- ST STM32x cortex support added

- ST STM32x flash support added
- cleaned up armv7m and cortex-m3 support, removed luminary specific code
- cortex-m3 16bit read/write added (required for STM32x flash programming)

git-svn-id: svn://svn.berlios.de/openocd/trunk@177 b42882b7-edfa-0310-969c-e2dbd0fdcd60
This commit is contained in:
ntfreak 2007-06-24 15:04:07 +00:00
parent ffb51c23fd
commit 8c290412d2
13 changed files with 1276 additions and 326 deletions

View File

@ -1,5 +1,7 @@
INCLUDES = -I$(top_srcdir)/src/helper -I$(top_srcdir)/src/jtag -I$(top_srcdir)/src/target $(all_includes) INCLUDES = -I$(top_srcdir)/src/helper -I$(top_srcdir)/src/jtag -I$(top_srcdir)/src/target $(all_includes)
METASOURCES = AUTO METASOURCES = AUTO
noinst_LIBRARIES = libflash.a noinst_LIBRARIES = libflash.a
libflash_a_SOURCES = flash.c lpc2000.c cfi.c non_cfi.c at91sam7.c str7x.c str9x.c nand.c lpc3180_nand_controller.c stellaris.c str9xpec.c libflash_a_SOURCES = flash.c lpc2000.c cfi.c non_cfi.c at91sam7.c str7x.c str9x.c nand.c lpc3180_nand_controller.c \
noinst_HEADERS = flash.h lpc2000.h cfi.h non_cfi.h at91sam7.h str7x.h str9x.h nand.h lpc3180_nand_controller.h stellaris.h str9xpec.h stellaris.c str9xpec.c stm32x.c
noinst_HEADERS = flash.h lpc2000.h cfi.h non_cfi.h at91sam7.h str7x.h str9x.h nand.h lpc3180_nand_controller.h \
stellaris.h str9xpec.h stm32x.h

View File

@ -57,6 +57,7 @@ extern flash_driver_t str7x_flash;
extern flash_driver_t str9x_flash; extern flash_driver_t str9x_flash;
extern flash_driver_t stellaris_flash; extern flash_driver_t stellaris_flash;
extern flash_driver_t str9xpec_flash; extern flash_driver_t str9xpec_flash;
extern flash_driver_t stm32x_flash;
flash_driver_t *flash_drivers[] = flash_driver_t *flash_drivers[] =
{ {
@ -67,6 +68,7 @@ flash_driver_t *flash_drivers[] =
&str9x_flash, &str9x_flash,
&stellaris_flash, &stellaris_flash,
&str9xpec_flash, &str9xpec_flash,
&stm32x_flash,
NULL, NULL,
}; };

