unsigned)(first), (unsigned)(last));
}
LOG_DEBUG("End: r=%d",r);
return r;
}
static int
sam3_info(flash_bank_t *bank, char *buf, int buf_size)
{
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
buf[ 0 ] = 0;
return ERROR_OK;
}
static int
sam3_page_read(struct sam3_bank_private *pPrivate, unsigned pagenum, uint8_t *buf)
{
uint32_t adr;
int r;
adr = pagenum * pPrivate->page_size;
adr += adr + pPrivate->base_address;
r = target_read_memory(pPrivate->pChip->target,
adr,
4, /* THIS*MUST*BE* in 32bit values */
pPrivate->page_size / 4,
buf);
if (r != ERROR_OK) {
LOG_ERROR("SAM3: Flash program failed to read page phys address: 0x%08x", (unsigned int)(adr));
}
return r;
}
// The code below is basically this:
// compiled with
// arm-none-eabi-gcc -mthumb -mcpu = cortex-m3 -O9 -S ./foobar.c -o foobar.s
//
// Only the *CPU* can write to the flash buffer.
// the DAP cannot... so - we download this 28byte thing
// Run the algorithm - (below)
// to program the device
//
// ========================================
// #include <stdint.h>
//
// struct foo {
// uint32_t *dst;
// const uint32_t *src;
// int n;
// volatile uint32_t *base;
// uint32_t cmd;
// };
//
//
// uint32_t sam3_function(struct foo *p)
// {
// volatile uint32_t *v;
// uint32_t *d;
// const uint32_t *s;
// int n;
// uint32_t r;
//
// d = p->dst;
// s = p->src;
// n = p->n;
//
// do {
// *d++ = *s++;
// } while (--n)
// ;
//
// v = p->base;
//
// v[ 1 ] = p->cmd;
// do {
// r = v[8/4];
// } while (!(r&1))
// ;
// return r;
// }
// ========================================
static const uint8_t
sam3_page_write_opcodes[] = {
// 24 0000 0446 mov r4, r0
0x04,0x46,
// 25 0002 6168 ldr r1, [r4, #4]
0x61,0x68,
// 26 0004 0068 ldr r0, [r0, #0]
0x00,0x68,
// 27 0006 A268 ldr r2, [r4, #8]
0xa2,0x68,
// 28 @ lr needed for prologue
// 29 .L2:
// 30 0008 51F8043B ldr r3, [r1], #4
0x51,0xf8,0x04,0x3b,
// 31 000c 12F1FF32 adds r2, r2, #-1
0x12,0xf1,0xff,0x32,
// 32 0010 40F8043B str r3, [r0], #4
0x40,0xf8,0x04,0x3b,
// 33 0014 F8D1 bne .L2
0xf8,0xd1,
// 34 0016 E268 ldr r2, [r4, #12]
0xe2,0x68,
// 35 0018 2369 ldr r3, [r4, #16]
0x23,0x69,
// 36 001a 5360 str r3, [r2, #4]
0x53,0x60,
// 37 001c 0832 adds r2, r2, #8
0x08,0x32,
// 38 .L4:
// 39 001e 1068 ldr r0, [r2, #0]
0x10,0x68,
// 40 0020 10F0010F tst r0, #1
0x10,0xf0,0x01,0x0f,
// 41 0024 FBD0 beq .L4
0xfb,0xd0,
// 42 .done:
// 43 0026 FEE7 b .done
0xfe,0xe7
};
static int
sam3_page_write(struct sam3_bank_private *pPrivate, unsigned pagenum, uint8_t *buf)
{
uint32_t adr;
uint32_t status;
int r;
adr = pagenum * pPrivate->page_size;
adr += (adr + pPrivate->base_address);
LOG_DEBUG("Wr Page %u @ phys address: 0x%08x", pagenum, (unsigned int)(adr));
r = target_write_memory(pPrivate->pChip->target,
adr,
4, /* THIS*MUST*BE* in 32bit values */
pPrivate->page_size / 4,
buf);
if (r != ERROR_OK) {
LOG_ERROR("SAM3: Failed to write (buffer) page at phys address 0x%08x", (unsigned int)(adr));
return r;
}
r = EFC_PerformCommand(pPrivate,
