openocd/src/target/armv7m.c

1096 lines
35 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2018 by Liviu Ionescu *
* <ilg@livius.net> *
* *
* Copyright (C) 2019 by Tomas Vanek *
* vanekt@fbl.cz *
* *
* ARMv7-M Architecture, Application Level Reference Manual *
* ARM DDI 0405C (September 2008) *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "armv7m.h"
#include "algorithm.h"
#include "register.h"
#include "semihosting_common.h"
#include <helper/log.h>
#include <helper/binarybuffer.h>
#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif
static const char * const armv7m_exception_strings[] = {
"", "Reset", "NMI", "HardFault",
"MemManage", "BusFault", "UsageFault", "SecureFault",
"RESERVED", "RESERVED", "RESERVED", "SVCall",
"DebugMonitor", "RESERVED", "PendSV", "SysTick"
};
/* PSP is used in some thread modes */
const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
ARMV7M_xPSR,
};
/* MSP is used in handler and some thread modes */
const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
ARMV7M_xPSR,
};
/*
* These registers are not memory-mapped. The ARMv7-M profile includes
* memory mapped registers too, such as for the NVIC (interrupt controller)
* and SysTick (timer) modules; those can mostly be treated as peripherals.
*
* The ARMv6-M profile is almost identical in this respect, except that it
* doesn't include basepri or faultmask registers.
*/
static const struct {
unsigned id;
const char *name;
unsigned bits;
enum reg_type type;
const char *group;
const char *feature;
} armv7m_regs[] = {
{ ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
/* A working register for packing/unpacking special regs, hidden from gdb */
{ ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
/* WARNING: If you use armv7m_write_core_reg() on one of 4 following
* special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
* cache only and are not flushed to CPU HW register.
* To trigger write to CPU HW register, add
* armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
*/
{ ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
/* ARMv8-M specific registers */
{ ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
{ ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
{ ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
/* FPU registers */
{ ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
};
#define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
/**
* Restores target context using the cache of core registers set up
* by armv7m_build_reg_cache(), calling optional core-specific hooks.
*/
int armv7m_restore_context(struct target *target)
{
int i;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct reg_cache *cache = armv7m->arm.core_cache;
LOG_DEBUG(" ");
if (armv7m->pre_restore_context)
armv7m->pre_restore_context(target);
/* The descending order of register writes is crucial for correct
* packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
* See also comments in the register table above */
for (i = cache->num_regs - 1; i >= 0; i--) {
struct reg *r = &cache->reg_list[i];
if (r->exist && r->dirty)
armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
}
return ERROR_OK;
}
/* Core state functions */
/**
* Maps ISR number (from xPSR) to name.
* Note that while names and meanings for the first sixteen are standardized
* (with zero not a true exception), external interrupts are only numbered.
* They are assigned by vendors, which generally assign different numbers to
* peripherals (such as UART0 or a USB peripheral controller).
*/
const char *armv7m_exception_string(int number)
{
static char enamebuf[32];
if ((number < 0) | (number > 511))
return "Invalid exception";
if (number < 16)
return armv7m_exception_strings[number];
sprintf(enamebuf, "External Interrupt(%i)", number - 16);
return enamebuf;
}
static int armv7m_get_core_reg(struct reg *reg)
{
int retval;
struct arm_reg *armv7m_reg = reg->arch_info;
struct target *target = armv7m_reg->target;
struct arm *arm = target_to_arm(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
return retval;
}
static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct arm_reg *armv7m_reg = reg->arch_info;
struct target *target = armv7m_reg->target;
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
buf_cpy(buf, reg->value, reg->size);
reg->dirty = true;
reg->valid = true;
return ERROR_OK;
}
uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
{
switch (arm_reg_id) {
case ARMV7M_R0 ... ARMV7M_R14:
case ARMV7M_PC:
case ARMV7M_xPSR:
case ARMV7M_MSP:
case ARMV7M_PSP:
/* NOTE: we "know" here that the register identifiers
* match the Cortex-M DCRSR.REGSEL selectors values
* for R0..R14, PC, xPSR, MSP, and PSP.