859
src/flash/stm32x.c Normal file
View File

@ -0,0 +1,859 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "replacements.h"
#include "stm32x.h"
#include "flash.h"
#include "target.h"
#include "log.h"
#include "armv7m.h"
#include "algorithm.h"
#include "binarybuffer.h"
#include <stdlib.h>
#include <string.h>
int stm32x_register_commands(struct command_context_s *cmd_ctx);
int stm32x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank);
int stm32x_erase(struct flash_bank_s *bank, int first, int last);
int stm32x_protect(struct flash_bank_s *bank, int set, int first, int last);
int stm32x_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count);
int stm32x_probe(struct flash_bank_s *bank);
int stm32x_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_protect_check(struct flash_bank_s *bank);
int stm32x_erase_check(struct flash_bank_s *bank);
int stm32x_info(struct flash_bank_s *bank, char *buf, int buf_size);
int stm32x_handle_lock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_unlock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_options_read_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_options_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int stm32x_handle_mass_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
flash_driver_t stm32x_flash =
{
.name = "stm32x",
.register_commands = stm32x_register_commands,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.probe = stm32x_probe,
.erase_check = stm32x_erase_check,
.protect_check = stm32x_protect_check,
.info = stm32x_info
};
int stm32x_register_commands(struct command_context_s *cmd_ctx)
{
command_t *stm32x_cmd = register_command(cmd_ctx, NULL, "stm32x", NULL, COMMAND_ANY, "stm32x flash specific commands");
register_command(cmd_ctx, stm32x_cmd, "lock", stm32x_handle_lock_command, COMMAND_EXEC,
"lock device");
register_command(cmd_ctx, stm32x_cmd, "unlock", stm32x_handle_unlock_command, COMMAND_EXEC,
"unlock protected device");
register_command(cmd_ctx, stm32x_cmd, "mass_erase", stm32x_handle_mass_erase_command, COMMAND_EXEC,
"mass erase device");
register_command(cmd_ctx, stm32x_cmd, "options_read", stm32x_handle_options_read_command, COMMAND_EXEC,
"read device option bytes");
register_command(cmd_ctx, stm32x_cmd, "options_write", stm32x_handle_options_write_command, COMMAND_EXEC,
"write device option bytes");
return ERROR_OK;
}
int stm32x_build_block_list(struct flash_bank_s *bank)
{
int i;
int num_sectors = 0;
switch (bank->size)
{
case 32 * 1024:
num_sectors = 32;
break;
case 64 * 1024:
num_sectors = 64;
break;
case 128 * 1024:
num_sectors = 128;
break;
default:
ERROR("BUG: unknown bank->size encountered");
exit(-1);
}
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(flash_sector_t) * num_sectors);
for (i = 0; i < num_sectors; i++)
{
bank->sectors[i].offset = i * 1024;
bank->sectors[i].size = 1024;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
return ERROR_OK;
}
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
int stm32x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank)
{
stm32x_flash_bank_t *stm32x_info;
if (argc < 6)
{
WARNING("incomplete flash_bank stm32x configuration");
return ERROR_FLASH_BANK_INVALID;
}
stm32x_info = malloc(sizeof(stm32x_flash_bank_t));
bank->driver_priv = stm32x_info;
if (bank->base != 0x08000000)
{
WARNING("overriding flash base address for STM32x device with 0x08000000");
bank->base = 0x08000000;
}
stm32x_info->target = get_target_by_num(strtoul(args[5], NULL, 0));
if (!stm32x_info->target)
{
ERROR("no target '%s' configured", args[5]);
exit(-1);
}
stm32x_build_block_list(bank);
stm32x_info->write_algorithm = NULL;
return ERROR_OK;
}
u32 stm32x_get_flash_status(flash_bank_t *bank)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 status;
target_read_u32(target, STM32_FLASH_SR, &status);
return status;
}
u32 stm32x_wait_status_busy(flash_bank_t *bank, int timeout)
{
u32 status;
/* wait for busy to clear */
while (((status = stm32x_get_flash_status(bank)) & FLASH_BSY) && (timeout-- > 0))
{
DEBUG("status: 0x%x", status);
usleep(1000);
}
return status;
}
int stm32x_blank_check(struct flash_bank_s *bank, int first, int last)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u8 *buffer;
int i;
int nBytes;
if ((first < 0) || (last > bank->num_sectors))
return ERROR_FLASH_SECTOR_INVALID;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
buffer = malloc(256);
for (i = first; i <= last; i++)
{
bank->sectors[i].is_erased = 1;
target->type->read_memory(target, bank->base + bank->sectors[i].offset, 4, 256/4, buffer);
for (nBytes = 0; nBytes < 256; nBytes++)
{
if (buffer[nBytes] != 0xFF)
{
bank->sectors[i].is_erased = 0;
break;
}
}
}
free(buffer);
return ERROR_OK;
}
int stm32x_protect_check(struct flash_bank_s *bank)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 protection;
int i, s;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* each bit refers to a 4bank protection */
target_read_u32(target, STM32_FLASH_WRPR, &protection);
for (i = 0; i < 32; i++)
{
int set = 1;
if( protection & (1 << i))
set = 0;
for (s = 0; s < 4; s++)
bank->sectors[(i * 4) + s].is_protected = set;
}
return ERROR_OK;
}
int stm32x_erase(struct flash_bank_s *bank, int first, int last)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
int i;
u32 status;
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
for (i = first; i <= last; i++)
{
target_write_u32(target, STM32_FLASH_CR, FLASH_PER);
target_write_u32(target, STM32_FLASH_AR, bank->base + bank->sectors[i].offset);
target_write_u32(target, STM32_FLASH_CR, FLASH_PER|FLASH_STRT);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
bank->sectors[i].is_erased = 1;
}
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}
int stm32x_protect(struct flash_bank_s *bank, int set, int first, int last)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_OK;
}
int stm32x_write_block(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 buffer_size = 8192;
working_area_t *source;
u32 address = bank->base + offset;
reg_param_t reg_params[6];
armv7m_algorithm_t armv7m_info;
int retval = ERROR_OK;
u8 stm32x_flash_write_code[] = {
/* write: */
0xDF, 0xF8, 0x24, 0x40, /* ldr r4, STM32_FLASH_CR */
0x09, 0x4D, /* ldr r5, STM32_FLASH_SR */
0x4F, 0xF0, 0x01, 0x03, /* mov r3, #1 */
0x23, 0x60, /* str r3, [r4, #0] */
0x30, 0xF8, 0x02, 0x3B, /* ldrh r3, [r0], #2 */
0x21, 0xF8, 0x02, 0x3B, /* strh r3, [r1], #2 */
/* busy: */
0x2B, 0x68, /* ldr r3, [r5, #0] */
0x13, 0xF0, 0x01, 0x0F, /* tst r3, #0x01 */
0xFB, 0xD0, /* beq busy */
0x13, 0xF0, 0x14, 0x0F, /* tst r3, #0x14 */
0x01, 0xD1, /* bne exit */
0x01, 0x3A, /* subs r2, r2, #1 */
0xED, 0xD1, /* bne write */
/* exit: */
0xFE, 0xE7, /* b exit */
0x10, 0x20, 0x02, 0x40, /* STM32_FLASH_CR: .word 0x40022010 */
0x0C, 0x20, 0x02, 0x40 /* STM32_FLASH_SR: .word 0x4002200C */
};
/* flash write code */
if (!stm32x_info->write_algorithm)
{
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &stm32x_info->write_algorithm) != ERROR_OK)
{
WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
target_write_buffer(target, stm32x_info->write_algorithm->address, sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
}
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (stm32x_info->write_algorithm)
target_free_working_area(target, stm32x_info->write_algorithm);
WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
armv7m_info.core_state = ARMV7M_STATE_THUMB;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN);
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
while (count > 0)
{
u32 thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
target_write_buffer(target, source->address, thisrun_count * 2, buffer);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
if ((retval = target->type->run_algorithm(target, 0, NULL, 6, reg_params, stm32x_info->write_algorithm->address, \
stm32x_info->write_algorithm->address + (sizeof(stm32x_flash_write_code) - 10), 10000, &armv7m_info)) != ERROR_OK)
{
ERROR("error executing str7x flash write algorithm");
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & 0x14)
{
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
return retval;
}
int stm32x_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count)
{
stm32x_flash_bank_t *stm32x_info = bank->driver_priv;
target_t *target = stm32x_info->target;
u32 words_remaining = (count / 2);
u32 bytes_remaining = (count & 0x00000001);
u32 address = bank->base + offset;
u32 bytes_written = 0;
u8 status;
u32 retval;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
WARNING("offset 0x%x breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0)
{
/* try using a block write */
if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
WARNING("couldn't use block writes, falling back to single memory accesses");
}
else if (retval == ERROR_FLASH_OPERATION_FAILED)
{
ERROR("flash writing failed with error code: 0x%x", retval);
return ERROR_FLASH_OPERATION_FAILED;
}
}
else
{
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
while (words_remaining > 0)
{
target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
target_write_u16(target, address, *(u16*)(buffer + bytes_written));
status = stm32x_wait_status_busy(bank, 5);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining)
{
u8 last_halfword[2] = {0xff, 0xff};
int i = 0;
while(bytes_remaining > 0)
{
last_halfword[i++] = *(buffer + bytes_written);
bytes_remaining--;
bytes_written++;
}
target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
target_write_u16(target, address, *(u16*)last_halfword);
status = stm32x_wait_status_busy(bank, 5);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
}
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}
int stm32x_probe(struct flash_bank_s *bank)
{
return ERROR_OK;
}
int stm32x_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
return ERROR_OK;
}
int stm32x_erase_check(struct flash_bank_s *bank)
{
return stm32x_blank_check(bank, 0, bank->num_sectors - 1);
}
int stm32x_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
snprintf(buf, buf_size, "stm32x flash driver info" );
return ERROR_OK;
}
int stm32x_handle_lock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 status;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x lock <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* erase option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_OPTWRE);
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_STRT|FLASH_OPTWRE);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE);
/* set readout protection */
target_write_u16(target, STM32_OB_ADR, 0);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
command_print(cmd_ctx, "stm32x locked");
return ERROR_OK;
}
int stm32x_handle_unlock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 status;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x unlock <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* erase option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_OPTWRE);
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_STRT|FLASH_OPTWRE);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE);
/* clear readout protection and complementary option bytes */
target_write_u16(target, STM32_OB_ADR, 0x5AA5);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
command_print(cmd_ctx, "stm32x unlocked");
return ERROR_OK;
}
int stm32x_handle_options_read_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 optionbyte;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x options_read <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
//target_read_u32(target, STM32_OB_ADR, &optionbyte);
//command_print(cmd_ctx, "Option Byte 0: 0x%x", optionbyte);
//target_read_u32(target, STM32_OB_ADR+4, &optionbyte);
//command_print(cmd_ctx, "Option Byte 1: 0x%x", optionbyte);
//target_read_u32(target, STM32_OB_ADR+8, &optionbyte);
//command_print(cmd_ctx, "Option Byte 2: 0x%x", optionbyte);
//target_read_u32(target, STM32_OB_ADR+12, &optionbyte);
//command_print(cmd_ctx, "Option Byte 3: 0x%x", optionbyte);
target_read_u32(target, STM32_FLASH_OBR, &optionbyte);
command_print(cmd_ctx, "Option Byte: 0x%x", optionbyte);
if (buf_get_u32((u8*)&optionbyte, OPT_ERROR, 1))
command_print(cmd_ctx, "Option Byte Complement Error");
if (buf_get_u32((u8*)&optionbyte, OPT_READOUT, 1))
command_print(cmd_ctx, "Readout Protection On");
else
command_print(cmd_ctx, "Readout Protection Off");
if (buf_get_u32((u8*)&optionbyte, OPT_RDWDGSW, 1))
command_print(cmd_ctx, "Software Watchdog");
else
command_print(cmd_ctx, "Hardware Watchdog");
if (buf_get_u32((u8*)&optionbyte, OPT_RDRSTSTOP, 1))
command_print(cmd_ctx, "Stop: No reset generated");
else
command_print(cmd_ctx, "Stop: Reset generated");
if (buf_get_u32((u8*)&optionbyte, OPT_RDRSTSTDBY, 1))
command_print(cmd_ctx, "Standby: No reset generated");
else
command_print(cmd_ctx, "Standby: Reset generated");
return ERROR_OK;
}
int stm32x_handle_options_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
u16 optionbyte = 0xF8;
u32 status;
if (argc < 4)
{
command_print(cmd_ctx, "stm32x options_write <bank> <RSTSTNDBY|NORSTSTNDBY> <RSTSTOP|NORSTSTOP> <SWWDG|HWWDG>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
if (strcmp(args[1], "SWWDG") == 0)
{
optionbyte |= (1<<0);
}
else
{
optionbyte &= ~(1<<0);
}
if (strcmp(args[2], "NORSTSTNDBY") == 0)
{
optionbyte |= (1<<1);
}
else
{
optionbyte &= ~(1<<1);
}
if (strcmp(args[3], "NORSTSTOP") == 0)
{
optionbyte |= (1<<2);
}
else
{
optionbyte &= ~(1<<2);
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE);
/* write option byte */
target_write_u16(target, STM32_OB_ADR + 2, optionbyte);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}
int stm32x_handle_mass_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
flash_bank_t *bank;
u32 status;
target_t *target = NULL;
stm32x_flash_bank_t *stm32x_info = NULL;
if (argc < 1)
{
command_print(cmd_ctx, "stm32x mass_erase <bank>");
return ERROR_OK;
}
bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!bank)
{
command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
stm32x_info = bank->driver_priv;
target = stm32x_info->target;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* mass erase flash memory */
target_write_u32(target, STM32_FLASH_CR, FLASH_MER);
target_write_u32(target, STM32_FLASH_CR, FLASH_MER|FLASH_STRT);
status = stm32x_wait_status_busy(bank, 10);
if( status & FLASH_WRPRTERR )
return ERROR_FLASH_OPERATION_FAILED;
if( status & FLASH_PGERR )
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}

