openocd/src/target/armv7m.c

1096 lines
35 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2018 by Liviu Ionescu *
* <ilg@livius.net> *
* *
* Copyright (C) 2019 by Tomas Vanek *
* vanekt@fbl.cz *
* *
* ARMv7-M Architecture, Application Level Reference Manual *
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2009-07-16 00:08:21 +00:00
* ARM DDI 0405C (September 2008) *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "armv7m.h"
#include "algorithm.h"
#include "register.h"
#include "semihosting_common.h"
#include <helper/log.h>
#include <helper/binarybuffer.h>
#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif
static const char * const armv7m_exception_strings[] = {
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2009-07-16 00:08:21 +00:00
"", "Reset", "NMI", "HardFault",
"MemManage", "BusFault", "UsageFault", "SecureFault",
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2009-07-16 00:08:21 +00:00
"RESERVED", "RESERVED", "RESERVED", "SVCall",
"DebugMonitor", "RESERVED", "PendSV", "SysTick"
};
/* PSP is used in some thread modes */
const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
ARMV7M_xPSR,
};
/* MSP is used in handler and some thread modes */
const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
ARMV7M_xPSR,
};
/*
* These registers are not memory-mapped. The ARMv7-M profile includes
* memory mapped registers too, such as for the NVIC (interrupt controller)
* and SysTick (timer) modules; those can mostly be treated as peripherals.
*
* The ARMv6-M profile is almost identical in this respect, except that it
* doesn't include basepri or faultmask registers.
*/
static const struct {
unsigned id;
const char *name;
unsigned bits;
enum reg_type type;
const char *group;
const char *feature;
} armv7m_regs[] = {
{ ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
/* A working register for packing/unpacking special regs, hidden from gdb */
{ ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
/* WARNING: If you use armv7m_write_core_reg() on one of 4 following
* special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
* cache only and are not flushed to CPU HW register.
* To trigger write to CPU HW register, add
* armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
*/
{ ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
/* ARMv8-M specific registers */
{ ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
{ ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
{ ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
/* FPU registers */
{ ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
{ ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
};
#define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
/**
* Restores target context using the cache of core registers set up
* by armv7m_build_reg_cache(), calling optional core-specific hooks.
*/
int armv7m_restore_context(struct target *target)
{
int i;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct reg_cache *cache = armv7m->arm.core_cache;
LOG_DEBUG(" ");
if (armv7m->pre_restore_context)
armv7m->pre_restore_context(target);
/* The descending order of register writes is crucial for correct
* packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
* See also comments in the register table above */
for (i = cache->num_regs - 1; i >= 0; i--) {
struct reg *r = &cache->reg_list[i];
if (r->exist && r->dirty)
armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
}
return ERROR_OK;
}
/* Core state functions */
/**
* Maps ISR number (from xPSR) to name.
* Note that while names and meanings for the first sixteen are standardized
* (with zero not a true exception), external interrupts are only numbered.
* They are assigned by vendors, which generally assign different numbers to
* peripherals (such as UART0 or a USB peripheral controller).
*/
const char *armv7m_exception_string(int number)
{
static char enamebuf[32];
if ((number < 0) | (number > 511))
return "Invalid exception";
if (number < 16)
return armv7m_exception_strings[number];
sprintf(enamebuf, "External Interrupt(%i)", number - 16);
return enamebuf;
}
static int armv7m_get_core_reg(struct reg *reg)
{
int retval;
struct arm_reg *armv7m_reg = reg->arch_info;
struct target *target = armv7m_reg->target;
struct arm *arm = target_to_arm(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
return retval;
}
static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct arm_reg *armv7m_reg = reg->arch_info;
struct target *target = armv7m_reg->target;
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
buf_cpy(buf, reg->value, reg->size);
reg->dirty = true;
reg->valid = true;
return ERROR_OK;
}
uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
{
switch (arm_reg_id) {
case ARMV7M_R0 ... ARMV7M_R14:
case ARMV7M_PC:
case ARMV7M_xPSR:
case ARMV7M_MSP:
case ARMV7M_PSP:
/* NOTE: we "know" here that the register identifiers
* match the Cortex-M DCRSR.REGSEL selectors values
* for R0..R14, PC, xPSR, MSP, and PSP.
