openocd/src/target/armv7m.c

785 lines
25 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2009-07-16 00:08:21 +00:00
* *
* ARMv7-M Architecture, Application Level Reference Manual *
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2009-07-16 00:08:21 +00:00
* ARM DDI 0405C (September 2008) *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "armv7m.h"
#include "algorithm.h"
#include "register.h"
#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif
static char *armv7m_exception_strings[] = {
Magnus Lundin <lundin@mlu.mine.nu>, Oyvind Harboe <oyvind.harboe@zylin.com>, David Brownell <david-b@pacbell.net>: Some cleanup of the ARMv7-M support: - Reference the relevant ARMv7-M ARM doc (DDI 0405C to non-Vendors), and update the Cortex-M3 doc refs (DDI 0337C is no longer available). - Those registers aren't actually general, and some are incorrect (per all public docs anyway). Update comments and code accordingly. * What the Core Debug facility exposes is *implementation-specific* not architectural. These values aren't fully portable. They match Cortex-M3 ... so no current implementation will make trouble, but the next v7m implementation might. * Four of the registers are actually not exposed that way. Before Cortex-M3 r2p0 they are read/written through MRS/MSR instructions. In that newest silicon, they are four bytes in one register, not four separate registers. - Update the CM3 code to report when that one register is available, and not try to access it when it isn't. Also declare the register numbers that an eventual MRS/MSR solution will need to be using. - Stop line wrapping the exception labels. So for parts before r2p0 OpenOCD behavior is effectively unchanged, and still buggy; but for those newer parts a few things might now be correct. Most current Cortex-M3 parts use r1p1 (or earlier); this seems to include most LM3S parts and all STM32 parts. Parts using r2p0 are available, and include fourth generation LM3S parts ("Tempest") plus AT91SAM3 and LPC17xx parts which are now sampling. git-svn-id: svn://svn.berlios.de/openocd/trunk@2543 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2009-07-16 00:08:21 +00:00
"", "Reset", "NMI", "HardFault",
"MemManage", "BusFault", "UsageFault", "RESERVED",
"RESERVED", "RESERVED", "RESERVED", "SVCall",
"DebugMonitor", "RESERVED", "PendSV", "SysTick"
};
/* PSP is used in some thread modes */
const int armv7m_psp_reg_map[17] = {
ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
ARMV7M_xPSR,
};
/* MSP is used in handler and some thread modes */
const int armv7m_msp_reg_map[17] = {
ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
ARMV7M_xPSR,
};
/*
* These registers are not memory-mapped. The ARMv7-M profile includes
* memory mapped registers too, such as for the NVIC (interrupt controller)
* and SysTick (timer) modules; those can mostly be treated as peripherals.
*
* The ARMv6-M profile is almost identical in this respect, except that it
* doesn't include basepri or faultmask registers.
*/
static const struct {
unsigned id;
const char *name;
unsigned bits;
enum reg_type type;
const char *group;
const char *feature;
} armv7m_regs[] = {
{ ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
{ ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_CONTROL, "control", 2, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
};
#define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
/**
* Restores target context using the cache of core registers set up
* by armv7m_build_reg_cache(), calling optional core-specific hooks.
*/
int armv7m_restore_context(struct target *target)
{
int i;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct reg_cache *cache = armv7m->arm.core_cache;
LOG_DEBUG(" ");
if (armv7m->pre_restore_context)
armv7m->pre_restore_context(target);
for (i = ARMV7M_NUM_REGS - 1; i >= 0; i--) {
if (cache->reg_list[i].dirty) {
uint32_t value = buf_get_u32(cache->reg_list[i].value, 0, 32);
armv7m->arm.write_core_reg(target, &cache->reg_list[i], i, ARM_MODE_ANY, value);
}
}
return ERROR_OK;
}
/* Core state functions */
/**
* Maps ISR number (from xPSR) to name.
* Note that while names and meanings for the first sixteen are standardized
* (with zero not a true exception), external interrupts are only numbered.
* They are assigned by vendors, which generally assign different numbers to
* peripherals (such as UART0 or a USB peripheral controller).