*/
return arm_reg_id;
case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
case ARMV7M_FPSCR:
return ARMV7M_REGSEL_FPSCR;
case ARMV7M_D0 ... ARMV7M_D15:
return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
default:
LOG_ERROR("Bad register ID %u", arm_reg_id);
return arm_reg_id;
}
}
bool armv7m_map_reg_packing(unsigned int arm_reg_id,
unsigned int *reg32_id, uint32_t *offset)
{
switch (arm_reg_id) {
case ARMV7M_PRIMASK...ARMV7M_CONTROL:
*reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
*offset = arm_reg_id - ARMV7M_PRIMASK;
return true;
case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
*reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
*offset = arm_reg_id - ARMV8M_PRIMASK_S;
return true;
case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
*reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
*offset = arm_reg_id - ARMV8M_PRIMASK_NS;
return true;
default:
return false;
}
}
static int armv7m_read_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode)
{
uint32_t reg_value;
int retval;
struct armv7m_common *armv7m = target_to_armv7m(target);
assert(num < (int)armv7m->arm.core_cache->num_regs);
assert(num == (int)r->number);
/* If a code calls read_reg, it expects the cache is no more dirty.
* Clear the dirty flag regardless of the later read succeeds or not
* to prevent unwanted cache flush after a read error */
r->dirty = false;
if (r->size <= 8) {
/* any 8-bit or shorter register is packed */
uint32_t offset;
unsigned int reg32_id;
bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
if (!is_packed) {
/* We should not get here as all 8-bit or shorter registers
* are packed */
assert(false);
/* assert() does nothing if NDEBUG is defined */
return ERROR_FAIL;
}
struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
/* Read 32-bit container register if not cached */
if (!r32->valid) {
retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
if (retval != ERROR_OK)
return retval;
}
/* Copy required bits of 32-bit container register */
buf_cpy(r32->value + offset, r->value, r->size);
} else {
assert(r->size == 32 || r->size == 64);
struct arm_reg *armv7m_core_reg = r->arch_info;
uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
if (retval != ERROR_OK)
return retval;
buf_set_u32(r->value, 0, 32, reg_value);
if (r->size == 64) {
retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
if (retval != ERROR_OK) {
r->valid = false;
return retval;
}
buf_set_u32(r->value + 4, 0, 32, reg_value);
uint64_t q = buf_get_u64(r->value, 0, 64);
LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
} else {
LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
}
}
r->valid = true;
return ERROR_OK;
}
static int armv7m_write_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode, uint8_t *value)
{
int retval;
uint32_t t;
struct armv7m_common *armv7m = target_to_armv7m(target);
assert(num < (int)armv7m->arm.core_cache->num_regs);
assert(num == (int)r->number);
if (value != r->value) {
/* If we are not flushing the cache, store the new value to the cache */
buf_cpy(value, r->value, r->size);
}
if (r->size <= 8) {
/* any 8-bit or shorter register is packed */
uint32_t offset;
unsigned int reg32_id;
bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
if (!is_packed) {
/* We should not get here as all 8-bit or shorter registers
* are packed */
assert(false);
/* assert() does nothing if NDEBUG is defined */
return ERROR_FAIL;
}
struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
if (!r32->valid) {
/* Before merging with other parts ensure the 32-bit register is valid */
retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
if (retval != ERROR_OK)
return retval;
}
/* Write a part to the 32-bit container register */
buf_cpy(value, r32->value + offset, r->size);
r32->dirty = true;
} else {
assert(r->size == 32 || r->size == 64);
struct arm_reg *armv7m_core_reg = r->arch_info;
uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
t = buf_get_u32(value, 0, 32);
retval = armv7m->store_core_reg_u32(target, regsel, t);
if (retval != ERROR_OK)
goto out_error;
if (r->size == 64) {
t = buf_get_u32(value + 4, 0, 32);
retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
if (retval != ERROR_OK)
goto out_error;
uint64_t q = buf_get_u64(value, 0, 64);
LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
} else {
LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
}
}
r->valid = true;
r->dirty = false;
return ERROR_OK;
out_error:
r->dirty = true;
LOG_ERROR("Error setting register %s", r->name);
return retval;
}
/**
* Returns generic ARM userspace registers to GDB.
