openocd/src/jtag/zy1000/zy1000.c

1025 lines
23 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2007-2010 by Øyvind Harboe *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
*
* The zy1000 is a standalone debugger that has a web interface and
* requires no drivers on the developer host as all communication
* is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
* DCC downloads @ 16MHz target) as it has an FPGA to hardware
* accelerate the JTAG commands, while offering *very* low latency
* between OpenOCD and the FPGA registers.
*
* The disadvantage of the zy1000 is that it has a feeble CPU compared to
* a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
* is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
*
* The zy1000 revc hardware is using an Altera Nios CPU, whereas the
* revb is using ARM7 + Xilinx.
*
* See Zylin web pages or contact Zylin for more information.
*
* The reason this code is in OpenOCD rather than OpenOCD linked with the
* ZY1000 code is that OpenOCD is the long road towards getting
* libopenocd into place. libopenocd will support both low performance,
* low latency systems(embedded) and high performance high latency
* systems(PCs).
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <target/embeddedice.h>
#include <jtag/minidriver.h>
#include <jtag/interface.h>
#include "zy1000_version.h"
#include <cyg/hal/hal_io.h> // low level i/o
#include <cyg/hal/hal_diag.h>
#include <time.h>
#ifdef CYGPKG_HAL_NIOS2
#include <cyg/hal/io.h>
#include <cyg/firmwareutil/firmwareutil.h>
#endif
#define ZYLIN_VERSION GIT_ZY1000_VERSION
#define ZYLIN_DATE __DATE__
#define ZYLIN_TIME __TIME__
#define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
2009-10-20 07:46:23 +00:00
#define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
static int zy1000_khz(int khz, int *jtag_speed)
{
if (khz == 0)
{
*jtag_speed = 0;
}
else
{
*jtag_speed = 64000/khz;
}
return ERROR_OK;
}
static int zy1000_speed_div(int speed, int *khz)
{
if (speed == 0)
{
*khz = 0;
}
else
{
*khz = 64000/speed;
}
return ERROR_OK;
}
static bool readPowerDropout(void)
{
cyg_uint32 state;
// sample and clear power dropout
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
bool powerDropout;
powerDropout = (state & 0x80) != 0;
return powerDropout;
}
static bool readSRST(void)
{
cyg_uint32 state;
// sample and clear SRST sensing
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
bool srstAsserted;
srstAsserted = (state & 0x40) != 0;
return srstAsserted;
}
static int zy1000_srst_asserted(int *srst_asserted)
{
*srst_asserted = readSRST();
return ERROR_OK;
}
static int zy1000_power_dropout(int *dropout)
{
*dropout = readPowerDropout();
return ERROR_OK;
}
void zy1000_reset(int trst, int srst)
{
LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
/* flush the JTAG FIFO. Not flushing the queue before messing with
* reset has such interesting bugs as causing hard to reproduce
* RCLK bugs as RCLK will stop responding when TRST is asserted
*/
waitIdle();
if (!srst)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
}
else
{
/* Danger!!! if clk != 0 when in
* idle in TAP_IDLE, reset halt on str912 will fail.
*/
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
}
if (!trst)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
}
else
{
/* assert reset */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
}
if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
{
/* we're now in the RESET state until trst is deasserted */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
} else
{
/* We'll get RCLK failure when we assert TRST, so clear any false positives here */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
}
/* wait for srst to float back up */
if (!srst)
{
int i;
for (i = 0; i < 1000; i++)
{
// We don't want to sense our own reset, so we clear here.
// There is of course a timing hole where we could loose
// a "real" reset.