*/
return arm_reg_id;
case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
case ARMV7M_FPSCR:
return ARMV7M_REGSEL_FPSCR;
case ARMV7M_D0 ... ARMV7M_D15:
return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
default:
LOG_ERROR("Bad register ID %u", arm_reg_id);
return arm_reg_id;
}
}
bool armv7m_map_reg_packing(unsigned int arm_reg_id,
unsigned int *reg32_id, uint32_t *offset)
{
switch (arm_reg_id) {
case ARMV7M_PRIMASK...ARMV7M_CONTROL:
*reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
*offset = arm_reg_id - ARMV7M_PRIMASK;
return true;
case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
*reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
*offset = arm_reg_id - ARMV8M_PRIMASK_S;
return true;
case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
*reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
*offset = arm_reg_id - ARMV8M_PRIMASK_NS;
return true;
default:
return false;
}
}
static int armv7m_read_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode)
{
uint32_t reg_value;
int retval;
struct armv7m_common *armv7m = target_to_armv7m(target);
assert(num < (int)armv7m->arm.core_cache->num_regs);
assert(num == (int)r->number);
/* If a code calls read_reg, it expects the cache is no more dirty.
* Clear the dirty flag regardless of the later read succeeds or not
* to prevent unwanted cache flush after a read error */
r->dirty = false;
if (r->size <= 8) {
/* any 8-bit or shorter register is packed */
uint32_t offset;
unsigned int reg32_id;
bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
if (!is_packed) {
/* We should not get here as all 8-bit or shorter registers
* are packed */
assert(false);
/* assert() does nothing if NDEBUG is defined */
return ERROR_FAIL;
}
struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
/* Read 32-bit container register if not cached */
if (!r32->valid) {
retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
if (retval != ERROR_OK)
return retval;
}
/* Copy required bits of 32-bit container register */
buf_cpy(r32->value + offset, r->value, r->size);
} else {
assert(r->size == 32 || r->size == 64);
struct arm_reg *armv7m_core_reg = r->arch_info;
uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
if (retval != ERROR_OK)
return retval;
buf_set_u32(r->value, 0, 32, reg_value);
if (r->size == 64) {
retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
if (retval != ERROR_OK) {
r->valid = false;
return retval;
}
buf_set_u32(r->value + 4, 0, 32, reg_value);
uint64_t q = buf_get_u64(r->value, 0, 64);
LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
} else {
LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
}
}
r->valid = true;
return ERROR_OK;
}
static int armv7m_write_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode, uint8_t *value)
{
int retval;
uint32_t t;
struct armv7m_common *armv7m = target_to_armv7m(target);
assert(num < (int)armv7m->arm.core_cache->num_regs);
assert(num == (int)r->number);
if (value != r->value) {
/* If we are not flushing the cache, store the new value to the cache */
buf_cpy(value, r->value, r->size);
}
if (r->size <= 8) {
/* any 8-bit or shorter register is packed */
uint32_t offset;
unsigned int reg32_id;
bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
if (!is_packed) {
/* We should not get here as all 8-bit or shorter registers
* are packed */
assert(false);
/* assert() does nothing if NDEBUG is defined */
return ERROR_FAIL;
}
struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
if (!r32->valid) {
/* Before merging with other parts ensure the 32-bit register is valid */
retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
if (retval != ERROR_OK)
return retval;
}
/* Write a part to the 32-bit container register */
buf_cpy(value, r32->value + offset, r->size);
r32->dirty = true;
} else {
assert(r->size == 32 || r->size == 64);
struct arm_reg *armv7m_core_reg = r->arch_info;
uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
t = buf_get_u32(value, 0, 32);
retval = armv7m->store_core_reg_u32(target, regsel, t);
if (retval != ERROR_OK)
goto out_error;
if (r->size == 64) {
t = buf_get_u32(value + 4, 0, 32);
retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
if (retval != ERROR_OK)
goto out_error;
uint64_t q = buf_get_u64(value, 0, 64);
LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
} else {
LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
}
}
r->valid = true;
r->dirty = false;
return ERROR_OK;
out_error:
r->dirty = true;
LOG_ERROR("Error setting register %s", r->name);
return retval;
}
/**
* Returns generic ARM userspace registers to GDB.