84
src/flash/stm32x.h Normal file
View File

@ -0,0 +1,84 @@
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef STM32X_H
#define STM32X_H
#include "flash.h"
#include "target.h"
typedef struct stm32x_flash_bank_s
{
struct target_s *target;
working_area_t *write_algorithm;
} stm32x_flash_bank_t;
/* stm32x register locations */
#define STM32_FLASH_ACR 0x40022000
#define STM32_FLASH_KEYR 0x40022004
#define STM32_FLASH_OPTKEYR 0x40022008
#define STM32_FLASH_SR 0x4002200C
#define STM32_FLASH_CR 0x40022010
#define STM32_FLASH_AR 0x40022014
#define STM32_FLASH_OBR 0x4002201C
#define STM32_FLASH_WRPR 0x40022020
/* option byte location */
#define STM32_OB_ADR 0x1FFFF800
/* FLASH_CR register bits */
#define FLASH_PG (1<<0)
#define FLASH_PER (1<<1)
#define FLASH_MER (1<<2)
#define FLASH_OPTPG (1<<4)
#define FLASH_OPTER (1<<5)
#define FLASH_STRT (1<<6)
#define FLASH_LOCK (1<<7)
#define FLASH_OPTWRE (1<<9)
/* FLASH_SR regsiter bits */
#define FLASH_BSY (1<<0)
#define FLASH_PGERR (1<<2)
#define FLASH_WRPRTERR (1<<4)
#define FLASH_EOP (1<<5)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
typedef struct stm32x_mem_layout_s {
u32 sector_start;
u32 sector_size;
} stm32x_mem_layout_t;
#endif /* STM32X_H */

View File

@ -346,7 +346,7 @@ int evaluate_load_store(u32 opcode, u32 address, arm_instruction_t *instruction)
if (offset_12) if (offset_12)
snprintf(offset, 32, ", #%s0x%x", (U) ? "" : "-", offset_12); snprintf(offset, 32, ", #%s0x%x", (U) ? "" : "-", offset_12);
else else
snprintf(offset, 32, ""); snprintf(offset, 32, "%s", "");
instruction->info.load_store.offset_mode = 0; instruction->info.load_store.offset_mode = 0;
instruction->info.load_store.offset.offset = offset_12; instruction->info.load_store.offset.offset = offset_12;

View File

@ -129,8 +129,10 @@ enum armv7m_runcontext armv7m_get_context(target_t *target)
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
if (armv7m->process_context == armv7m->core_cache) return ARMV7M_PROCESS_CONTEXT; if (armv7m->process_context == armv7m->core_cache)
if (armv7m->debug_context == armv7m->core_cache) return ARMV7M_DEBUG_CONTEXT; return ARMV7M_PROCESS_CONTEXT;
if (armv7m->debug_context == armv7m->core_cache)
return ARMV7M_DEBUG_CONTEXT;
ERROR("Invalid runcontext"); ERROR("Invalid runcontext");
exit(-1); exit(-1);
@ -177,9 +179,11 @@ int armv7m_use_context(target_t *target, enum armv7m_runcontext new_ctx)
char enamebuf[32]; char enamebuf[32];
char *armv7m_exception_string(int number) char *armv7m_exception_string(int number)
{ {
if ((number<0)|(number>511)) return "Invalid exception"; if ((number < 0) | (number > 511))
if (number<16) return armv7m_exception_strings[number]; return "Invalid exception";
sprintf(enamebuf,"External Interrupt(%i)",number-16); if (number < 16)
return armv7m_exception_strings[number];
sprintf(enamebuf, "External Interrupt(%i)", number - 16);
return enamebuf; return enamebuf;
} }
@ -252,26 +256,22 @@ int armv7m_write_core_reg(struct target_s *target, int num)
if ((num < 0) || (num >= ARMV7NUMCOREREGS)) if ((num < 0) || (num >= ARMV7NUMCOREREGS))
return ERROR_INVALID_ARGUMENTS; return ERROR_INVALID_ARGUMENTS;
reg_value = buf_get_u32(armv7m->core_cache->reg_list[num].value, 0, 32); reg_value = buf_get_u32(armv7m->core_cache->reg_list[num].value, 0, 32);
armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info; armv7m_core_reg = armv7m->core_cache->reg_list[num].arch_info;
retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, reg_value); retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, reg_value);
if (retval != ERROR_OK) if (retval != ERROR_OK)
{ {
ERROR("JTAG failure"); ERROR("JTAG failure");
armv7m->core_cache->reg_list[num].dirty=1; armv7m->core_cache->reg_list[num].dirty=1;
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
} }
DEBUG("write core reg %i value 0x%x",num ,reg_value); DEBUG("write core reg %i value 0x%x",num ,reg_value);
armv7m->core_cache->reg_list[num].valid=1; armv7m->core_cache->reg_list[num].valid=1;
armv7m->core_cache->reg_list[num].dirty=0; armv7m->core_cache->reg_list[num].dirty=0;
return ERROR_OK; return ERROR_OK;
} }
int armv7m_invalidate_core_regs(target_t *target) int armv7m_invalidate_core_regs(target_t *target)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
@ -287,14 +287,12 @@ int armv7m_invalidate_core_regs(target_t *target)
return ERROR_OK; return ERROR_OK;
} }
int armv7m_get_gdb_reg_list(target_t *target, reg_t **reg_list[], int *reg_list_size) int armv7m_get_gdb_reg_list(target_t *target, reg_t **reg_list[], int *reg_list_size)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
int i; int i;
if (target->state != TARGET_HALTED) if (target->state != TARGET_HALTED)
{ {
return ERROR_TARGET_NOT_HALTED; return ERROR_TARGET_NOT_HALTED;
@ -306,7 +304,7 @@ int armv7m_get_gdb_reg_list(target_t *target, reg_t **reg_list[], int *reg_list_
/* TODOLATER correct list of registers, names ? */ /* TODOLATER correct list of registers, names ? */
for (i = 0; i < *reg_list_size; i++) for (i = 0; i < *reg_list_size; i++)
{ {
if (i<ARMV7NUMCOREREGS) if (i < ARMV7NUMCOREREGS)
(*reg_list)[i] = &armv7m->process_context->reg_list[i]; (*reg_list)[i] = &armv7m->process_context->reg_list[i];
//(*reg_list)[i] = &armv7m->core_cache->reg_list[i]; //(*reg_list)[i] = &armv7m->core_cache->reg_list[i];
else else
@ -382,7 +380,7 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
armv7m_set_core_reg(reg, reg_params[i].value); armv7m_set_core_reg(reg, reg_params[i].value);
} }
/* ARMV7M always runs in Tumb state */ /* ARMV7M always runs in Thumb state */
exit_breakpoint_size = 2; exit_breakpoint_size = 2;
if ((retval = breakpoint_add(target, exit_point, exit_breakpoint_size, BKPT_SOFT)) != ERROR_OK) if ((retval = breakpoint_add(target, exit_point, exit_breakpoint_size, BKPT_SOFT)) != ERROR_OK)
{ {
@ -415,7 +413,7 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
} }
} }
armv7m->load_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 15, &pc); armv7m->load_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 15, &pc);
DEBUG("failed algoritm halted at 0x%x ",pc); DEBUG("failed algoritm halted at 0x%x ", pc);
retval = ERROR_TARGET_TIMEOUT; retval = ERROR_TARGET_TIMEOUT;
} }
} }
@ -450,7 +448,7 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
exit(-1); exit(-1);
} }
armv7m_core_reg_t * armv7m_core_reg = reg->arch_info; armv7m_core_reg_t *armv7m_core_reg = reg->arch_info;
//armv7m->load_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, &regvalue); //armv7m->load_core_reg_u32(target, armv7m_core_reg->type, armv7m_core_reg->num, &regvalue);
//buf_set_u32(reg_params[i].value, 0, 32, regvalue); //buf_set_u32(reg_params[i].value, 0, 32, regvalue);
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32)); buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
@ -464,11 +462,9 @@ int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem_param_
// armv7m->core_cache->reg_list[i].dirty = 1; // armv7m->core_cache->reg_list[i].dirty = 1;
//} //}
// ????armv7m->core_state = core_state; // ????armv7m->core_state = core_state;
// ????armv7m->core_mode = core_mode; // ????armv7m->core_mode = core_mode;
return retval; return retval;
} }
@ -478,20 +474,19 @@ int armv7m_arch_state(struct target_s *target, char *buf, int buf_size)
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
snprintf(buf, buf_size, snprintf(buf, buf_size,
"target halted in %s state due to %s, current mode: %s %s\nxPSR: 0x%8.8x pc: 0x%8.8x", "target halted in %s state due to %s, current mode: %s %s\nxPSR: 0x%8.8x pc: 0x%8.8x",
armv7m_state_strings[armv7m->core_state], armv7m_state_strings[armv7m->core_state],
target_debug_reason_strings[target->debug_reason], target_debug_reason_strings[target->debug_reason],
armv7m_mode_strings[armv7m->core_mode], armv7m_mode_strings[armv7m->core_mode],
armv7m_exception_string(armv7m->exception_number), armv7m_exception_string(armv7m->exception_number),
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32), buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32),
buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32)); buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32));
return ERROR_OK; return ERROR_OK;
} }
reg_cache_t *armv7m_build_reg_cache(target_t *target) reg_cache_t *armv7m_build_reg_cache(target_t *target)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
arm_jtag_t *jtag_info = &armv7m->jtag_info; arm_jtag_t *jtag_info = &armv7m->jtag_info;
@ -560,16 +555,13 @@ reg_cache_t *armv7m_build_reg_cache(target_t *target)
int armv7m_init_target(struct command_context_s *cmd_ctx, struct target_s *target) int armv7m_init_target(struct command_context_s *cmd_ctx, struct target_s *target)
{ {
armv7m_build_reg_cache(target); armv7m_build_reg_cache(target);
return ERROR_OK; return ERROR_OK;
} }
int armv7m_init_arch_info(target_t *target, armv7m_common_t *armv7m) int armv7m_init_arch_info(target_t *target, armv7m_common_t *armv7m)
{ {
/* register arch-specific functions */ /* register arch-specific functions */
target->arch_info = armv7m; target->arch_info = armv7m;
@ -580,11 +572,9 @@ int armv7m_init_arch_info(target_t *target, armv7m_common_t *armv7m)
return ERROR_OK; return ERROR_OK;
} }
int armv7m_register_commands(struct command_context_s *cmd_ctx) int armv7m_register_commands(struct command_context_s *cmd_ctx)
{ {
int retval; int retval;
return ERROR_OK; return ERROR_OK;
} }