*/
char *armv7m_exception_string(int number)
{
static char enamebuf[32];
if ((number < 0) | (number > 511))
return "Invalid exception";
if (number < 16)
return armv7m_exception_strings[number];
sprintf(enamebuf, "External Interrupt(%i)", number - 16);
return enamebuf;
}
static int armv7m_get_core_reg(struct reg *reg)
{
int retval;
struct arm_reg *armv7m_reg = reg->arch_info;
struct target *target = armv7m_reg->target;
struct arm *arm = target_to_arm(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = arm->read_core_reg(target, reg, armv7m_reg->num, arm->core_mode);
return retval;
}
static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct arm_reg *armv7m_reg = reg->arch_info;
struct target *target = armv7m_reg->target;
uint32_t value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = 1;
reg->valid = 1;
return ERROR_OK;
}
static int armv7m_read_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode)
{
uint32_t reg_value;
int retval;
struct arm_reg *armv7m_core_reg;
struct armv7m_common *armv7m = target_to_armv7m(target);
assert(num < (int)armv7m->arm.core_cache->num_regs);
armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
retval = armv7m->load_core_reg_u32(target,
armv7m_core_reg->num, &reg_value);
buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value);
armv7m->arm.core_cache->reg_list[num].valid = 1;
armv7m->arm.core_cache->reg_list[num].dirty = 0;
return retval;
}
static int armv7m_write_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode, uint32_t value)
{
int retval;
uint32_t reg_value;
struct arm_reg *armv7m_core_reg;
struct armv7m_common *armv7m = target_to_armv7m(target);
assert(num < (int)armv7m->arm.core_cache->num_regs);
reg_value = buf_get_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32);
armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
retval = armv7m->store_core_reg_u32(target,
armv7m_core_reg->num,
reg_value);
if (retval != ERROR_OK) {
LOG_ERROR("JTAG failure");
armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid;
return ERROR_JTAG_DEVICE_ERROR;
}
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, reg_value);
armv7m->arm.core_cache->reg_list[num].valid = 1;
armv7m->arm.core_cache->reg_list[num].dirty = 0;
return ERROR_OK;
}
/**
* Returns generic ARM userspace registers to GDB.
*/
int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
int i;
if (reg_class == REG_CLASS_ALL)
*reg_list_size = ARMV7M_NUM_REGS;
else
*reg_list_size = 17;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
if (*reg_list == NULL)
return ERROR_FAIL;
for (i = 0; i < *reg_list_size; i++)
(*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
return ERROR_OK;
}
/** Runs a Thumb algorithm in the target. */
int armv7m_run_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t entry_point, uint32_t exit_point,
int timeout_ms, void *arch_info)
{
int retval;
retval = armv7m_start_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
entry_point, exit_point,
arch_info);
if (retval == ERROR_OK)
retval = armv7m_wait_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
exit_point, timeout_ms,
arch_info);
return retval;
}
/** Starts a Thumb algorithm in the target. */
int armv7m_start_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t entry_point, uint32_t exit_point,
void *arch_info)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
enum arm_mode core_mode = armv7m->arm.core_mode;
int retval = ERROR_OK;
/* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV7M target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* refresh core register cache
* Not needed if core register cache is always consistent with target process state */
for (unsigned i = 0; i < ARMV7M_NUM_REGS; i++) {
armv7m_algorithm_info->context[i] = buf_get_u32(
armv7m->arm.core_cache->reg_list[i].value,
0,
32);
}
for (int i = 0; i < num_mem_params; i++) {
/* TODO: Write only out params */
retval = target_write_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
for (int i = 0; i < num_reg_params; i++) {
struct reg *reg =
register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
/* uint32_t regvalue; */
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
armv7m_set_core_reg(reg, reg_params[i].value);
}
if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
armv7m_algorithm_info->core_mode != core_mode) {
/* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
}
LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