*/
int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
int i, size;
if (reg_class == REG_CLASS_ALL)
size = armv7m->arm.core_cache->num_regs;
else
size = ARMV7M_NUM_CORE_REGS;
*reg_list = malloc(sizeof(struct reg *) * size);
if (!*reg_list)
return ERROR_FAIL;
for (i = 0; i < size; i++)
(*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
*reg_list_size = size;
return ERROR_OK;
}
/** Runs a Thumb algorithm in the target. */
int armv7m_run_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t entry_point, target_addr_t exit_point,
int timeout_ms, void *arch_info)
{
int retval;
retval = armv7m_start_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
entry_point, exit_point,
arch_info);
if (retval == ERROR_OK)
retval = armv7m_wait_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
exit_point, timeout_ms,
arch_info);
return retval;
}
/** Starts a Thumb algorithm in the target. */
int armv7m_start_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t entry_point, target_addr_t exit_point,
void *arch_info)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
enum arm_mode core_mode = armv7m->arm.core_mode;
int retval = ERROR_OK;
/* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV7M target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Store all non-debug execution registers to armv7m_algorithm_info context */
for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
armv7m_algorithm_info->context[i] = buf_get_u32(
armv7m->arm.core_cache->reg_list[i].value,
0,
32);
}
for (int i = 0; i < num_mem_params; i++) {
target start_algorithm: Don't copy the IN mem_params fix uninitialised value. Fix the write only out params TODO on armv7m.c Fix conditional move depends on uninitialised value. It was detected while programming a LPC8Nxx with a FTDI adapter. valgrind --leak-check=full --show-leak-kinds=all --track-origins=yes [...] ==8696== Conditional jump or move depends on uninitialised value(s) ==8696== at 0x16E4D3: buf_set_u32 (binarybuffer.h:52) ==8696== by 0x16E4D3: ftdi_swd_queue_cmd (ftdi.c:1206) ==8696== by 0x18D76D: swd_queue_ap_write (adi_v5_swd.c:271) ==8696== by 0x18E33B: dap_queue_ap_write (arm_adi_v5.h:382) ==8696== by 0x18E33B: mem_ap_write (arm_adi_v5.c:420) ==8696== by 0x197CD9: target_write_buffer_default (target.c:2176) ==8696== by 0x2464B3: armv7m_start_algorithm (armv7m.c:383) ==8696== by 0x246AEB: armv7m_run_algorithm (armv7m.c:330) ==8696== by 0x19D846: target_run_algorithm (target.c:814) ==8696== by 0x1DF3A6: lpc2000_iap_call.isra.3 (lpc2000.c:818) ==8696== by 0x1E0CF6: lpc2000_erase (lpc2000.c:992) ==8696== by 0x185BDF: flash_driver_erase (core.c:44) ==8696== by 0x18650D: flash_iterate_address_range_inner (core.c:541) ==8696== by 0x18650D: flash_iterate_address_range (core.c:567) ==8696== by 0x18732F: flash_erase_address_range (core.c:584) ==8696== by 0x18732F: flash_write_unlock (core.c:928) ==8696== Uninitialised value was created by a heap allocation ==8696== at 0x4C2BBAF: malloc (vg_replace_malloc.c:299) ==8696== by 0x220EF9: init_mem_param (algorithm.c:30) ==8696== by 0x1DF247: lpc2000_iap_call.isra.3 (lpc2000.c:777) ==8696== by 0x1E0CF6: lpc2000_erase (lpc2000.c:992) ==8696== by 0x185BDF: flash_driver_erase (core.c:44) ==8696== by 0x18650D: flash_iterate_address_range_inner (core.c:541) ==8696== by 0x18650D: flash_iterate_address_range (core.c:567) ==8696== by 0x18732F: flash_erase_address_range (core.c:584) ==8696== by 0x18732F: flash_write_unlock (core.c:928) ==8696== by 0x18ACDF: handle_flash_write_image_command (tcl.c:457) ==8696== by 0x1B7D99: run_command (command.c:623) ==8696== by 0x1B7D99: script_command_run (command.c:208) ==8696== by 0x1B7FD9: command_unknown (command.c:1033) ==8696== by 0x2E2D37: JimInvokeCommand (jim.c:10364) ==8696== by 0x2E3865: Jim_EvalObj (jim.c:10814) ==8696== ==8696== Conditional jump or move depends on uninitialised value(s) ==8696== at 0x16E506: buf_set_u32 (binarybuffer.h:52) ==8696== by 0x16E506: ftdi_swd_queue_cmd (ftdi.c:1207) ==8696== by 0x18D76D: swd_queue_ap_write (adi_v5_swd.c:271) ==8696== by 0x18E33B: dap_queue_ap_write (arm_adi_v5.h:382) ==8696== by 0x18E33B: mem_ap_write (arm_adi_v5.c:420) ==8696== by 0x197CD9: target_write_buffer_default (target.c:2176) ==8696== by 0x2464B3: armv7m_start_algorithm (armv7m.c:383) ==8696== by 0x246AEB: armv7m_run_algorithm (armv7m.c:330) ==8696== by 0x19D846: target_run_algorithm (target.c:814) ==8696== by 0x1DF3A6: lpc2000_iap_call.isra.3 (lpc2000.c:818) ==8696== by 0x1E0CF6: lpc2000_erase (lpc2000.c:992) ==8696== by 0x185BDF: flash_driver_erase (core.c:44) ==8696== by 0x18650D: flash_iterate_address_range_inner (core.c:541) ==8696== by 0x18650D: flash_iterate_address_range (core.c:567) ==8696== by 0x18732F: flash_erase_address_range (core.c:584) ==8696== by 0x18732F: flash_write_unlock (core.c:928) ==8696== Uninitialised value was created by a heap allocation ==8696== at 0x4C2BBAF: malloc (vg_replace_malloc.c:299) ==8696== by 0x220EF9: init_mem_param (algorithm.c:30) ==8696== by 0x1DF247: lpc2000_iap_call.isra.3 (lpc2000.c:777) ==8696== by 0x1E0CF6: lpc2000_erase (lpc2000.c:992) ==8696== by 0x185BDF: flash_driver_erase (core.c:44) ==8696== by 0x18650D: flash_iterate_address_range_inner (core.c:541) ==8696== by 0x18650D: flash_iterate_address_range (core.c:567) ==8696== by 0x18732F: flash_erase_address_range (core.c:584) ==8696== by 0x18732F: flash_write_unlock (core.c:928) ==8696== by 0x18ACDF: handle_flash_write_image_command (tcl.c:457) ==8696== by 0x1B7D99: run_command (command.c:623) ==8696== by 0x1B7D99: script_command_run (command.c:208) ==8696== by 0x1B7FD9: command_unknown (command.c:1033) ==8696== by 0x2E2D37: JimInvokeCommand (jim.c:10364) ==8696== by 0x2E3865: Jim_EvalObj (jim.c:10814) Change-Id: I50f9a8c4516b686cf62ac3c76f47c53465e949da Signed-off-by: Jean-Christian de Rivaz <jcamdr70@gmail.com> Reviewed-on: http://openocd.zylin.com/4811 Tested-by: jenkins Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
2018-12-17 15:07:29 +00:00
if (mem_params[i].direction == PARAM_IN)
continue;
retval = target_write_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction == PARAM_IN)
continue;
struct reg *reg =
register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
/* uint32_t regvalue; */
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
armv7m_set_core_reg(reg, reg_params[i].value);
}
{
/*
* Ensure xPSR.T is set to avoid trying to run things in arm
* (non-thumb) mode, which armv7m does not support.
*
* We do this by setting the entirety of xPSR, which should
* remove all the unknowns about xPSR state.
*
* Because xPSR.T is populated on reset from the vector table,
* it might be 0 if the vector table has "bad" data in it.