View File

@ -26,7 +26,6 @@
#include "target.h" #include "target.h"
#include "arm_jtag.h" #include "arm_jtag.h"
enum armv7m_mode enum armv7m_mode
{ {
ARMV7M_MODE_HANDLER = 0, ARMV7M_MODE_HANDLER = 0,
@ -56,17 +55,18 @@ enum armv7m_runcontext
}; };
extern char* armv7m_state_strings[]; extern char* armv7m_state_strings[];
extern char* armv7m_exception_strings[];
//#define ARMV7NUMCOREREGS 23 extern char *armv7m_exception_string(int number);
/* offsets into armv7m core register cache */ /* offsets into armv7m core register cache */
enum enum
{ {
ARMV7M_PC = 15, ARMV7M_PC = 15,
ARMV7M_xPSR = 16, ARMV7M_xPSR = 16,
ARMV7M_MSP , ARMV7M_MSP,
ARMV7M_PSP , ARMV7M_PSP,
ARMV7M_PRIMASK , ARMV7M_PRIMASK,
ARMV7M_BASEPRI, ARMV7M_BASEPRI,
ARMV7M_FAULTMASK, ARMV7M_FAULTMASK,
ARMV7M_CONTROL, ARMV7M_CONTROL,
@ -163,8 +163,9 @@ extern int armv7m_run_algorithm(struct target_s *target, int num_mem_params, mem
extern int armv7m_invalidate_core_regs(target_t *target); extern int armv7m_invalidate_core_regs(target_t *target);
extern enum armv7m_runcontext armv7m_get_context(target_t *target);
extern int armv7m_use_context(target_t *target, enum armv7m_runcontext new_ctx);
extern enum armv7m_runcontext armv7m_get_context(target_t *target);
/* Thumb mode instructions /* Thumb mode instructions
*/ */

View File

@ -71,13 +71,15 @@ int breakpoint_add(target_t *target, u32 address, u32 length, enum breakpoint_ty
{ {
case ERROR_TARGET_RESOURCE_NOT_AVAILABLE: case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
INFO("can't add %s breakpoint, resource not available", breakpoint_type_strings[(*breakpoint_p)->type]); INFO("can't add %s breakpoint, resource not available", breakpoint_type_strings[(*breakpoint_p)->type]);
free (*breakpoint_p); free((*breakpoint_p)->orig_instr);
free(*breakpoint_p);
*breakpoint_p = NULL; *breakpoint_p = NULL;
return retval; return retval;
break; break;
case ERROR_TARGET_NOT_HALTED: case ERROR_TARGET_NOT_HALTED:
INFO("can't add breakpoint while target is running"); INFO("can't add breakpoint while target is running");
free (*breakpoint_p); free((*breakpoint_p)->orig_instr);
free(*breakpoint_p);
*breakpoint_p = NULL; *breakpoint_p = NULL;
return retval; return retval;
break; break;