0, 1, armv7m_algorithm_info->core_mode);
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
}
/* save previous core mode */
armv7m_algorithm_info->core_mode = core_mode;
retval = target_resume(target, 0, entry_point, 1, 1);
return retval;
}
/** Waits for an algorithm in the target. */
int armv7m_wait_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t exit_point, int timeout_ms,
void *arch_info)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
int retval = ERROR_OK;
uint32_t pc;
/* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV7M target");
return ERROR_TARGET_INVALID;
}
retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
/* If the target fails to halt due to the breakpoint, force a halt */
if (retval != ERROR_OK || target->state != TARGET_HALTED) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, 500);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_TIMEOUT;
}
armv7m->load_core_reg_u32(target, 15, &pc);
if (exit_point && (pc != exit_point)) {
LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" PRIx32,
pc,
exit_point);
return ERROR_TARGET_TIMEOUT;
}
/* Read memory values to mem_params[] */
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction != PARAM_OUT) {
retval = target_read_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
}
/* Copy core register values to reg_params[] */
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction != PARAM_OUT) {
struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
reg_params[i].reg_name,
0);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR(
"BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
for (int i = ARMV7M_NUM_REGS - 1; i >= 0; i--) {
uint32_t regvalue;
regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
if (regvalue != armv7m_algorithm_info->context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
armv7m->arm.core_cache->reg_list[i].name,
armv7m_algorithm_info->context[i]);
buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
0, 32, armv7m_algorithm_info->context[i]);
armv7m->arm.core_cache->reg_list[i].valid = 1;
armv7m->arm.core_cache->reg_list[i].dirty = 1;
}
}
/* restore previous core mode */
if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
0, 1, armv7m_algorithm_info->core_mode);
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = 1;
armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = 1;
}
armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
return retval;
}
/** Logs summary of ARMv7-M state for a halted target. */
int armv7m_arch_state(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
uint32_t ctrl, sp;
ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
LOG_USER("target halted due to %s, current mode: %s %s\n"
"xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s",
debug_reason_name(target),
arm_mode_name(arm->core_mode),
armv7m_exception_string(armv7m->exception_number),
buf_get_u32(arm->cpsr->value, 0, 32),
buf_get_u32(arm->pc->value, 0, 32),
(ctrl & 0x02) ? 'p' : 'm',
sp,
arm->is_semihosting ? ", semihosting" : "");
return ERROR_OK;
}
static const struct reg_arch_type armv7m_reg_type = {
.get = armv7m_get_core_reg,
.set = armv7m_set_core_reg,
};
/** Builds cache of architecturally defined registers. */
struct reg_cache *armv7m_build_reg_cache(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
int num_regs = ARMV7M_NUM_REGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "arm v7m registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = armv7m_regs[i].id;
arch_info[i].target = target;
arch_info[i].arm = arm;
reg_list[i].name = armv7m_regs[i].name;
reg_list[i].size = armv7m_regs[i].bits;
reg_list[i].value = calloc(1, 4);
reg_list[i].dirty = 0;
reg_list[i].valid = 0;
reg_list[i].type = &armv7m_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = armv7m_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = armv7m_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = armv7m_regs[i].type;
else
LOG_ERROR("unable to allocate reg type list");
}
arm->cpsr = reg_list + ARMV7M_xPSR;
arm->pc = reg_list + ARMV7M_PC;
arm->core_cache = cache;
return cache;
}
static int armv7m_setup_semihosting(struct target *target, int enable)
{
/* nothing todo for armv7m */
return ERROR_OK;
}
/** Sets up target as a generic ARMv7-M core */
int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
{
struct arm *arm = &armv7m->arm;
armv7m->common_magic = ARMV7M_COMMON_MAGIC;