*/
int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
int i, size;
if (reg_class == REG_CLASS_ALL)
size = armv7m->arm.core_cache->num_regs;
else
size = ARMV7M_NUM_CORE_REGS;
*reg_list = malloc(sizeof(struct reg *) * size);
if (!*reg_list)
return ERROR_FAIL;
for (i = 0; i < size; i++)
(*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
*reg_list_size = size;
return ERROR_OK;
}
/** Runs a Thumb algorithm in the target. */
int armv7m_run_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t entry_point, target_addr_t exit_point,
int timeout_ms, void *arch_info)
{
int retval;
retval = armv7m_start_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
entry_point, exit_point,
arch_info);
if (retval == ERROR_OK)
retval = armv7m_wait_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
exit_point, timeout_ms,
arch_info);
return retval;
}
/** Starts a Thumb algorithm in the target. */
int armv7m_start_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t entry_point, target_addr_t exit_point,
void *arch_info)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
enum arm_mode core_mode = armv7m->arm.core_mode;
int retval = ERROR_OK;
/* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV7M target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Store all non-debug execution registers to armv7m_algorithm_info context */
for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
armv7m_algorithm_info->context[i] = buf_get_u32(
armv7m->arm.core_cache->reg_list[i].value,
0,
32);
}
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction == PARAM_IN)
continue;
retval = target_write_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction == PARAM_IN)
continue;
struct reg *reg =
register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
/* uint32_t regvalue; */
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
armv7m_set_core_reg(reg, reg_params[i].value);
}
{
/*
* Ensure xPSR.T is set to avoid trying to run things in arm
* (non-thumb) mode, which armv7m does not support.
*
* We do this by setting the entirety of xPSR, which should
* remove all the unknowns about xPSR state.
*
* Because xPSR.T is populated on reset from the vector table,
* it might be 0 if the vector table has "bad" data in it.
*/
struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
buf_set_u32(reg->value, 0, 32, 0x01000000);
reg->valid = true;
reg->dirty = true;
}
if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
armv7m_algorithm_info->core_mode != core_mode) {
/* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
}
LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
0, 1, armv7m_algorithm_info->core_mode);
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
}
/* save previous core mode */
armv7m_algorithm_info->core_mode = core_mode;
retval = target_resume(target, 0, entry_point, 1, 1);
return retval;
}
/** Waits for an algorithm in the target. */
int armv7m_wait_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t exit_point, int timeout_ms,
void *arch_info)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
int retval = ERROR_OK;
/* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV7M target");
return ERROR_TARGET_INVALID;
}
retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
/* If the target fails to halt due to the breakpoint, force a halt */
if (retval != ERROR_OK || target->state != TARGET_HALTED) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, 500);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_TIMEOUT;
}
if (exit_point) {
/* PC value has been cached in cortex_m_debug_entry() */
uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
if (pc != exit_point) {
LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
pc, exit_point);
return ERROR_TARGET_ALGO_EXIT;
}
}
/* Read memory values to mem_params[] */
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction != PARAM_OUT) {
retval = target_read_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
}
/* Copy core register values to reg_params[] */
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction != PARAM_OUT) {
struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
reg_params[i].reg_name,
false);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR(
"BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
uint32_t regvalue;
regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
if (regvalue != armv7m_algorithm_info->context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
armv7m->arm.core_cache->reg_list[i].name,
armv7m_algorithm_info->context[i]);
buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
0, 32, armv7m_algorithm_info->context[i]);
armv7m->arm.core_cache->reg_list[i].valid = true;
armv7m->arm.core_cache->reg_list[i].dirty = true;
}
}
/* restore previous core mode */
if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
0, 1, armv7m_algorithm_info->core_mode);
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
}
armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
return retval;
}
/** Logs summary of ARMv7-M state for a halted target. */
int armv7m_arch_state(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
uint32_t ctrl, sp;
/* avoid filling log waiting for fileio reply */
if (target->semihosting && target->semihosting->hit_fileio)
return ERROR_OK;
ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
LOG_USER("target halted due to %s, current mode: %s %s\n"
"xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
debug_reason_name(target),
arm_mode_name(arm->core_mode),
armv7m_exception_string(armv7m->exception_number),
buf_get_u32(arm->cpsr->value, 0, 32),
buf_get_u32(arm->pc->value, 0, 32),
(ctrl & 0x02) ? 'p' : 'm',
sp,
(target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
(target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
return ERROR_OK;
}
static const struct reg_arch_type armv7m_reg_type = {
.get = armv7m_get_core_reg,
.set = armv7m_set_core_reg,
};
/** Builds cache of architecturally defined registers. */
struct reg_cache *armv7m_build_reg_cache(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
int num_regs = ARMV7M_NUM_REGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "arm v7m registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = armv7m_regs[i].id;
arch_info[i].target = target;
arch_info[i].arm = arm;
reg_list[i].name = armv7m_regs[i].name;
reg_list[i].size = armv7m_regs[i].bits;
reg_list[i].value = arch_info[i].value;
reg_list[i].dirty = false;
reg_list[i].valid = false;
reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
reg_list[i].type = &armv7m_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = armv7m_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
if (reg_list[i].hidden)
continue;
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = armv7m_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = armv7m_regs[i].type;
else
LOG_ERROR("unable to allocate reg type list");
}
arm->cpsr = reg_list + ARMV7M_xPSR;
arm->pc = reg_list + ARMV7M_PC;
arm->core_cache = cache;
return cache;
}
void armv7m_free_reg_cache(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
struct reg_cache *cache;
struct reg *reg;
unsigned int i;
cache = arm->core_cache;
if (!cache)
return;
for (i = 0; i < cache->num_regs; i++) {
reg = &cache->reg_list[i];
free(reg->feature);
free(reg->reg_data_type);
}
free(cache->reg_list[0].arch_info);
free(cache->reg_list);
free(cache);
arm->core_cache = NULL;
}
static int armv7m_setup_semihosting(struct target *target, int enable)
{
/* nothing todo for armv7m */
return ERROR_OK;
}
/** Sets up target as a generic ARMv7-M core */
int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
{
struct arm *arm = &armv7m->arm;
armv7m->common_magic = ARMV7M_COMMON_MAGIC;
armv7m->fp_feature = FP_NONE;
armv7m->trace_config.trace_bus_id = 1;
/* Enable stimulus port #0 by default */
armv7m->trace_config.itm_ter[0] = 1;
arm->core_state = ARM_STATE_THUMB;
arm->core_type = ARM_CORE_TYPE_M_PROFILE;
arm->arch_info = armv7m;
arm->setup_semihosting = armv7m_setup_semihosting;
arm->read_core_reg = armv7m_read_core_reg;
arm->write_core_reg = armv7m_write_core_reg;
return arm_init_arch_info(target, arm);
}
/** Generates a CRC32 checksum of a memory region. */
int armv7m_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct armv7m_algorithm armv7m_info;
struct reg_param reg_params[2];
int retval;
static const uint8_t cortex_m_crc_code[] = {
#include "../../contrib/loaders/checksum/armv7m_crc.inc"
};
retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target, crc_algorithm->address,
sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
if (retval != ERROR_OK)
goto cleanup;