View File

@ -28,6 +28,7 @@
#include "replacements.h" #include "replacements.h"
#include "cortex_m3.h" #include "cortex_m3.h"
#include "armv7m.h"
#include "register.h" #include "register.h"
#include "target.h" #include "target.h"
@ -88,7 +89,6 @@ target_type_t cortexm3_target =
int cortex_m3_clear_halt(target_t *target) int cortex_m3_clear_halt(target_t *target)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
@ -110,11 +110,11 @@ int cortex_m3_single_step_core(target_t *target)
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info; swjdp_common_t *swjdp = &cortex_m3->swjdp_info;
if (!(cortex_m3->dcb_dhcsr&C_MASKINTS)) if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN ); ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN );
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN ); ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN );
cortex_m3->dcb_dhcsr |= C_MASKINTS; cortex_m3->dcb_dhcsr |= C_MASKINTS;
DEBUG(""); DEBUG(" ");
cortex_m3_clear_halt(target); cortex_m3_clear_halt(target);
return ERROR_OK; return ERROR_OK;
@ -134,7 +134,7 @@ int cortex_m3_exec_opcode(target_t *target,u32 opcode, int len /* MODE, r0_inval
ahbap_write_system_u32(swjdp, 0x20000000, opcode); ahbap_write_system_u32(swjdp, 0x20000000, opcode);
ahbap_write_coreregister_u32(swjdp, 0x20000000, 15); ahbap_write_coreregister_u32(swjdp, 0x20000000, 15);
cortex_m3_single_step_core(target); cortex_m3_single_step_core(target);
armv7m->core_cache->reg_list[15].dirty=1; armv7m->core_cache->reg_list[15].dirty = 1;
retvalue = ahbap_write_system_atomic_u32(swjdp, 0x20000000, savedram); retvalue = ahbap_write_system_atomic_u32(swjdp, 0x20000000, savedram);
} }
@ -162,15 +162,15 @@ int cortex_m3_endreset_event(target_t *target)
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info; swjdp_common_t *swjdp = &cortex_m3->swjdp_info;
cortex_m3_fp_comparator_t *fp_list = cortex_m3->fp_comparator_list; cortex_m3_fp_comparator_t *fp_list = cortex_m3->fp_comparator_list;
cortex_m3_dwt_comparator_t * dwt_list = cortex_m3->dwt_comparator_list; cortex_m3_dwt_comparator_t *dwt_list = cortex_m3->dwt_comparator_list;
DEBUG(""); DEBUG(" ");
/* Enable debug requests */ /* Enable debug requests */
ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if (!(cortex_m3->dcb_dhcsr&C_DEBUGEN)) if (!(cortex_m3->dcb_dhcsr&C_DEBUGEN))
ahbap_write_system_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN ); ahbap_write_system_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN );
/* Enable trace and dwt */ /* Enable trace and dwt */
ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA|VC_HARDERR|VC_BUSERR|VC_CORERESET ); ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET );
/* Monitor bus faults */ /* Monitor bus faults */
ahbap_write_system_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA ); ahbap_write_system_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA );
@ -178,17 +178,17 @@ int cortex_m3_endreset_event(target_t *target)
target_write_u32(target, FP_CTRL, 3); target_write_u32(target, FP_CTRL, 3);
/* Restore FPB registers */ /* Restore FPB registers */
for (i=0;i<cortex_m3->fp_num_code+cortex_m3->fp_num_lit;i++) for ( i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
{ {
target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value); target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
} }
/* Restore DWT registers */ /* Restore DWT registers */
for (i=0;i<cortex_m3->dwt_num_comp;i++) for ( i = 0; i < cortex_m3->dwt_num_comp; i++)
{ {
target_write_u32(target, dwt_list[i].dwt_comparator_address, dwt_list[i].comp); target_write_u32(target, dwt_list[i].dwt_comparator_address, dwt_list[i].comp);
target_write_u32(target, dwt_list[i].dwt_comparator_address|0x4, dwt_list[i].mask); target_write_u32(target, dwt_list[i].dwt_comparator_address | 0x4, dwt_list[i].mask);
target_write_u32(target, dwt_list[i].dwt_comparator_address|0x8, dwt_list[i].function); target_write_u32(target, dwt_list[i].dwt_comparator_address | 0x8, dwt_list[i].function);
} }
/* Make sure working_areas are all free */ /* Make sure working_areas are all free */
@ -211,7 +211,7 @@ int cortex_m3_examine_debug_reason(target_t *target)
/* only check the debug reason if we don't know it already */ /* only check the debug reason if we don't know it already */
if ((target->debug_reason != DBG_REASON_DBGRQ) if ((target->debug_reason != DBG_REASON_DBGRQ)
&& (target->debug_reason != DBG_REASON_SINGLESTEP)) && (target->debug_reason != DBG_REASON_SINGLESTEP))
{ {
/* INCOPMPLETE */ /* INCOPMPLETE */
@ -231,7 +231,7 @@ int cortex_m3_examine_debug_reason(target_t *target)
int cortex_m3_examine_exception_reason(target_t *target) int cortex_m3_examine_exception_reason(target_t *target)
{ {
u32 shcsr,except_sr,cfsr=-1,except_ar=-1; u32 shcsr, except_sr, cfsr = -1, except_ar = -1;
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
@ -245,7 +245,7 @@ int cortex_m3_examine_exception_reason(target_t *target)
break; break;
case 3: /* Hard Fault */ case 3: /* Hard Fault */
ahbap_read_system_atomic_u32(swjdp, NVIC_HFSR, &except_sr); ahbap_read_system_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
if (except_sr&0x40000000) if (except_sr & 0x40000000)
{ {
ahbap_read_system_u32(swjdp, NVIC_CFSR, &cfsr); ahbap_read_system_u32(swjdp, NVIC_CFSR, &cfsr);
} }
@ -262,28 +262,24 @@ int cortex_m3_examine_exception_reason(target_t *target)
ahbap_read_system_u32(swjdp, NVIC_CFSR, &except_sr); ahbap_read_system_u32(swjdp, NVIC_CFSR, &except_sr);
break; break;
case 11: /* SVCall */ case 11: /* SVCall */
break; break;
case 12: /* Debug Monitor */ case 12: /* Debug Monitor */
ahbap_read_system_u32(swjdp, NVIC_DFSR, &except_sr); ahbap_read_system_u32(swjdp, NVIC_DFSR, &except_sr);
break; break;
case 14: /* PendSV */ case 14: /* PendSV */
break; break;
case 15: /* SysTick */ case 15: /* SysTick */
break; break;
default: default:
except_sr = 0; except_sr = 0;
break; break;
} }
swjdp_transaction_endcheck(swjdp); swjdp_transaction_endcheck(swjdp);
DEBUG("%s SHCSR 0x%x, SR 0x%x, CFSR 0x%x, AR 0x%x",armv7m_exception_string(armv7m->exception_number),shcsr,except_sr,cfsr, except_ar); DEBUG("%s SHCSR 0x%x, SR 0x%x, CFSR 0x%x, AR 0x%x", armv7m_exception_string(armv7m->exception_number), \
shcsr, except_sr, cfsr, except_ar);
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_debug_entry(target_t *target) int cortex_m3_debug_entry(target_t *target)
{ {
int i, irq_is_pending; int i, irq_is_pending;
@ -295,7 +291,7 @@ int cortex_m3_debug_entry(target_t *target)
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info; swjdp_common_t *swjdp = &cortex_m3->swjdp_info;
DEBUG(""); DEBUG(" ");
if (armv7m->pre_debug_entry) if (armv7m->pre_debug_entry)
armv7m->pre_debug_entry(target); armv7m->pre_debug_entry(target);
@ -316,10 +312,10 @@ int cortex_m3_debug_entry(target_t *target)
xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32); xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
/* For IT instructions xPSR must be reloaded on resume and clear on debug exec*/ /* For IT instructions xPSR must be reloaded on resume and clear on debug exec*/
if (xPSR&0xf00) if (xPSR & 0xf00)
{ {
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1; armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR&~0xff); cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
} }
@ -333,14 +329,14 @@ int cortex_m3_debug_entry(target_t *target)
#endif #endif
/* Are we in an exception handler */ /* Are we in an exception handler */
armv7m->core_mode = (xPSR&0x1FF)?ARMV7M_MODE_HANDLER:ARMV7M_MODE_THREAD; armv7m->core_mode = (xPSR & 0x1FF) ? ARMV7M_MODE_HANDLER : ARMV7M_MODE_THREAD;
armv7m->exception_number = xPSR&0x1FF;; armv7m->exception_number = xPSR & 0x1FF;
if (armv7m->exception_number) if (armv7m->exception_number)
{ {
cortex_m3_examine_exception_reason(target); cortex_m3_examine_exception_reason(target);
} }
DEBUG("entered debug state at PC 0x%x ", *(u32*)(armv7m->core_cache->reg_list[15].value), target_state_strings[target->state]); DEBUG("entered debug state at PC 0x%x, target->state: %s ", *(u32*)(armv7m->core_cache->reg_list[15].value), target_state_strings[target->state]);
if (armv7m->post_debug_entry) if (armv7m->post_debug_entry)
armv7m->post_debug_entry(target); armv7m->post_debug_entry(target);
@ -356,7 +352,7 @@ int cortex_m3_restore_context(target_t *target)
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
