flash/stm32l4x: add support of STM32WL5x dual core

according the RM0453, the second core  have a different Flash CR and SR
registers for flash operations (called C2CR and C2SR).
so we need to a different flash_regs than older L4 devices.
@see stm32wl_cpu2_flash_regs

the C2CR register don't contain LOCK and OPTLOCK bits, and this explain
the addition of new register index called STM32_FLASH_CR_WLK_INDEX to
look-up the CR with lock, to be used in locking/unlocking the flash.

note: DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
to solve this read the UID64 (IEEE 64-bit unique device ID register)

Change-Id: Ifb6e291bf97f814f0b9987b2c40f3037959f7af4
Signed-off-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/6050
Tested-by: jenkins
Reviewed-by: Oleksij Rempel <linux@rempel-privat.de>
This commit is contained in:
Tarek BOCHKATI 2021-02-04 22:43:52 +01:00 committed by Oleksij Rempel
parent 64fbd60787
commit 6c1e1a212a
3 changed files with 206 additions and 55 deletions

View File

@ -27,7 +27,7 @@
#include <helper/align.h>
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
#include "bits.h"
#include "stm32l4x.h"
@ -80,6 +80,9 @@
*
* RM0461 (STM32WLEx)
* http://www.st.com/resource/en/reference_manual/dm00530369.pdf
*
* RM0453 (STM32WL5x)
* http://www.st.com/resource/en/reference_manual/dm00451556.pdf
*/
/* STM32G0xxx series for reference.
@ -139,6 +142,9 @@ enum stm32l4_flash_reg_index {
STM32_FLASH_OPTKEYR_INDEX,
STM32_FLASH_SR_INDEX,
STM32_FLASH_CR_INDEX,
/* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
* so it uses the C2CR for flash operations and CR for checking locks and locking */
STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
STM32_FLASH_OPTR_INDEX,
STM32_FLASH_WRP1AR_INDEX,
STM32_FLASH_WRP1BR_INDEX,
@ -167,6 +173,18 @@ static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_WRP2BR_INDEX] = 0x050,
};
static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x060,
[STM32_FLASH_CR_INDEX] = 0x064,
[STM32_FLASH_CR_WLK_INDEX] = 0x014,
[STM32_FLASH_OPTR_INDEX] = 0x020,
[STM32_FLASH_WRP1AR_INDEX] = 0x02C,
[STM32_FLASH_WRP1BR_INDEX] = 0x030,
};
static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008, /* NSKEYR */
@ -514,7 +532,7 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.id = 0x497,
.revs = stm32_497_revs,
.num_revs = ARRAY_SIZE(stm32_497_revs),
.device_str = "STM32WLEx",
.device_str = "STM32WLEx/WL5x",
.max_flash_size_kb = 256,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
@ -789,14 +807,22 @@ static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
return ERROR_OK;
}
static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
}
static int stm32l4_unlock_reg(struct flash_bank *bank)
{
const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -812,7 +838,7 @@ static int stm32l4_unlock_reg(struct flash_bank *bank)
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -826,9 +852,10 @@ static int stm32l4_unlock_reg(struct flash_bank *bank)
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
uint32_t ctrl;
int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -844,7 +871,7 @@ static int stm32l4_unlock_option_reg(struct flash_bank *bank)
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -884,7 +911,8 @@ static int stm32l4_perform_obl_launch(struct flash_bank *bank)
stm32l4_info->probed = false;
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK | FLASH_OPTLOCK);
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
FLASH_LOCK | FLASH_OPTLOCK);
if (retval != ERROR_OK)
return retval;
@ -930,7 +958,8 @@ static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK | FLASH_OPTLOCK);
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
FLASH_LOCK | FLASH_OPTLOCK);
stm32l4_info->flash_regs = saved_flash_regs;
if (retval != ERROR_OK)
@ -1124,7 +1153,7 @@ static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
}
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK);
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* restore all FLASH pages as non-secure */
@ -1511,7 +1540,7 @@ static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK);
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* restore all FLASH pages as non-secure */
@ -1540,6 +1569,30 @@ static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
return ERROR_OK;
}
/* Workaround for STM32WL5x devices:
* DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
* to solve this read the UID64 (IEEE 64-bit unique device ID register) */
struct cortex_m_common *cortex_m = target_to_cm(bank->target);
if (cortex_m->core_info->partno == CORTEX_M0P_PARTNO && cortex_m->armv7m.debug_ap->ap_num == 1) {
uint32_t uid64_ids;
/* UID64 is contains
* - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
* - Bits 31:08 : STID (company ID) = 0x0080E1
* - Bits 07:00 : DEVID (device ID) = 0x15
*
* read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
*/
retval = target_read_u32(bank->target, UID64_IDS, &uid64_ids);
if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
/* force the DEV_ID to 0x497 and the REV_ID to unknown */
*id = 0x00000497;
return ERROR_OK;
}
}
LOG_ERROR("can't get the device id");
return (retval == ERROR_OK) ? ERROR_FAIL : retval;
}
@ -1570,6 +1623,7 @@ static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info;
uint16_t flash_size_kb = 0xffff;
@ -1722,7 +1776,6 @@ static int stm32l4_probe(struct flash_bank *bank)
case 0x466: /* STM32G03/G04xx */
case 0x468: /* STM32G43/G44xx */
case 0x479: /* STM32G49/G4Axx */
case 0x497: /* STM32WLEx */
/* single bank flash */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
@ -1806,6 +1859,14 @@ static int stm32l4_probe(struct flash_bank *bank)
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;
case 0x497: /* STM32WLEx/WL5x */
/* single bank flash */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (armv7m->debug_ap->ap_num == 1)
stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
@ -1953,7 +2014,7 @@ static int stm32l4_mass_erase(struct flash_bank *bank)
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK);
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* restore all FLASH pages as non-secure */