// send Erase & Write Page
AT91C_EFC_FCMD_EWP,
pagenum,
&status);
if (r != ERROR_OK) {
LOG_ERROR("SAM3: Error performing Erase & Write page @ phys address 0x%08x", (unsigned int)(adr));
}
if (status & (1 << 2)) {
LOG_ERROR("SAM3: Page @ Phys address 0x%08x is locked", (unsigned int)(adr));
return ERROR_FAIL;
}
if (status & (1 << 1)) {
LOG_ERROR("SAM3: Flash Command error @phys address 0x%08x", (unsigned int)(adr));
return ERROR_FAIL;
}
return ERROR_OK;
}
static int
sam3_write(struct flash_bank_s *bank,
uint8_t *buffer,
uint32_t offset,
uint32_t count)
{
int n;
unsigned page_cur;
unsigned page_end;
int r;
unsigned page_offset;
struct sam3_bank_private *pPrivate;
uint8_t *pagebuffer;
// ignore dumb requests
if (count == 0) {
return ERROR_OK;
}
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
pPrivate = get_sam3_bank_private(bank);
if (!(pPrivate->probed)) {
return ERROR_FLASH_BANK_NOT_PROBED;
}
if ((offset + count) > pPrivate->size_bytes) {
LOG_ERROR("Flash write error - past end of bank");
LOG_ERROR(" offset: 0x%08x, count 0x%08x, BankEnd: 0x%08x",
(unsigned int)(offset),
(unsigned int)(count),
(unsigned int)(pPrivate->size_bytes));
return ERROR_FAIL;
}
pagebuffer = alloca(pPrivate->page_size);
// what page do we start & end in?
page_cur = offset / pPrivate->page_size;
page_end = (offset + count - 1) / pPrivate->page_size;
LOG_DEBUG("Offset: 0x%08x, Count: 0x%08x", (unsigned int)(offset), (unsigned int)(count));
LOG_DEBUG("Page start: %d, Page End: %d", (int)(page_cur), (int)(page_end));
// Special case: all one page
//
// Otherwise:
// (1) non-aligned start
// (2) body pages
// (3) non-aligned end.
// Handle special case - all one page.
if (page_cur == page_end) {
LOG_DEBUG("Special case, all in one page");
r = sam3_page_read(pPrivate, page_cur, pagebuffer);
if (r != ERROR_OK) {
return r;
}
page_offset = (offset & (pPrivate->page_size-1));
memcpy(pagebuffer + page_offset,
buffer,
count);
r = sam3_page_write(pPrivate, page_cur, pagebuffer);
if (r != ERROR_OK) {
return r;
}
return ERROR_OK;
}
// non-aligned start
page_offset = offset & (pPrivate->page_size - 1);
if (page_offset) {
LOG_DEBUG("Not-Aligned start");
// read the partial
r = sam3_page_read(pPrivate, page_cur, pagebuffer);
if (r != ERROR_OK) {
return r;
}
// over-write with new data
n = (pPrivate->page_size - page_offset);
memcpy(pagebuffer + page_offset,
buffer,
n);
r = sam3_page_write(pPrivate, page_cur, pagebuffer);
if (r != ERROR_OK) {
return r;
}
count -= n;
offset += n;
buffer += n;
page_cur++;
}
// intermediate large pages
// also - the final *terminal*
// if that terminal page is a full page
LOG_DEBUG("Full Page Loop: cur=%d, end=%d, count = 0x%08x",
(int)page_cur, (int)page_end, (unsigned int)(count));
while ((page_cur < page_end) &&
(count >= pPrivate->page_size)) {
r = sam3_page_write(pPrivate, page_cur, buffer);
if (r != ERROR_OK) {
return r;
}
count -= pPrivate->page_size;
buffer += pPrivate->page_size;
page_cur += 1;
}
// terminal partial page?