DEBUG(""); DEBUG(" ");
if (armv7m->pre_restore_context) if (armv7m->pre_restore_context)
armv7m->pre_restore_context(target); armv7m->pre_restore_context(target);
@ -379,7 +375,6 @@ int cortex_m3_restore_context(target_t *target)
return ERROR_OK; return ERROR_OK;
} }
enum target_state cortex_m3_poll(target_t *target) enum target_state cortex_m3_poll(target_t *target)
{ {
int retval; int retval;
@ -425,13 +420,12 @@ enum target_state cortex_m3_poll(target_t *target)
} }
if (prev_target_state == TARGET_DEBUG_RUNNING) if (prev_target_state == TARGET_DEBUG_RUNNING)
{ {
DEBUG(""); DEBUG(" ");
if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK) if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
return retval; return retval;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED); target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
} }
} }
/* /*
@ -439,10 +433,9 @@ enum target_state cortex_m3_poll(target_t *target)
target->state = TARGET_SLEEP; target->state = TARGET_SLEEP;
*/ */
/* Read Debug Fault Status Register, added to figure out the lockup when running flashtest.script */ /* Read Debug Fault Status Register, added to figure out the lockup when running flashtest.script */
ahbap_read_system_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr); ahbap_read_system_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
DEBUG("dcb_dhcsr %x, nvic_dfsr %x, target->state: %s", cortex_m3->dcb_dhcsr, cortex_m3->nvic_dfsr, target_state_strings[target->state]); DEBUG("dcb_dhcsr %x, nvic_dfsr %x, target->state: %s", cortex_m3->dcb_dhcsr, cortex_m3->nvic_dfsr, target_state_strings[target->state]);
return target->state; return target->state;
} }
@ -469,8 +462,8 @@ int cortex_m3_soft_reset_halt(struct target_s *target)
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
swjdp_common_t *swjdp = &cortex_m3->swjdp_info; swjdp_common_t *swjdp = &cortex_m3->swjdp_info;
u32 dcb_dhcsr=0; u32 dcb_dhcsr = 0;
int retval, timeout=0; int retval, timeout = 0;
/* Check that we are using process_context, or change and print warning */ /* Check that we are using process_context, or change and print warning */
if (armv7m_get_context(target) != ARMV7M_PROCESS_CONTEXT) if (armv7m_get_context(target) != ARMV7M_PROCESS_CONTEXT)
@ -480,7 +473,7 @@ int cortex_m3_soft_reset_halt(struct target_s *target)
} }
/* Enter debug state on reset, cf. end_reset_event() */ /* Enter debug state on reset, cf. end_reset_event() */
ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA|VC_HARDERR|VC_BUSERR|VC_CORERESET ); ahbap_write_system_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET );
/* Request a reset */ /* Request a reset */
ahbap_write_system_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET ); ahbap_write_system_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET );
@ -495,14 +488,14 @@ int cortex_m3_soft_reset_halt(struct target_s *target)
if (retval == ERROR_OK) if (retval == ERROR_OK)
{ {
ahbap_read_system_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr); ahbap_read_system_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
if ( (dcb_dhcsr&S_HALT)&&(cortex_m3->nvic_dfsr&DFSR_VCATCH) ) if ((dcb_dhcsr&S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
{ {
DEBUG("system reset-halted, dcb_dhcsr 0x%x, nvic_dfsr 0x%x",dcb_dhcsr,cortex_m3->nvic_dfsr); DEBUG("system reset-halted, dcb_dhcsr 0x%x, nvic_dfsr 0x%x", dcb_dhcsr, cortex_m3->nvic_dfsr);
cortex_m3_poll(target); cortex_m3_poll(target);
return ERROR_OK; return ERROR_OK;
} }
else else
DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%x, %i ms",dcb_dhcsr,timeout); DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%x, %i ms", dcb_dhcsr, timeout);
} }
timeout++; timeout++;
usleep(1000); usleep(1000);
@ -534,14 +527,12 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
WARNING("Incorrect context in resume"); WARNING("Incorrect context in resume");
armv7m_use_context(target, ARMV7M_PROCESS_CONTEXT); armv7m_use_context(target, ARMV7M_PROCESS_CONTEXT);
} }
target_free_all_working_areas(target); target_free_all_working_areas(target);
cortex_m3_enable_breakpoints(target); cortex_m3_enable_breakpoints(target);
cortex_m3_enable_watchpoints(target); cortex_m3_enable_watchpoints(target);
/* TODOLATER Interrupt handling/disable for debug execution, cache ... ... */ /* TODOLATER Interrupt handling/disable for debug execution, cache ... ... */
} }
dcb_dhcsr = DBGKEY | C_DEBUGEN; dcb_dhcsr = DBGKEY | C_DEBUGEN;
@ -562,7 +553,7 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1); buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
/* Make sure we are in Thumb mode */ /* Make sure we are in Thumb mode */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32, buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32)|(1<<24)); buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1<<24));
} }
/* current = 1: continue on current pc, otherwise continue at <address> */ /* current = 1: continue on current pc, otherwise continue at <address> */
@ -591,7 +582,7 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
} }
/* Set/Clear C_MASKINTS in a separate operation */ /* Set/Clear C_MASKINTS in a separate operation */
if ((cortex_m3->dcb_dhcsr&C_MASKINTS) != (dcb_dhcsr&C_MASKINTS)) if ((cortex_m3->dcb_dhcsr & C_MASKINTS) != (dcb_dhcsr & C_MASKINTS))
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, dcb_dhcsr | C_HALT ); ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, dcb_dhcsr | C_HALT );
/* Restart core */ /* Restart core */
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, dcb_dhcsr ); ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, dcb_dhcsr );
@ -612,11 +603,10 @@ int cortex_m3_resume(struct target_s *target, int current, u32 address, int hand
DEBUG("target debug resumed at 0x%x",resume_pc); DEBUG("target debug resumed at 0x%x",resume_pc);
} }
return ERROR_OK; return ERROR_OK;
} }
int irqstepcount=0; //int irqstepcount=0;
int cortex_m3_step(struct target_s *target, int current, u32 address, int handle_breakpoints) int cortex_m3_step(struct target_s *target, int current, u32 address, int handle_breakpoints)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
@ -653,7 +643,7 @@ int cortex_m3_step(struct target_s *target, int current, u32 address, int handle
target_call_event_callbacks(target, TARGET_EVENT_RESUMED); target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
if (cortex_m3->dcb_dhcsr&C_MASKINTS) if (cortex_m3->dcb_dhcsr & C_MASKINTS)
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN ); ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN );
ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY| C_STEP | C_DEBUGEN); ahbap_write_system_atomic_u32(swjdp, DCB_DHCSR, DBGKEY| C_STEP | C_DEBUGEN);
ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
@ -665,14 +655,13 @@ int cortex_m3_step(struct target_s *target, int current, u32 address, int handle
if (breakpoint) if (breakpoint)
cortex_m3_set_breakpoint(target, breakpoint); cortex_m3_set_breakpoint(target, breakpoint);
DEBUG("target stepped dcb_dhcsr=0x%x nvic_icsr=0x%x",cortex_m3->dcb_dhcsr,cortex_m3->nvic_icsr); DEBUG("target stepped dcb_dhcsr = 0x%x nvic_icsr = 0x%x", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
cortex_m3_debug_entry(target); cortex_m3_debug_entry(target);
target_call_event_callbacks(target, TARGET_EVENT_HALTED); target_call_event_callbacks(target, TARGET_EVENT_HALTED);
DEBUG("target stepped dcb_dhcsr=0x%x nvic_icsr=0x%x",cortex_m3->dcb_dhcsr,cortex_m3->nvic_icsr); DEBUG("target stepped dcb_dhcsr = 0x%x nvic_icsr = 0x%x", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_assert_reset(target_t *target) int cortex_m3_assert_reset(target_t *target)
@ -738,7 +727,6 @@ int cortex_m3_assert_reset(target_t *target)
armv7m_invalidate_core_regs(target); armv7m_invalidate_core_regs(target);
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_deassert_reset(target_t *target) int cortex_m3_deassert_reset(target_t *target)
@ -749,13 +737,13 @@ int cortex_m3_deassert_reset(target_t *target)
jtag_add_reset(0, 0); jtag_add_reset(0, 0);
return ERROR_OK; return ERROR_OK;
} }
void cortex_m3_unset_all_breakpoints_and_watchpoints(struct target_s *target) void cortex_m3_unset_all_breakpoints_and_watchpoints(struct target_s *target)
{ {
} }
void cortex_m3_enable_breakpoints(struct target_s *target) void cortex_m3_enable_breakpoints(struct target_s *target)