armv7m->fp_feature = FP_NONE;
arm->core_type = ARM_MODE_THREAD;
arm->arch_info = armv7m;
arm->setup_semihosting = armv7m_setup_semihosting;
arm->read_core_reg = armv7m_read_core_reg;
arm->write_core_reg = armv7m_write_core_reg;
return arm_init_arch_info(target, arm);
}
/** Generates a CRC32 checksum of a memory region. */
int armv7m_checksum_memory(struct target *target,
uint32_t address, uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct armv7m_algorithm armv7m_info;
struct reg_param reg_params[2];
int retval;
/* see contrib/loaders/checksum/armv7m_crc.s for src */
static const uint8_t cortex_m_crc_code[] = {
/* main: */
0x02, 0x46, /* mov r2, r0 */
0x00, 0x20, /* movs r0, #0 */
0xC0, 0x43, /* mvns r0, r0 */
0x0A, 0x4E, /* ldr r6, CRC32XOR */
0x0B, 0x46, /* mov r3, r1 */
0x00, 0x24, /* movs r4, #0 */
0x0D, 0xE0, /* b ncomp */
/* nbyte: */
0x11, 0x5D, /* ldrb r1, [r2, r4] */
0x09, 0x06, /* lsls r1, r1, #24 */
0x48, 0x40, /* eors r0, r0, r1 */
0x00, 0x25, /* movs r5, #0 */
/* loop: */
0x00, 0x28, /* cmp r0, #0 */
0x02, 0xDA, /* bge notset */
0x40, 0x00, /* lsls r0, r0, #1 */
0x70, 0x40, /* eors r0, r0, r6 */
0x00, 0xE0, /* b cont */
/* notset: */
0x40, 0x00, /* lsls r0, r0, #1 */
/* cont: */
0x01, 0x35, /* adds r5, r5, #1 */
0x08, 0x2D, /* cmp r5, #8 */
0xF6, 0xD1, /* bne loop */
0x01, 0x34, /* adds r4, r4, #1 */
/* ncomp: */
0x9C, 0x42, /* cmp r4, r3 */
0xEF, 0xD1, /* bne nbyte */
0x00, 0xBE, /* bkpt #0 */
0xB7, 0x1D, 0xC1, 0x04 /* CRC32XOR: .word 0x04c11db7 */
};
retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target, crc_algorithm->address,
sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
if (retval != ERROR_OK)
goto cleanup;
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, count);
int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
timeout, &armv7m_info);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
else
LOG_ERROR("error executing cortex_m crc algorithm");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
cleanup:
target_free_working_area(target, crc_algorithm);
return retval;
}
/** Checks whether a memory region is zeroed. */
int armv7m_blank_check_memory(struct target *target,
uint32_t address, uint32_t count, uint32_t *blank)
{
struct working_area *erase_check_algorithm;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_info;
int retval;
/* see contrib/loaders/erase_check/armv7m_erase_check.s for src */
static const uint8_t erase_check_code[] = {
/* loop: */
0x03, 0x78, /* ldrb r3, [r0] */
0x01, 0x30, /* adds r0, #1 */
0x1A, 0x40, /* ands r2, r2, r3 */
0x01, 0x39, /* subs r1, r1, #1 */
0xFA, 0xD1, /* bne loop */
0x00, 0xBE /* bkpt #0 */
};
/* make sure we have a working area */
if (target_alloc_working_area(target, sizeof(erase_check_code),
&erase_check_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
retval = target_write_buffer(target, erase_check_algorithm->address,
sizeof(erase_check_code), (uint8_t *)erase_check_code);
if (retval != ERROR_OK)
return retval;
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, count);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[2].value, 0, 32, 0xff);
retval = target_run_algorithm(target,
0,
NULL,
3,
reg_params,
erase_check_algorithm->address,
erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
10000,
&armv7m_info);
if (retval == ERROR_OK)
*blank = buf_get_u32(reg_params[2].value, 0, 32);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
target_free_working_area(target, erase_check_algorithm);
return retval;
}
int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct reg *r = armv7m->arm.pc;
bool result = false;
/* if we halted last time due to a bkpt instruction
* then we have to manually step over it, otherwise
* the core will break again */
if (target->debug_reason == DBG_REASON_BREAKPOINT) {
uint16_t op;
uint32_t pc = buf_get_u32(r->value, 0, 32);
pc &= ~1;
if (target_read_u16(target, pc, &op) == ERROR_OK) {
if ((op & 0xFF00) == 0xBE00) {
pc = buf_get_u32(r->value, 0, 32) + 2;
buf_set_u32(r->value, 0, 32, pc);
r->dirty = true;
r->valid = true;
result = true;
LOG_DEBUG("Skipping over BKPT instruction");
}
}
}
if (inst_found)
*inst_found = result;
return ERROR_OK;
}
const struct command_registration armv7m_command_handlers[] = {
{
.chain = arm_command_handlers,
},
2009-11-23 15:43:06 +00:00
{
.chain = dap_command_handlers,
2009-11-23 15:43:06 +00:00
},
COMMAND_REGISTRATION_DONE
};