if (count) {
LOG_DEBUG("Terminal partial page, count = 0x%08x", (unsigned int)(count));
// we have a partial page
r = sam3_page_read(pPrivate, page_cur, pagebuffer);
if (r != ERROR_OK) {
return r;
}
// data goes at start
memcpy(pagebuffer, buffer, count);
r = sam3_page_write(pPrivate, page_cur, pagebuffer);
if (r != ERROR_OK) {
return r;
}
buffer += count;
count -= count;
}
LOG_DEBUG("Done!");
return ERROR_OK;
}
static int
sam3_handle_info_command(struct command_context_s *cmd_ctx, char *cmd, char **argv, int argc)
{
struct sam3_chip *pChip;
void *vp;
const char *cp;
unsigned x;
int r;
pChip = get_current_sam3(cmd_ctx);
if (!pChip) {
return ERROR_OK;
}
r = 0;
// bank0 must exist before we can do anything
if (pChip->details.bank[0].pBank == NULL) {
x = 0;
need_define:
command_print(cmd_ctx,
"Please define bank %d via command: flash bank %s ... ",
x,
at91sam3_flash.name);
return ERROR_FAIL;
}
// if bank 0 is not probed, then probe it
if (!(pChip->details.bank[0].probed)) {
r = sam3_auto_probe(pChip->details.bank[0].pBank);
if (r != ERROR_OK) {
return ERROR_FAIL;
}
}
// above garentees the "chip details" structure is valid
// and thus, bank private areas are valid
// and we have a SAM3 chip, what a concept!
// auto-probe other banks, 0 done above
for (x = 1 ; x < SAM3_MAX_FLASH_BANKS ; x++) {
// skip banks not present
if (!(pChip->details.bank[x].present)) {
continue;
}
if (pChip->details.bank[x].pBank == NULL) {
goto need_define;
}
if (pChip->details.bank[x].probed) {
continue;
}
r = sam3_auto_probe(pChip->details.bank[x].pBank);
if (r != ERROR_OK) {
return r;
}
}
r = sam3_GetInfo(pChip);
if (r != ERROR_OK) {
LOG_DEBUG("Sam3Info, Failed %d\n",r);
return r;
}
// print results
cp = membuf_strtok(pChip->mbuf, "\n", &vp);
while (cp) {
command_print(cmd_ctx,"%s", cp);
cp = membuf_strtok(NULL, "\n", &vp);
}
return ERROR_OK;
}
static int
sam3_handle_gpnvm_command(struct command_context_s *cmd_ctx, char *cmd, char **argv, int argc)
{
unsigned x,v;
uint32_t v32;
int r,who;
struct sam3_chip *pChip;
pChip = get_current_sam3(cmd_ctx);
if (!pChip) {
return ERROR_OK;
}
if (pChip->target->state != TARGET_HALTED) {
LOG_ERROR("sam3 - target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (pChip->details.bank[0].pBank == NULL) {
command_print(cmd_ctx, "Bank0 must be defined first via: flash bank %s ...",
at91sam3_flash.name);
return ERROR_FAIL;
}
if (!pChip->details.bank[0].probed) {
r = sam3_auto_probe(pChip->details.bank[0].pBank);
if (r != ERROR_OK) {
return r;
}
}
switch (argc) {
default:
command_print(cmd_ctx,"Too many parameters\n");
return ERROR_COMMAND_SYNTAX_ERROR;
break;
case 0:
who = -1;
goto showall;
break;
case 1:
who = -1;
break;
case 2:
if ((0 == strcmp(argv[0], "show")) && (0 == strcmp(argv[1], "all"))) {
who = -1;
} else {
r = parse_u32(argv[1], &v32);
if (r != ERROR_OK) {
command_print(cmd_ctx, "Not a number: %s", argv[1]);
return r;
}
who = v32;
}
break;
}
if (0 == strcmp("show", argv[0])) {