{ {
breakpoint_t *breakpoint = target->breakpoints; breakpoint_t *breakpoint = target->breakpoints;
@ -788,37 +776,36 @@ int cortex_m3_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
if (cortex_m3->auto_bp_type) if (cortex_m3->auto_bp_type)
{ {
breakpoint->type = (breakpoint->address<0x20000000)?BKPT_HARD:BKPT_SOFT; breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
} }
if (breakpoint->type == BKPT_HARD) if (breakpoint->type == BKPT_HARD)
{ {
while(comparator_list[fp_num].used && (fp_num<cortex_m3->fp_num_code)) while(comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
fp_num++; fp_num++;
if (fp_num>=cortex_m3->fp_num_code) if (fp_num >= cortex_m3->fp_num_code)
{ {
DEBUG("ERROR Can not find free FP Comparator"); DEBUG("ERROR Can not find free FP Comparator");
WARNING("ERROR Can not find free FP Comparator"); WARNING("ERROR Can not find free FP Comparator");
exit(-1); exit(-1);
} }
breakpoint->set = fp_num+1; breakpoint->set = fp_num + 1;
hilo = (breakpoint->address & 0x2)? FPCR_REPLACE_BKPT_HIGH:FPCR_REPLACE_BKPT_LOW; hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
comparator_list[fp_num].used = 1; comparator_list[fp_num].used = 1;
comparator_list[fp_num].fpcr_value = breakpoint->address&0x1FFFFFFC | hilo | 1; comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value); target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
DEBUG("fpc_num %i fpcr_value 0x%x", fp_num, comparator_list[fp_num].fpcr_value); DEBUG("fpc_num %i fpcr_value 0x%x", fp_num, comparator_list[fp_num].fpcr_value);
} }
else if (breakpoint->type == BKPT_SOFT) else if (breakpoint->type == BKPT_SOFT)
{ {
u8 code[4]; u8 code[4];
buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11)); buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
target->type->read_memory(target, breakpoint->address&0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr); target->type->read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr);
target->type->write_memory(target, breakpoint->address&0xFFFFFFFE, breakpoint->length, 1, code); target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code);
breakpoint->set = 0x11; /* Any nice value but 0 */ breakpoint->set = 0x11; /* Any nice value but 0 */
} }
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint) int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
@ -836,8 +823,8 @@ int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint
if (breakpoint->type == BKPT_HARD) if (breakpoint->type == BKPT_HARD)
{ {
int fp_num = breakpoint->set-1; int fp_num = breakpoint->set - 1;
if ((fp_num<0)||(fp_num>=cortex_m3->fp_num_code)) if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
{ {
DEBUG("Invalid FP Comparator number in breakpoint"); DEBUG("Invalid FP Comparator number in breakpoint");
return ERROR_OK; return ERROR_OK;
@ -851,11 +838,11 @@ int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint
/* restore original instruction (kept in target endianness) */ /* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4) if (breakpoint->length == 4)
{ {
target->type->write_memory(target, breakpoint->address&0xFFFFFFFE, 4, 1, breakpoint->orig_instr); target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr);
} }
else else
{ {
target->type->write_memory(target, breakpoint->address&0xFFFFFFFE, 2, 1, breakpoint->orig_instr); target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr);
} }
} }
breakpoint->set = 0; breakpoint->set = 0;
@ -863,7 +850,6 @@ int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint) int cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
@ -872,16 +858,16 @@ int cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
if (cortex_m3->auto_bp_type) if (cortex_m3->auto_bp_type)
{ {
breakpoint->type = (breakpoint->address<0x20000000)?BKPT_HARD:BKPT_SOFT; breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
} }
if ((breakpoint->type == BKPT_HARD) && (breakpoint->address>=0x20000000)) if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
{ {
INFO("flash patch comparator requested outside code memory region"); INFO("flash patch comparator requested outside code memory region");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
} }
if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address<0x20000000)) if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
{ {
INFO("soft breakpoint requested in code (flash) memory region"); INFO("soft breakpoint requested in code (flash) memory region");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
@ -920,7 +906,7 @@ int cortex_m3_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoin
if (cortex_m3->auto_bp_type) if (cortex_m3->auto_bp_type)
{ {
breakpoint->type = (breakpoint->address<0x20000000)?BKPT_HARD:BKPT_SOFT; breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
} }
if (breakpoint->set) if (breakpoint->set)
@ -934,19 +920,6 @@ int cortex_m3_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoin
return ERROR_OK; return ERROR_OK;
} }
void cortex_m3_enable_watchpoints(struct target_s *target)
{
watchpoint_t *watchpoint = target->watchpoints;
/* set any pending watchpoints */
while (watchpoint)
{
if (watchpoint->set == 0)
cortex_m3_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}
int cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint) int cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
{ {
int dwt_num=0; int dwt_num=0;
@ -965,30 +938,30 @@ int cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
if (watchpoint->mask == 0xffffffffu) if (watchpoint->mask == 0xffffffffu)
{ {
while(comparator_list[dwt_num].used && (dwt_num<cortex_m3->dwt_num_comp)) while(comparator_list[dwt_num].used && (dwt_num < cortex_m3->dwt_num_comp))
dwt_num++; dwt_num++;
if (dwt_num>=cortex_m3->dwt_num_comp) if (dwt_num >= cortex_m3->dwt_num_comp)
{ {
DEBUG("ERROR Can not find free DWT Comparator"); DEBUG("ERROR Can not find free DWT Comparator");
WARNING("ERROR Can not find free DWT Comparator"); WARNING("ERROR Can not find free DWT Comparator");
return -1; return -1;
} }
watchpoint->set = dwt_num+1; watchpoint->set = dwt_num + 1;
mask = 0; mask = 0;
temp = watchpoint->length; temp = watchpoint->length;
while (temp>1) while (temp > 1)
{ {
temp = temp/2; temp = temp / 2;
mask++; mask++;
} }
comparator_list[dwt_num].used = 1; comparator_list[dwt_num].used = 1;
comparator_list[dwt_num].comp = watchpoint->address; comparator_list[dwt_num].comp = watchpoint->address;
comparator_list[dwt_num].mask = mask; comparator_list[dwt_num].mask = mask;
comparator_list[dwt_num].function = watchpoint->rw+5; comparator_list[dwt_num].function = watchpoint->rw + 5;
target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address, comparator_list[dwt_num].comp); target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address, comparator_list[dwt_num].comp);
target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address|0x4, comparator_list[dwt_num].mask); target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address|0x4, comparator_list[dwt_num].mask);
target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address|0x8, comparator_list[dwt_num].function); target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address|0x8, comparator_list[dwt_num].function);
DEBUG("dwt_num %i 0x%x 0x%x 0x%x", dwt_num, comparator_list[dwt_num].comp, comparator_list[dwt_num].mask, comparator_list[dwt_num].function); DEBUG("dwt_num %i 0x%x 0x%x 0x%x", dwt_num, comparator_list[dwt_num].comp, comparator_list[dwt_num].mask, comparator_list[dwt_num].function);
} }
else else
{ {
@ -1014,9 +987,9 @@ int cortex_m3_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint
return ERROR_OK; return ERROR_OK;
} }
dwt_num = watchpoint->set-1; dwt_num = watchpoint->set - 1;
if ((dwt_num<0)||(dwt_num>=cortex_m3->dwt_num_comp)) if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
{ {
DEBUG("Invalid DWT Comparator number in watchpoint"); DEBUG("Invalid DWT Comparator number in watchpoint");
return ERROR_OK; return ERROR_OK;
@ -1030,8 +1003,6 @@ int cortex_m3_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint) int cortex_m3_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
@ -1081,6 +1052,18 @@ int cortex_m3_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoin
return ERROR_OK; return ERROR_OK;
} }
void cortex_m3_enable_watchpoints(struct target_s *target)
{
watchpoint_t *watchpoint = target->watchpoints;