if (!readSRST())
break;
/* wait 1ms */
alive_sleep(1);
}
if (i == 1000)
{
LOG_USER("SRST didn't deassert after %dms", i);
} else if (i > 1)
{
LOG_USER("SRST took %dms to deassert", i);
}
}
}
int zy1000_speed(int speed)
{
/* flush JTAG master FIFO before setting speed */
waitIdle();
if (speed == 0)
{
/*0 means RCLK*/
speed = 0;
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
LOG_DEBUG("jtag_speed using RCLK");
}
else
{
if (speed > 8190 || speed < 2)
{
LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
return ERROR_INVALID_ARGUMENTS;
}
LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
}
return ERROR_OK;
}
static bool savePower;
static void setPower(bool power)
{
savePower = power;
if (power)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
} else
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
}
}
COMMAND_HANDLER(handle_power_command)
{
switch (CMD_ARGC)
{
case 1: {
bool enable;
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
setPower(enable);
// fall through
}
case 0:
LOG_INFO("Target power %s", savePower ? "on" : "off");
break;
default:
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
/* Give TELNET a way to find out what version this is */
static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if ((argc < 1) || (argc > 3))
return JIM_ERR;
const char *version_str = NULL;
if (argc == 1)
{
version_str = ZYLIN_OPENOCD_VERSION;
} else
{
const char *str = Jim_GetString(argv[1], NULL);
const char *str2 = NULL;
if (argc > 2)
str2 = Jim_GetString(argv[2], NULL);
if (strcmp("openocd", str) == 0)
{
version_str = ZYLIN_OPENOCD;
}
else if (strcmp("zy1000", str) == 0)
{
version_str = ZYLIN_VERSION;
}
else if (strcmp("date", str) == 0)
{
version_str = ZYLIN_DATE;
}
2009-10-20 07:46:23 +00:00
else if (strcmp("time", str) == 0)
{
version_str = ZYLIN_TIME;
}
else if (strcmp("pcb", str) == 0)
{
#ifdef CYGPKG_HAL_NIOS2
version_str="c";
#else
version_str="b";
#endif
}
#ifdef CYGPKG_HAL_NIOS2
else if (strcmp("fpga", str) == 0)
{
/* return a list of 32 bit integers to describe the expected
* and actual FPGA
*/
static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
cyg_uint32 id, timestamp;
HAL_READ_UINT32(SYSID_BASE, id);
HAL_READ_UINT32(SYSID_BASE+4, timestamp);
sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
version_str = fpga_id;
if ((argc>2) && (strcmp("time", str2) == 0))
{
time_t last_mod = timestamp;
char * t = ctime (&last_mod) ;
t[strlen(t)-1] = 0;
version_str = t;
}
}
#endif
else
{
return JIM_ERR;
}
}
Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
return JIM_OK;
}
#ifdef CYGPKG_HAL_NIOS2
struct info_forward
{
void *data;
struct cyg_upgrade_info *upgraded_file;
};
static void report_info(void *data, const char * format, va_list args)
{
char *s = alloc_vprintf(format, args);
LOG_USER_N("%s", s);
free(s);
}
struct cyg_upgrade_info firmware_info =
{
(cyg_uint8 *)0x84000000,
"/ram/firmware.phi",
"Firmware",
0x0300000,
0x1f00000 -
0x0300000,
"ZylinNiosFirmware\n",
report_info,
};
static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 2)
return JIM_ERR;
int length;
const char *str = Jim_GetString(argv[1], &length);
/* */
int tmpFile;
if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
{
return JIM_ERR;
}
bool success;
success = write(tmpFile, str, length) == length;
close(tmpFile);
if (!success)
return JIM_ERR;
if (!cyg_firmware_upgrade(NULL, firmware_info))
return JIM_ERR;
return JIM_OK;
}
#endif
static int
zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
int argc,
Jim_Obj * const *argv)
{
if (argc != 1)
{
Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
return JIM_ERR;
}
cyg_uint32 status;
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
return JIM_OK;
}
int zy1000_init(void)
{
LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
setPower(true); // on by default
/* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
zy1000_reset(0, 0);
zy1000_speed(jtag_get_speed());
return ERROR_OK;
}
int zy1000_quit(void)
{
return ERROR_OK;
}
int interface_jtag_execute_queue(void)
{
cyg_uint32 empty;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
/* clear JTAG error register */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
if ((empty&0x400) != 0)
{
LOG_WARNING("RCLK timeout");
/* the error is informative only as we don't want to break the firmware if there
* is a false positive.
*/
// return ERROR_FAIL;
}
return ERROR_OK;
}
static cyg_uint32 getShiftValue(void)
{
cyg_uint32 value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
VERBOSE(LOG_INFO("getShiftValue %08x", value));
return value;
}
#if 0
static cyg_uint32 getShiftValueFlip(void)
{
cyg_uint32 value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
return value;
}
#endif
#if 0
static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, cyg_uint32 value)
{
VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
cyg_uint32 a,b;
a = state;
b = endState;
ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
VERBOSE(getShiftValueFlip());
}
#endif
static void gotoEndState(tap_state_t end_state)
{
setCurrentState(end_state);
}
static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, int pause)
{
int i;
int j;
int k;
for (i = 0; i < num_fields; i++)
{
cyg_uint32 value;
uint8_t *inBuffer = NULL;
// figure out where to store the input data
int num_bits = fields[i].num_bits;
if (fields[i].in_value != NULL)
{
inBuffer = fields[i].in_value;
}
// here we shuffle N bits out/in
j = 0;
while (j < num_bits)
{
tap_state_t pause_state;
int l;
k = num_bits-j;
pause_state = (shiftState == TAP_DRSHIFT)?TAP_DRSHIFT:TAP_IRSHIFT;
if (k > 32)
{
k = 32;
/* we have more to shift out */
} else if (pause&&(i == num_fields-1))
{
/* this was the last to shift out this time */
pause_state = (shiftState==TAP_DRSHIFT)?TAP_DRPAUSE:TAP_IRPAUSE;
}
// we have (num_bits + 7)/8 bytes of bits to toggle out.
