openocd/src/flash/nor/stm32f2x.c
Spencer Oliver 94db77a0e6 flash: add stm32f2x async flash loader
This enable the stm32f2x flash driver to use the asynchronous
algorithm support.

Speed increase is as follows:
before - wrote 1048576 bytes from file stm32f4x.bin in 30.453804s (33.625 KiB/s)
after - wrote 1048576 bytes from file stm32f4x.bin in 23.679497s (43.244 KiB/s)

This also fixes a bug that was in the old flash loader.
The old loader waited while bit16 of the status reg was 0, the new
loader waits until this bit is 0 as stated in the flash spec.
Bizarrely this bug did not effect programming on any tested parts.

Change-Id: I3efc94d42cbe81283673a8f4203700638080af6e
Signed-off-by: Spencer Oliver <spen@spen-soft.co.uk>
Reviewed-on: http://openocd.zylin.com/460
Tested-by: jenkins
2012-02-26 01:05:48 +00:00

833 lines
24 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* Regarding performance:
*
* Short story - it might be best to leave the performance at
* current levels.
*
* You may see a jump in speed if you change to using
* 32bit words for the block programming.
*
* Its a shame you cannot use the double word as its
* even faster - but you require external VPP for that mode.
*
* Having said all that 16bit writes give us the widest vdd
* operating range, so may be worth adding a note to that effect.
*
*/
/* Danger!!!! The STM32F1x and STM32F2x series actually have
* quite different flash controllers.
*
* What's more scary is that the names of the registers and their
* addresses are the same, but the actual bits and what they do are
* can be very different.
*
* To reduce testing complexity and dangers of regressions,
* a seperate file is used for stm32fx2x.
*
* 1mByte part with 4 x 16, 1 x 64, 7 x 128kBytes sectors
*
* What's the protection page size???
*
* Tested with STM3220F-EVAL board.
*
* STM32F21xx series for reference.
*
* RM0033
* http://www.st.com/internet/mcu/product/250192.jsp
*
* PM0059
* www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
* PROGRAMMING_MANUAL/CD00233952.pdf
*
* STM32F1x series - notice that this code was copy, pasted and knocked
* into a stm32f2x driver, so in case something has been converted or
* bugs haven't been fixed, here are the original manuals:
*
* RM0008 - Reference manual
*
* RM0042, the Flash programming manual for low-, medium- high-density and
* connectivity line STM32F10x devices
*
* PM0068, the Flash programming manual for XL-density STM32F10x devices.
*
*/
/* Erase time can be as high as 1000ms, 10x this and it's toast... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5
#define STM32_FLASH_BASE 0x40023c00
#define STM32_FLASH_ACR 0x40023c00
#define STM32_FLASH_KEYR 0x40023c04
#define STM32_FLASH_OPTKEYR 0x40023c08
#define STM32_FLASH_SR 0x40023c0C
#define STM32_FLASH_CR 0x40023c10
#define STM32_FLASH_OPTCR 0x40023c14
#define STM32_FLASH_OBR 0x40023c1C
/* option byte location */
#define STM32_OB_RDP 0x1FFFF800
#define STM32_OB_USER 0x1FFFF802
#define STM32_OB_DATA0 0x1FFFF804
#define STM32_OB_DATA1 0x1FFFF806
#define STM32_OB_WRP0 0x1FFFF808
#define STM32_OB_WRP1 0x1FFFF80A
#define STM32_OB_WRP2 0x1FFFF80C
#define STM32_OB_WRP3 0x1FFFF80E
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_SER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_STRT (1 << 16)
#define FLASH_PSIZE_8 (0 << 8)
#define FLASH_PSIZE_16 (1 << 8)
#define FLASH_PSIZE_32 (2 << 8)
#define FLASH_PSIZE_64 (3 << 8)
#define FLASH_SNB(a) ((a) << 3)
#define FLASH_LOCK (1 << 31)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 16)
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
#define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
#define FLASH_PGAERR (1 << 5) /* Programming alignment error */
#define FLASH_WRPERR (1 << 4) /* Write protection error */
#define FLASH_OPERR (1 << 1) /* Operation error */
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
#define OPT_BFB2 5 /* dual flash bank only */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
struct stm32x_flash_bank {
struct working_area *write_algorithm;
int probed;
};
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->write_algorithm = NULL;
stm32x_info->probed = 0;
return ERROR_OK;
}
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
return reg;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_ERROR) {
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
status & FLASH_ERROR);
}
return retval;
}
static int stm32x_unlock_reg(struct target *target)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers */
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %x", ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval;
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register
2. Set the SER bit and select the sector (out of the 12 sectors in the main memory block)
you wish to erase (SNB) in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
for (i = first; i <= last; i++) {
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
return ERROR_OK;
}
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* see contrib/loaders/flash/stm32f2x.S for src */
static const uint8_t stm32x_flash_write_code[] = {
/* wait_fifo: */
0xD0, 0xF8, 0x00, 0x80, /* ldr r8, [r0, #0] */
0xB8, 0xF1, 0x00, 0x0F, /* cmp r8, #0 */
0x1A, 0xD0, /* beq exit */
0x47, 0x68, /* ldr r7, [r0, #4] */
0x47, 0x45, /* cmp r7, r8 */
0xF7, 0xD0, /* beq wait_fifo */
0xDF, 0xF8, 0x30, 0x60, /* ldr r6, STM32_PROG16 */
0x26, 0x61, /* str r6, [r4, #STM32_FLASH_CR_OFFSET] */
0x37, 0xF8, 0x02, 0x6B, /* ldrh r6, [r7], #0x02 */
0x22, 0xF8, 0x02, 0x6B, /* strh r6, [r2], #0x02 */
/* busy: */
0xE6, 0x68, /* ldr r6, [r4, #STM32_FLASH_SR_OFFSET] */
0x16, 0xF4, 0x80, 0x3F, /* tst r6, #0x10000 */
0xFB, 0xD1, /* bne busy */
0x16, 0xF0, 0xF0, 0x0F, /* tst r6, #0xf0 */
0x07, 0xD1, /* bne error */
0x8F, 0x42, /* cmp r7, r1 */
0x28, 0xBF, /* it cs */
0x00, 0xF1, 0x08, 0x07, /* addcs r7, r0, #8 */
0x47, 0x60, /* str r7, [r0, #4] */