if (who == -1) {
showall:
for (x = 0 ; x < pChip->details.n_gpnvms ; x++) {
r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), x, &v);
if (r != ERROR_OK) {
break;
}
command_print(cmd_ctx, "sam3-gpnvm%u: %u", x, v);
}
return r;
}
if ((who >= 0) && (((unsigned)(who)) < pChip->details.n_gpnvms)) {
r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), who, &v);
command_print(cmd_ctx, "sam3-gpnvm%u: %u", who, v);
return r;
} else {
command_print(cmd_ctx, "sam3-gpnvm invalid GPNVM: %u", who);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
if (who == -1) {
command_print(cmd_ctx, "Missing GPNVM number");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (0 == strcmp("set", argv[0])) {
r = FLASHD_SetGPNVM(&(pChip->details.bank[0]), who);
} else if ((0 == strcmp("clr", argv[0])) ||
(0 == strcmp("clear", argv[0]))) { // quietly accept both
r = FLASHD_ClrGPNVM(&(pChip->details.bank[0]), who);
} else {
command_print(cmd_ctx, "Unkown command: %s", argv[0]);
r = ERROR_COMMAND_SYNTAX_ERROR;
}
return r;
}
static int
sam3_handle_slowclk_command(struct command_context_s *cmd_ctx, char *cmd, char **argv, int argc)
{
uint32_t v;
int r;
struct sam3_chip *pChip;
pChip = get_current_sam3(cmd_ctx);
if (!pChip) {
return ERROR_OK;
}
switch (argc) {
case 0:
// show
break;
case 1:
// set
r = parse_u32(argv[0], &v);
if (v > 200000) {
// absurd slow clock of 200Khz?
command_print(cmd_ctx,"Absurd/illegal slow clock freq: %d\n", (int)(v));
return ERROR_COMMAND_SYNTAX_ERROR;
}
pChip->cfg.slow_freq = v;
break;
default:
// error
command_print(cmd_ctx,"Too many parameters");
return ERROR_COMMAND_SYNTAX_ERROR;
break;
}
command_print(cmd_ctx, "Slowclk freq: %d.%03dkhz",
(int)(pChip->cfg.slow_freq/ 1000),
(int)(pChip->cfg.slow_freq% 1000));
return ERROR_OK;
}
static int sam3_registered;
static int
sam3_register_commands(struct command_context_s *cmd_ctx)
{
command_t *pCmd;
// only register once
if (!sam3_registered) {
sam3_registered++;
pCmd = register_command(cmd_ctx, NULL, "at91sam3", NULL, COMMAND_ANY, NULL);
register_command(cmd_ctx, pCmd,
"gpnvm",
sam3_handle_gpnvm_command,
COMMAND_EXEC,
"at91sam3 gpnvm [action [<BIT>], by default 'show', otherwise set | clear BIT");
register_command(cmd_ctx, pCmd,
"info",
sam3_handle_info_command,
COMMAND_EXEC,
"at91sam3 info - print information about the current sam3 chip");
register_command(cmd_ctx, pCmd,
"slowclk",
sam3_handle_slowclk_command,
COMMAND_EXEC,
"at91sam3 slowclk [VALUE] set the slowclock frequency (default 32768hz)");
}
return ERROR_OK;
}
flash_driver_t at91sam3_flash =
{
.name = "at91sam3",
.register_commands = sam3_register_commands,
.flash_bank_command = sam3_flash_bank_command,
.erase = sam3_erase,
.protect = sam3_protect,
.write = sam3_write,
.probe = sam3_probe,
.auto_probe = sam3_auto_probe,
.erase_check = sam3_erase_check,
.protect_check = sam3_protect_check,
.info = sam3_info
};
/**
* Local Variables: **
* mode: c **
* c-basic-offset: 4 **
* tab-width: 4 **
* End: **
*/