// bits are pushed out LSB to MSB
value = 0;
if (fields[i].out_value != NULL)
{
for (l = 0; l < k; l += 8)
{
value|=fields[i].out_value[(j + l)/8]<<l;
}
}
/* mask away unused bits for easier debugging */
if (k < 32)
{
value&=~(((uint32_t)0xffffffff) << k);
} else
{
/* Shifting by >= 32 is not defined by the C standard
* and will in fact shift by &0x1f bits on nios */
}
shiftValueInner(shiftState, pause_state, k, value);
if (inBuffer != NULL)
{
// data in, LSB to MSB
value = getShiftValue();
// we're shifting in data to MSB, shift data to be aligned for returning the value
value >>= 32-k;
for (l = 0; l < k; l += 8)
{
inBuffer[(j + l)/8]=(value >> l)&0xff;
}
}
j += k;
}
}
}
int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
{
int scan_size = 0;
struct jtag_tap *tap, *nextTap;
for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
{
nextTap = jtag_tap_next_enabled(tap);
bool pause = (nextTap==NULL);
scan_size = tap->ir_length;
/* search the list */
if (tap == active)
{
scanFields(1, fields, TAP_IRSHIFT, pause);
/* update device information */
buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
tap->bypass = 0;
} else
{
/* if a device isn't listed, set it to BYPASS */
assert(scan_size <= 32);
shiftValueInner(TAP_IRSHIFT, pause?TAP_IRPAUSE:TAP_IRSHIFT, scan_size, 0xffffffff);
tap->bypass = 1;
}
}
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
{
struct scan_field field;
field.num_bits = num_bits;
field.out_value = out_bits;
field.in_value = in_bits;
scanFields(1, &field, TAP_IRSHIFT, 1);
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
{
struct jtag_tap *tap, *nextTap;
for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
{
nextTap = jtag_tap_next_enabled(tap);
bool pause = (nextTap==NULL);
/* Find a range of fields to write to this tap */
if (tap == active)
{
assert(!tap->bypass);
scanFields(num_fields, fields, TAP_DRSHIFT, pause);
} else
{
/* Shift out a 0 for disabled tap's */
assert(tap->bypass);
shiftValueInner(TAP_DRSHIFT, pause?TAP_DRPAUSE:TAP_DRSHIFT, 1, 0);
}
}
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
{
struct scan_field field;
field.num_bits = num_bits;
field.out_value = out_bits;
field.in_value = in_bits;
scanFields(1, &field, TAP_DRSHIFT, 1);
gotoEndState(state);
return ERROR_OK;
}
int interface_jtag_add_tlr()
{
setCurrentState(TAP_RESET);
return ERROR_OK;
}
int interface_jtag_add_reset(int req_trst, int req_srst)
{
zy1000_reset(req_trst, req_srst);
return ERROR_OK;
}
static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
{
/* num_cycles can be 0 */
setCurrentState(clockstate);
/* execute num_cycles, 32 at the time. */
int i;
for (i = 0; i < num_cycles; i += 32)
{
int num;
num = 32;
if (num_cycles-i < num)
{
num = num_cycles-i;
}
shiftValueInner(clockstate, clockstate, num, 0);
}
#if !TEST_MANUAL()
/* finish in end_state */
setCurrentState(state);
#else
tap_state_t t = TAP_IDLE;
/* test manual drive code on any target */
int tms;
uint8_t tms_scan = tap_get_tms_path(t, state);
int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
for (i = 0; i < tms_count; i++)
{
tms = (tms_scan >> i) & 1;
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
#endif
return ERROR_OK;
}
int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
{
return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
}
int interface_jtag_add_clocks(int num_cycles)
{
return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
}
int interface_jtag_add_sleep(uint32_t us)
{
jtag_sleep(us);
return ERROR_OK;
}
int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
{
/*wait for the fifo to be empty*/
waitIdle();
for (unsigned i = 0; i < num_bits; i++)
{
int tms;
if (((seq[i/8] >> (i % 8)) & 1) == 0)
{
tms = 0;
}
else
{
tms = 1;
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
}
waitIdle();
if (state != TAP_INVALID)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
} else
{
/* this would be normal if we are switching to SWD mode */
}
return ERROR_OK;
}
int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
{
int state_count;
int tms = 0;
state_count = 0;
tap_state_t cur_state = cmd_queue_cur_state;
uint8_t seq[16];
memset(seq, 0, sizeof(seq));
assert(num_states < (sizeof(seq) * 8));
while (num_states)
{
if (tap_state_transition(cur_state, false) == path[state_count])
{
tms = 0;
}
else if (tap_state_transition(cur_state, true) == path[state_count])
{
tms = 1;
}
else
{
LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