0x01, 0x3B, /* subs r3, r3, #1 */
0x13, 0xB1, /* cbz r3, exit */
0xE1, 0xE7, /* b wait_fifo */
/* error: */
0x00, 0x21, /* movs r1, #0 */
0x41, 0x60, /* str r1, [r0, #4] */
/* exit: */
0x30, 0x46, /* mov r0, r6 */
0x00, 0xBE, /* bkpt #0x00 */
/* <STM32_PROG16>: */
0x01, 0x01, 0x00, 0x00, /* .word 0x00000101 */
};
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&stm32x_info->write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
sizeof(stm32x_flash_write_code),
(uint8_t *)stm32x_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* if we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
if (stm32x_info->write_algorithm)
target_free_working_area(target, stm32x_info->write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
5, reg_params,
source->address, source->size,
stm32x_info->write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32x flash write algorithm");
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = %08x", error);
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, error);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, stm32x_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0) {
/* try using a block write */
retval = stm32x_write_block(bank, buffer, offset, words_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
} else {
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
return retval;
/*
Standard programming
The Flash memory programming sequence is as follows:
1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register.
2. Set the PG bit in the FLASH_CR register
3. Perform the data write operation(s) to the desired memory address (inside main
memory block or OTP area):
Half-word access in case of x16 parallelism
Word access in case of x32 parallelism
4.
Byte access in case of x8 parallelism
Double word access in case of x64 parallelism
Wait for the BSY bit to be cleared
*/
while (words_remaining > 0) {
uint16_t value;
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_PG | FLASH_PSIZE_16);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_PG | FLASH_PSIZE_8);
if (retval != ERROR_OK)
return retval;
retval = target_write_u8(target, address, buffer[bytes_written]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
}
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}
static void setup_sector(struct flash_bank *bank, int start, int num, int size)
{
for (int i = start; i < (start + num) ; i++) {
bank->sectors[i].offset = bank->size;
bank->sectors[i].size = size;
bank->size += bank->sectors[i].size;
}
}
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
/* this checks for a stm32f4x errata issue where a
* stm32f2x DBGMCU_IDCODE is incorrectly returned.
* If the issue is detected target is forced to stm32f4x Rev A.
* Only effects Rev A silicon */
struct target *target = bank->target;
uint32_t cpuid;
/* read stm32 device id register */
int retval = target_read_u32(target, 0xE0042000, device_id);
if (retval != ERROR_OK)
return retval;
if ((*device_id & 0xfff) == 0x411) {
/* read CPUID reg to check core type */
retval = target_read_u32(target, 0xE000ED00, &cpuid);
if (retval != ERROR_OK)
return retval;
/* check for cortex_m4 */
if (((cpuid >> 4) & 0xFFF) == 0xC24) {
*device_id &= ~((0xFFFF << 16) | 0xfff);
*device_id |= (0x1000 << 16) | 0x413;
LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
}
}
return retval;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = 0x08000000;
stm32x_info->probed = 0;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* get flash size from target. */
retval = target_read_u16(target, 0x1FFF7A22, &flash_size_in_kb);
if (retval != ERROR_OK) {
LOG_WARNING("failed reading flash size, default to max target family");
/* failed reading flash size, default to max target family */
flash_size_in_kb = 0xffff;
}
if ((device_id & 0xfff) == 0x411) {
/* check for early silicon */
if (flash_size_in_kb == 0xffff) {
/* number of sectors may be incorrrect on early silicon */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
flash_size_in_kb = 1024;
}
} else if ((device_id & 0xfff) == 0x413) {
/* check for early silicon */
if (flash_size_in_kb == 0xffff) {
/* number of sectors may be incorrrect on early silicon */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
flash_size_in_kb = 1024;
}
} else {
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
int num_pages = (flash_size_in_kb / 128) + 4;
/* check that calculation result makes sense */
assert(num_pages > 0);
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
bank->size = 0;
/* fixed memory */
setup_sector(bank, 0, 4, 16 * 1024);
setup_sector(bank, 4, 1, 64 * 1024);
/* dynamic memory */
setup_sector(bank, 4 + 1, num_pages - 5, 128 * 1024);
for (i = 0; i < num_pages; i++) {
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 0;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
uint32_t device_id;
int printed;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &device_id);
if (retval != ERROR_OK)
return retval;
if ((device_id & 0xfff) == 0x411) {
printed = snprintf(buf, buf_size, "stm32f2x - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
case 0x2001:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x413) {
printed = snprintf(buf, buf_size, "stm32f4x - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else {
snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 30000);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1) {
command_print(CMD_CTX, "stm32x mass_erase <bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "stm32x mass erase complete");
} else {
command_print(CMD_CTX, "stm32x mass erase failed");
}
return retval;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32f2x",
.mode = COMMAND_ANY,
.help = "stm32f2x flash command group",
.usage = "",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32f2x_flash = {
.name = "stm32f2x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_mem_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
};