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, count);
int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
timeout, &armv7m_info);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
else
LOG_ERROR("error executing cortex_m crc algorithm");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
cleanup:
target_free_working_area(target, crc_algorithm);
return retval;
}
/** Checks an array of memory regions whether they are erased. */
int armv7m_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
{
struct working_area *erase_check_algorithm;
struct working_area *erase_check_params;
struct reg_param reg_params[2];
struct armv7m_algorithm armv7m_info;
int retval;
static bool timed_out;
static const uint8_t erase_check_code[] = {
#include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
};
const uint32_t code_size = sizeof(erase_check_code);
/* make sure we have a working area */
if (target_alloc_working_area(target, code_size,
&erase_check_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
retval = target_write_buffer(target, erase_check_algorithm->address,
code_size, erase_check_code);
if (retval != ERROR_OK)
goto cleanup1;
/* prepare blocks array for algo */
struct algo_block {
union {
uint32_t size;
uint32_t result;
};
uint32_t address;
};
uint32_t avail = target_get_working_area_avail(target);
int blocks_to_check = avail / sizeof(struct algo_block) - 1;
if (num_blocks < blocks_to_check)
blocks_to_check = num_blocks;
struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
if (!params) {
retval = ERROR_FAIL;
goto cleanup1;
}
int i;
uint32_t total_size = 0;
for (i = 0; i < blocks_to_check; i++) {
total_size += blocks[i].size;
target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
blocks[i].size / sizeof(uint32_t));
target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
blocks[i].address);
}
target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
if (target_alloc_working_area(target, param_size,
&erase_check_params) != ERROR_OK) {
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup2;
}
retval = target_write_buffer(target, erase_check_params->address,
param_size, (uint8_t *)params);
if (retval != ERROR_OK)
goto cleanup3;
uint32_t erased_word = erased_value | (erased_value << 8)
| (erased_value << 16) | (erased_value << 24);
LOG_DEBUG("Starting erase check of %d blocks, parameters@"
TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, erased_word);
/* assume CPU clk at least 1 MHz */
int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
erase_check_algorithm->address,
erase_check_algorithm->address + (code_size - 2),
timeout,
&armv7m_info);
timed_out = retval == ERROR_TARGET_TIMEOUT;
if (retval != ERROR_OK && !timed_out)
goto cleanup4;
retval = target_read_buffer(target, erase_check_params->address,
param_size, (uint8_t *)params);
if (retval != ERROR_OK)
goto cleanup4;
for (i = 0; i < blocks_to_check; i++) {
uint32_t result = target_buffer_get_u32(target,
(uint8_t *)&(params[i].result));
if (result != 0 && result != 1)
break;
blocks[i].result = result;
}
if (i && timed_out)
LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
retval = i; /* return number of blocks really checked */
cleanup4:
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
cleanup3:
target_free_working_area(target, erase_check_params);
cleanup2:
free(params);
cleanup1:
target_free_working_area(target, erase_check_algorithm);
return retval;
}
int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct reg *r = armv7m->arm.pc;
bool result = false;
/* if we halted last time due to a bkpt instruction
* then we have to manually step over it, otherwise
* the core will break again */
if (target->debug_reason == DBG_REASON_BREAKPOINT) {
uint16_t op;
uint32_t pc = buf_get_u32(r->value, 0, 32);
pc &= ~1;
if (target_read_u16(target, pc, &op) == ERROR_OK) {
if ((op & 0xFF00) == 0xBE00) {
pc = buf_get_u32(r->value, 0, 32) + 2;
buf_set_u32(r->value, 0, 32, pc);
r->dirty = true;
r->valid = true;
result = true;
LOG_DEBUG("Skipping over BKPT instruction");
}
}
}
if (inst_found)
*inst_found = result;
return ERROR_OK;
}
const struct command_registration armv7m_command_handlers[] = {
{
.name = "arm",
.mode = COMMAND_ANY,
.help = "ARM command group",
.usage = "",
.chain = arm_all_profiles_command_handlers,
},
COMMAND_REGISTRATION_DONE
};