exit(-1);
}
seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
cur_state = path[state_count];
state_count++;
num_states--;
}
return interface_add_tms_seq(state_count, seq, cur_state);
}
static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
{
/* bypass bits before and after */
int pre_bits = 0;
int post_bits = 0;
bool found = false;
struct jtag_tap *cur_tap, *nextTap;
for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
{
nextTap = jtag_tap_next_enabled(cur_tap);
if (cur_tap == tap)
{
found = true;
} else
{
if (found)
{
post_bits++;
} else
{
pre_bits++;
}
}
}
*pre = pre_bits;
*post = post_bits;
}
void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
{
int pre_bits;
int post_bits;
jtag_pre_post_bits(tap, &pre_bits, &post_bits);
if (pre_bits + post_bits + 6 > 32)
{
int i;
for (i = 0; i < count; i++)
{
embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
} else
{
tap_state_t end_state = TAP_IDLE;
tap_state_t shift_end_state;
if (post_bits == 0)
shift_end_state = end_state;
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
int i;
for (i = 0; i < count - 1; i++)
{
/* Fewer pokes means we get to use the FIFO more efficiently */
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
shiftValueInner(TAP_DRSHIFT, shift_end_state, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
buffer += 4;
}
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
shiftValueInner(TAP_DRSHIFT, shift_end_state, 6, reg_addr | (1 << 5));
shiftValueInner(shift_end_state, end_state, post_bits, 0);
}
}
int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
{
#if 0
int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
#else
static const int bits[] = {32, 2};
uint32_t values[] = {0, 0};
/* FIX!!!!!! the target_write_memory() API started this nasty problem
* with unaligned uint32_t * pointers... */
const uint8_t *t = (const uint8_t *)data;
/* bypass bits before and after */
int pre_bits;
int post_bits;
jtag_pre_post_bits(tap, &pre_bits, &post_bits);
bool found = false;
struct jtag_tap *cur_tap, *nextTap;
for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
{
nextTap = jtag_tap_next_enabled(cur_tap);
if (cur_tap == tap)
{
found = true;
} else
{
if (found)
{
post_bits++;
} else
{
pre_bits++;
}
}
}
post_bits+=2;
while (--count > 0)
{
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
uint32_t value;
value = *t++;
value |= (*t++<<8);
value |= (*t++<<16);
value |= (*t++<<24);
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
/* minimum 2 bits */
shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
#if 1
/* copy & paste from arm11_dbgtap.c */
//TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
/* we don't have to wait for the queue to empty here. waitIdle(); */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
#else
static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
{
TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
};
jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
#endif
}
values[0] = *t++;
values[0] |= (*t++<<8);
values[0] |= (*t++<<16);
values[0] |= (*t++<<24);
/* This will happen on the last iteration updating the current tap state
* so we don't have to track it during the common code path */
jtag_add_dr_out(tap,
2,
bits,
values,
TAP_IDLE);
return jtag_execute_queue();
#endif
}
static const struct command_registration zy1000_commands[] = {
{
.name = "power",
.handler = handle_power_command,
.mode = COMMAND_ANY,
.help = "Turn power switch to target on/off. "
"With no arguments, prints status.",
.usage = "('on'|'off)",
},
{
.name = "zy1000_version",
.mode = COMMAND_ANY,
.jim_handler = jim_zy1000_version,
.help = "Print version info for zy1000.",
.usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
},
{
.name = "powerstatus",
.mode = COMMAND_ANY,
.jim_handler = zylinjtag_Jim_Command_powerstatus,
.help = "Returns power status of target",
},
#ifdef CYGPKG_HAL_NIOS2
{
.name = "updatezy1000firmware",
.mode = COMMAND_ANY,
.jim_handler = jim_zy1000_writefirmware,
.help = "writes firmware to flash",
/* .usage = "some_string", */
},
#endif
COMMAND_REGISTRATION_DONE
};
struct jtag_interface zy1000_interface =
{
.name = "ZY1000",
.supported = DEBUG_CAP_TMS_SEQ,
.execute_queue = NULL,
.speed = zy1000_speed,
.commands = zy1000_commands,
.init = zy1000_init,
.quit = zy1000_quit,
.khz = zy1000_khz,
.speed_div = zy1000_speed_div,
.power_dropout = zy1000_power_dropout,
.srst_asserted = zy1000_srst_asserted,
};