View File

@ -83,6 +83,9 @@
#define DBGMCU_IDCODE_G0 0x40015800
#define DBGMCU_IDCODE_L4_G4 0xE0042000
#define DBGMCU_IDCODE_L5 0xE0044000
#define UID64_DEVNUM 0x1FFF7580
#define UID64_IDS 0x1FFF7584
#define UID64_IDS_STM32WL 0x0080E115
#define STM32_FLASH_BANK_BASE 0x08000000
#define STM32_FLASH_S_BANK_BASE 0x0C000000

View File

@ -12,16 +12,47 @@ if { [info exists CHIPNAME] } {
set _CHIPNAME stm32wlx
}
set _ENDIAN little
if { [info exists DUAL_CORE] } {
set $_CHIPNAME.DUAL_CORE $DUAL_CORE
unset DUAL_CORE
} else {
set $_CHIPNAME.DUAL_CORE 0
}
if { [info exists WKUP_CM0P] } {
set $_CHIPNAME.WKUP_CM0P $WKUP_CM0P
unset WKUP_CM0P
} else {
set $_CHIPNAME.WKUP_CM0P 0
}
# Issue a warning when hla is used, and fallback to single core configuration
if { [set $_CHIPNAME.DUAL_CORE] && [using_hla] } {
echo "Warning : hla does not support multicore debugging"
set $_CHIPNAME.DUAL_CORE 0
set $_CHIPNAME.WKUP_CM0P 0
}
# setup the Work-area start address and size
# Work-area is a space in RAM used for flash programming
# By default use 20kB
# Memory map for known devices:
# STM32WL x5JC x5JB x5J8
# FLASH 256 128 64
# SRAM1 32 16 0
# SRAM2 32 32 20
# By default use 8kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x5000
set _WORKAREASIZE 0x2000
}
# Use SRAM2 as work area (some devices do not have SRAM1):
set WORKAREASTART_CM4 0x20008000
set WORKAREASTART_CM0P [expr {$WORKAREASTART_CM4 + $_WORKAREASIZE}]
#jtag scan chain
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
@ -41,13 +72,104 @@ if {[using_jtag]} {
jtag newtap $_CHIPNAME bs -irlen 5
}
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap
target create $_CHIPNAME.cpu0 cortex_m -endian little -dap $_CHIPNAME.dap
$_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
$_CHIPNAME.cpu0 configure -work-area-phys $WORKAREASTART_CM4 -work-area-size $_WORKAREASIZE -work-area-backup 0
flash bank $_CHIPNAME.flash stm32l4x 0x08000000 0 0 0 $_TARGETNAME
flash bank $_CHIPNAME.otp stm32l4x 0x1fff7000 0 0 0 $_TARGETNAME
flash bank $_CHIPNAME.flash.cpu0 stm32l4x 0x08000000 0 0 0 $_CHIPNAME.cpu0
flash bank $_CHIPNAME.otp.cpu0 stm32l4x 0x1fff7000 0 0 0 $_CHIPNAME.cpu0
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
$_CHIPNAME.cpu0 cortex_m reset_config sysresetreq
}
$_CHIPNAME.cpu0 configure -event reset-init {
# CPU comes out of reset with MSI_ON | MSI_RDY | MSI Range 4 MHz.
# Configure system to use MSI 24 MHz clock, compliant with VOS default Range1.
# 2 WS compliant with VOS=Range1 and 24 MHz.
mmw 0x58004000 0x00000102 0 ;# FLASH_ACR |= PRFTEN | 2(Latency)
mmw 0x58000000 0x00000091 0 ;# RCC_CR = MSI_ON | MSI Range 24 MHz
# Boost JTAG frequency
adapter speed 4000
}
$_CHIPNAME.cpu0 configure -event reset-start {
# Reset clock is MSI (4 MHz)
adapter speed 500
}
$_CHIPNAME.cpu0 configure -event examine-end {