*/
struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
buf_set_u32(reg->value, 0, 32, 0x01000000);
reg->valid = true;
reg->dirty = true;
}
if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
armv7m_algorithm_info->core_mode != core_mode) {
/* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
}
LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
0, 1, armv7m_algorithm_info->core_mode);
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
}
/* save previous core mode */
armv7m_algorithm_info->core_mode = core_mode;
retval = target_resume(target, 0, entry_point, 1, 1);
return retval;
}
/** Waits for an algorithm in the target. */
int armv7m_wait_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t exit_point, int timeout_ms,
void *arch_info)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
int retval = ERROR_OK;
/* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV7M target");
return ERROR_TARGET_INVALID;
}
retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
/* If the target fails to halt due to the breakpoint, force a halt */
if (retval != ERROR_OK || target->state != TARGET_HALTED) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, 500);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_TIMEOUT;
}
if (exit_point) {
/* PC value has been cached in cortex_m_debug_entry() */
uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
if (pc != exit_point) {
LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
pc, exit_point);
return ERROR_TARGET_ALGO_EXIT;
}
}
/* Read memory values to mem_params[] */
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction != PARAM_OUT) {
retval = target_read_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
}
/* Copy core register values to reg_params[] */
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction != PARAM_OUT) {
struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
reg_params[i].reg_name,
false);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR(
"BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
uint32_t regvalue;
regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
if (regvalue != armv7m_algorithm_info->context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
armv7m->arm.core_cache->reg_list[i].name,
armv7m_algorithm_info->context[i]);
buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
0, 32, armv7m_algorithm_info->context[i]);
armv7m->arm.core_cache->reg_list[i].valid = true;
armv7m->arm.core_cache->reg_list[i].dirty = true;
}
}
/* restore previous core mode */
if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
0, 1, armv7m_algorithm_info->core_mode);
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
}
armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
return retval;
}
/** Logs summary of ARMv7-M state for a halted target. */
int armv7m_arch_state(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
uint32_t ctrl, sp;
/* avoid filling log waiting for fileio reply */
if (target->semihosting && target->semihosting->hit_fileio)
return ERROR_OK;
ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
LOG_USER("target halted due to %s, current mode: %s %s\n"
"xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
debug_reason_name(target),
arm_mode_name(arm->core_mode),
armv7m_exception_string(armv7m->exception_number),
buf_get_u32(arm->cpsr->value, 0, 32),
buf_get_u32(arm->pc->value, 0, 32),
(ctrl & 0x02) ? 'p' : 'm',
sp,
(target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
(target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
return ERROR_OK;
}
static const struct reg_arch_type armv7m_reg_type = {
.get = armv7m_get_core_reg,
.set = armv7m_set_core_reg,
};
/** Builds cache of architecturally defined registers. */
struct reg_cache *armv7m_build_reg_cache(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
int num_regs = ARMV7M_NUM_REGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "arm v7m registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = armv7m_regs[i].id;
arch_info[i].target = target;
arch_info[i].arm = arm;
reg_list[i].name = armv7m_regs[i].name;
reg_list[i].size = armv7m_regs[i].bits;
reg_list[i].value = arch_info[i].value;
reg_list[i].dirty = false;
reg_list[i].valid = false;
reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
reg_list[i].type = &armv7m_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = armv7m_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
if (reg_list[i].hidden)
continue;
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = armv7m_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = armv7m_regs[i].type;
else
LOG_ERROR("unable to allocate reg type list");
}
arm->cpsr = reg_list + ARMV7M_xPSR;
arm->pc = reg_list + ARMV7M_PC;
arm->core_cache = cache;
return cache;
}
void armv7m_free_reg_cache(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
struct reg_cache *cache;
struct reg *reg;
unsigned int i;
cache = arm->core_cache;
if (!cache)
return;
for (i = 0; i < cache->num_regs; i++) {
reg = &cache->reg_list[i];
free(reg->feature);
free(reg->reg_data_type);
}
free(cache->reg_list[0].arch_info);
free(cache->reg_list);
free(cache);
arm->core_cache = NULL;
}
static int armv7m_setup_semihosting(struct target *target, int enable)
{
/* nothing todo for armv7m */
return ERROR_OK;
}
/** Sets up target as a generic ARMv7-M core */
int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