# Enable debug during low power modes (uses more power)
# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP
mmw 0xE0042004 0x00000007 0
# Stop watchdog counters during halt
# DBGMCU_APB1_FZR1 |= DBG_IWDG_STOP | DBG_WWDG_STOP
mmw 0xE004203C 0x00001800 0
set _CHIPNAME [stm32wlx_get_chipname]
global $_CHIPNAME.WKUP_CM0P
if {[set $_CHIPNAME.WKUP_CM0P]} {
stm32wlx_wkup_cm0p
}
}
$_CHIPNAME.cpu0 configure -event trace-config {
# nothing to do
}
if {[set $_CHIPNAME.DUAL_CORE]} {
target create $_CHIPNAME.cpu1 cortex_m -endian little -dap $_CHIPNAME.dap -ap-num 1
$_CHIPNAME.cpu0 configure -work-area-phys $WORKAREASTART_CM0P -work-area-size $_WORKAREASIZE -work-area-backup 0
flash bank $_CHIPNAME.flash.cpu1 stm32l4x 0x08000000 0 0 0 $_CHIPNAME.cpu1
flash bank $_CHIPNAME.otp.cpu1 stm32l4x 0x1fff7000 0 0 0 $_CHIPNAME.cpu1
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
$_CHIPNAME.cpu1 cortex_m reset_config sysresetreq
}
proc stm32wlx_wkup_cm0p {} {
set _CHIPNAME [stm32wlx_get_chipname]
# enable CPU2 boot after reset and after wakeup from Stop or Standby mode
# PWR_CR4 |= C2BOOT
stm32wlx_mmw $_CHIPNAME.cpu0 0x5800040C 0x00008000 0
}
}
# get _CHIPNAME from current target
proc stm32wlx_get_chipname {} {
set t [target current]
set sep [string last "." $t]
if {$sep == -1} {
return $t
}
return [string range $t 0 [expr $sep - 1]]
}
# like mrw, but with target selection
proc stm32wlx_mrw {used_target reg} {
set value ""
$used_target mem2array value 32 $reg 1
return $value(0)
}
# like mmw, but with target selection
proc stm32wlx_mmw {used_target reg setbits clearbits} {
set old [stm32wlx_mrw $used_target $reg]
set new [expr {($old & ~$clearbits) | $setbits}]
$used_target mww $reg $new
}
# Make sure that cpu0 is selected
targets $_CHIPNAME.cpu0
# Common knowledges tells JTAG speed should be <= F_CPU/6.
# F_CPU after reset is MSI 4MHz, so use F_JTAG = 500 kHz to stay on
@ -63,38 +185,3 @@ if {[using_jtag]} {
}
reset_config srst_nogate
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
cortex_m reset_config sysresetreq
}
$_TARGETNAME configure -event reset-init {
# CPU comes out of reset with MSI_ON | MSI_RDY | MSI Range 4 MHz.
# Configure system to use MSI 24 MHz clock, compliant with VOS default Range1.
# 2 WS compliant with VOS=Range1 and 24 MHz.
mmw 0x58004000 0x00000102 0 ;# FLASH_ACR |= PRFTEN | 2(Latency)
mmw 0x58000000 0x00000091 0 ;# RCC_CR = MSI_ON | MSI Range 24 MHz
# Boost JTAG frequency
adapter speed 4000
}
$_TARGETNAME configure -event reset-start {
# Reset clock is MSI (4 MHz)
adapter speed 500
}
$_TARGETNAME configure -event examine-end {
# Enable debug during low power modes (uses more power)
# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP
mmw 0xE0042004 0x00000007 0
# Stop watchdog counters during halt
# DBGMCU_APB1_FZR1 |= DBG_IWDG_STOP | DBG_WWDG_STOP
mmw 0xE004203C 0x00001800 0
}
$_TARGETNAME configure -event trace-config {
# nothing to do
}