{
struct arm *arm = &armv7m->arm;
armv7m->common_magic = ARMV7M_COMMON_MAGIC;
armv7m->fp_feature = FP_NONE;
armv7m->trace_config.trace_bus_id = 1;
/* Enable stimulus port #0 by default */
armv7m->trace_config.itm_ter[0] = 1;
arm->core_state = ARM_STATE_THUMB;
arm->core_type = ARM_CORE_TYPE_M_PROFILE;
arm->arch_info = armv7m;
arm->setup_semihosting = armv7m_setup_semihosting;
arm->read_core_reg = armv7m_read_core_reg;
arm->write_core_reg = armv7m_write_core_reg;
return arm_init_arch_info(target, arm);
}
/** Generates a CRC32 checksum of a memory region. */
int armv7m_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct armv7m_algorithm armv7m_info;
struct reg_param reg_params[2];
int retval;
static const uint8_t cortex_m_crc_code[] = {
#include "../../contrib/loaders/checksum/armv7m_crc.inc"
};
retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target, crc_algorithm->address,
sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
if (retval != ERROR_OK)
goto cleanup;
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, count);
int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
timeout, &armv7m_info);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
else
LOG_ERROR("error executing cortex_m crc algorithm");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
cleanup:
target_free_working_area(target, crc_algorithm);
return retval;
}
/** Checks an array of memory regions whether they are erased. */
int armv7m_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
{
struct working_area *erase_check_algorithm;
struct working_area *erase_check_params;
struct reg_param reg_params[2];
struct armv7m_algorithm armv7m_info;
int retval;
static bool timed_out;
static const uint8_t erase_check_code[] = {
#include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
};
const uint32_t code_size = sizeof(erase_check_code);
/* make sure we have a working area */
if (target_alloc_working_area(target, code_size,
&erase_check_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
retval = target_write_buffer(target, erase_check_algorithm->address,
code_size, erase_check_code);
if (retval != ERROR_OK)
goto cleanup1;
/* prepare blocks array for algo */
struct algo_block {
union {
uint32_t size;
uint32_t result;
};
uint32_t address;
};
uint32_t avail = target_get_working_area_avail(target);
int blocks_to_check = avail / sizeof(struct algo_block) - 1;
if (num_blocks < blocks_to_check)
blocks_to_check = num_blocks;
struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
if (!params) {
retval = ERROR_FAIL;
goto cleanup1;
}
int i;
uint32_t total_size = 0;
for (i = 0; i < blocks_to_check; i++) {
total_size += blocks[i].size;
target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
blocks[i].size / sizeof(uint32_t));
target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
blocks[i].address);
}
target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
if (target_alloc_working_area(target, param_size,
&erase_check_params) != ERROR_OK) {
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup2;
}
retval = target_write_buffer(target, erase_check_params->address,
param_size, (uint8_t *)params);
if (retval != ERROR_OK)
goto cleanup3;
uint32_t erased_word = erased_value | (erased_value << 8)
| (erased_value << 16) | (erased_value << 24);
LOG_DEBUG("Starting erase check of %d blocks, parameters@"
TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, erased_word);
/* assume CPU clk at least 1 MHz */
int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
erase_check_algorithm->address,
erase_check_algorithm->address + (code_size - 2),
timeout,
&armv7m_info);
timed_out = retval == ERROR_TARGET_TIMEOUT;
if (retval != ERROR_OK && !timed_out)
goto cleanup4;
retval = target_read_buffer(target, erase_check_params->address,
param_size, (uint8_t *)params);
if (retval != ERROR_OK)
goto cleanup4;
for (i = 0; i < blocks_to_check; i++) {
uint32_t result = target_buffer_get_u32(target,
(uint8_t *)&(params[i].result));
if (result != 0 && result != 1)
break;
blocks[i].result = result;
}
if (i && timed_out)
LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
retval = i; /* return number of blocks really checked */
cleanup4:
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
cleanup3:
target_free_working_area(target, erase_check_params);
cleanup2:
free(params);
cleanup1:
target_free_working_area(target, erase_check_algorithm);
return retval;
}
int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct reg *r = armv7m->arm.pc;
bool result = false;
/* if we halted last time due to a bkpt instruction
* then we have to manually step over it, otherwise
* the core will break again */
if (target->debug_reason == DBG_REASON_BREAKPOINT) {
uint16_t op;
uint32_t pc = buf_get_u32(r->value, 0, 32);
pc &= ~1;
if (target_read_u16(target, pc, &op) == ERROR_OK) {
if ((op & 0xFF00) == 0xBE00) {
pc = buf_get_u32(r->value, 0, 32) + 2;
buf_set_u32(r->value, 0, 32, pc);
r->dirty = true;
r->valid = true;
result = true;
LOG_DEBUG("Skipping over BKPT instruction");
}
}
}
if (inst_found)
*inst_found = result;
return ERROR_OK;
}
const struct command_registration armv7m_command_handlers[] = {
{
.name = "arm",
.mode = COMMAND_ANY,
.help = "ARM command group",
.usage = "",
.chain = arm_all_profiles_command_handlers,
},
2009-11-23 15:43:06 +00:00
COMMAND_REGISTRATION_DONE
};