/* set any pending watchpoints */
while (watchpoint)
{
if (watchpoint->set == 0)
cortex_m3_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}
int cortex_m3_load_core_reg_u32(struct target_s *target, enum armv7m_regtype type, u32 num, u32 * value) int cortex_m3_load_core_reg_u32(struct target_s *target, enum armv7m_regtype type, u32 num, u32 * value)
{ {
@ -1116,16 +1099,15 @@ int cortex_m3_load_core_reg_u32(struct target_s *target, enum armv7m_regtype typ
ahbap_write_coreregister_u32(swjdp, 0x20000000, 15); ahbap_write_coreregister_u32(swjdp, 0x20000000, 15);
cortex_m3_single_step_core(target); cortex_m3_single_step_core(target);
ahbap_read_coreregister_u32(swjdp, value, 0); ahbap_read_coreregister_u32(swjdp, value, 0);
armv7m->core_cache->reg_list[0].dirty=1; armv7m->core_cache->reg_list[0].dirty = 1;
armv7m->core_cache->reg_list[15].dirty=1; armv7m->core_cache->reg_list[15].dirty = 1;
ahbap_write_system_u32(swjdp, 0x20000000, savedram); ahbap_write_system_u32(swjdp, 0x20000000, savedram);
swjdp_transaction_endcheck(swjdp); swjdp_transaction_endcheck(swjdp);
DEBUG("load from special reg %i value 0x%x",SYSm, *value); DEBUG("load from special reg %i value 0x%x", SYSm, *value);
} }
else return ERROR_INVALID_ARGUMENTS; else return ERROR_INVALID_ARGUMENTS;
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype type, u32 num, u32 value) int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype type, u32 num, u32 value)
@ -1142,11 +1124,11 @@ int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype ty
retval = ahbap_write_coreregister_u32(swjdp, value, num); retval = ahbap_write_coreregister_u32(swjdp, value, num);
if (retval != ERROR_OK) if (retval != ERROR_OK)
{ {
ERROR("JTAG failure %i",retval); ERROR("JTAG failure %i", retval);
armv7m->core_cache->reg_list[num].dirty=1; armv7m->core_cache->reg_list[num].dirty = 1;
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
} }
DEBUG("write core reg %i value 0x%x",num, value); DEBUG("write core reg %i value 0x%x", num, value);
} }
else if (type == ARMV7M_REGISTER_CORE_SP) /* Special purpose core register */ else if (type == ARMV7M_REGISTER_CORE_SP) /* Special purpose core register */
{ {
@ -1163,21 +1145,18 @@ int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype ty
ahbap_write_coreregister_u32(swjdp, 0x20000000, 15); ahbap_write_coreregister_u32(swjdp, 0x20000000, 15);
cortex_m3_single_step_core(target); cortex_m3_single_step_core(target);
ahbap_write_coreregister_u32(swjdp, tempr0, 0); ahbap_write_coreregister_u32(swjdp, tempr0, 0);
armv7m->core_cache->reg_list[15].dirty=1; armv7m->core_cache->reg_list[15].dirty = 1;
ahbap_write_system_u32(swjdp, 0x20000000, savedram); ahbap_write_system_u32(swjdp, 0x20000000, savedram);
swjdp_transaction_endcheck(swjdp); swjdp_transaction_endcheck(swjdp);
DEBUG("write special reg %i value 0x%x ",SYSm, value); DEBUG("write special reg %i value 0x%x ", SYSm, value);
} }
else return ERROR_INVALID_ARGUMENTS; else return ERROR_INVALID_ARGUMENTS;
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
@ -1196,12 +1175,12 @@ int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 co
case 4: case 4:
/* TODOLATER Check error return value ! */ /* TODOLATER Check error return value ! */
{ {
ahbap_read_buf(swjdp, buffer, 4*count, address); ahbap_read_buf(swjdp, buffer, 4 * count, address);
} }
break; break;
case 2: case 2:
{ {
ahbap_read_buf(swjdp, buffer, 2*count, address); ahbap_read_buf_u16(swjdp, buffer, 2 * count, address);
} }
break; break;
case 1: case 1:
@ -1213,14 +1192,12 @@ int cortex_m3_read_memory(struct target_s *target, u32 address, u32 size, u32 co
ERROR("BUG: we shouldn't get here"); ERROR("BUG: we shouldn't get here");
exit(-1); exit(-1);
} }
return ERROR_OK; return ERROR_OK;
} }
int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
{ {
/* get pointers to arch-specific information */ /* get pointers to arch-specific information */
armv7m_common_t *armv7m = target->arch_info; armv7m_common_t *armv7m = target->arch_info;
cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info;
@ -1238,12 +1215,12 @@ int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 c
case 4: case 4:
/* TODOLATER Check error return value ! */ /* TODOLATER Check error return value ! */
{ {
ahbap_write_buf(swjdp, buffer, 4*count, address); ahbap_write_buf(swjdp, buffer, 4 * count, address);
} }
break; break;
case 2: case 2:
{ {
ahbap_write_buf(swjdp, buffer, 2*count, address); ahbap_write_buf_u16(swjdp, buffer, 2 * count, address);
} }
break; break;
case 1: case 1:
@ -1261,14 +1238,11 @@ int cortex_m3_write_memory(struct target_s *target, u32 address, u32 size, u32 c
int cortex_m3_bulk_write_memory(target_t *target, u32 address, u32 count, u8 *buffer) int cortex_m3_bulk_write_memory(target_t *target, u32 address, u32 count, u8 *buffer)
{ {
cortex_m3_write_memory(target, address, 4, count, buffer);
cortex_m3_write_memory(target, address, 4,count,buffer);
return ERROR_OK; return ERROR_OK;
} }
void cortex_m3_build_reg_cache(target_t *target) void cortex_m3_build_reg_cache(target_t *target)
{ {
armv7m_build_reg_cache(target); armv7m_build_reg_cache(target);
@ -1287,48 +1261,43 @@ int cortex_m3_init_target(struct command_context_s *cmd_ctx, struct target_s *ta
cortex_m3_build_reg_cache(target); cortex_m3_build_reg_cache(target);
ahbap_debugport_init(swjdp); ahbap_debugport_init(swjdp);
/* Read from Device Identification Registers, IS THIS CORTEX OR Luminary Micro SPECIFIC ?? */ /* Read from Device Identification Registers */
target_read_u32(target, CPUID, &cpuid ); target_read_u32(target, CPUID, &cpuid);
if (cpuid == 0x410fc231) if (((cpuid >> 4) & 0xc3f) == 0xc23)
DEBUG("CORTEX-M3 processor"); DEBUG("CORTEX-M3 processor detected");
DEBUG("cpuid %x",cpuid); DEBUG("cpuid %x", cpuid);
/* Probably only valid for LMI parts, move to flash/stellaris ? */
target_read_u32(target, SYSTEM_CONTROL_BASE|0x04, &did1);
target_read_u32(target,SYSTEM_CONTROL_BASE|0x08,&dc0);
DEBUG("did1 %x",did1);
DEBUG("dc0 %x",dc0);
target_read_u32(target,NVIC_ICTR,&ictr); target_read_u32(target, NVIC_ICTR, &ictr);
cortex_m3->intlinesnum = (ictr&0x1F) + 1; cortex_m3->intlinesnum = (ictr & 0x1F) + 1;
cortex_m3->intsetenable = calloc(cortex_m3->intlinesnum,4); cortex_m3->intsetenable = calloc(cortex_m3->intlinesnum, 4);
for (i=0;i<cortex_m3->intlinesnum;i++) for (i = 0; i < cortex_m3->intlinesnum; i++)
{ {
target_read_u32(target,NVIC_ISE0+4*i,cortex_m3->intsetenable+i); target_read_u32(target, NVIC_ISE0 + 4 * i, cortex_m3->intsetenable + i);
DEBUG(" interrupt enable[%i]=0x%x",i,cortex_m3->intsetenable[i]); DEBUG("interrupt enable[%i] = 0x%x", i, cortex_m3->intsetenable[i]);
} }
/* Setup FPB */ /* Setup FPB */
target_read_u32(target, FP_CTRL, &fpcr); target_read_u32(target, FP_CTRL, &fpcr);
cortex_m3->auto_bp_type = 1; cortex_m3->auto_bp_type = 1;
cortex_m3->fp_num_code = (fpcr>>4)&0xF; cortex_m3->fp_num_code = (fpcr >> 4) & 0xF;
cortex_m3->fp_num_lit = (fpcr>>8)&0xF; cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
cortex_m3->fp_code_available = cortex_m3->fp_num_code; cortex_m3->fp_code_available = cortex_m3->fp_num_code;
cortex_m3->fp_comparator_list=calloc(cortex_m3->fp_num_code+cortex_m3->fp_num_lit, sizeof(cortex_m3_fp_comparator_t)); cortex_m3->fp_comparator_list=calloc(cortex_m3->fp_num_code+cortex_m3->fp_num_lit, sizeof(cortex_m3_fp_comparator_t));
for (i=0;i<cortex_m3->fp_num_code+cortex_m3->fp_num_lit;i++) for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
{ {
cortex_m3->fp_comparator_list[i].type = (i<cortex_m3->fp_num_code)?FPCR_CODE:FPCR_LITERAL; cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0+4*i; cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
} }
DEBUG("FPB fpcr 0x%x, numcode %i, numlit %i",fpcr,cortex_m3->fp_num_code,cortex_m3->fp_num_lit); DEBUG("FPB fpcr 0x%x, numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
/* Setup DWT */ /* Setup DWT */
target_read_u32(target, DWT_CTRL, &dwtcr); target_read_u32(target, DWT_CTRL, &dwtcr);
cortex_m3->dwt_num_comp = (dwtcr>>28)&0xF; cortex_m3->dwt_num_comp = (dwtcr >> 28) & 0xF;
cortex_m3->dwt_comp_available = cortex_m3->dwt_num_comp; cortex_m3->dwt_comp_available = cortex_m3->dwt_num_comp;
cortex_m3->dwt_comparator_list=calloc(cortex_m3->dwt_num_comp, sizeof(cortex_m3_dwt_comparator_t)); cortex_m3->dwt_comparator_list=calloc(cortex_m3->dwt_num_comp, sizeof(cortex_m3_dwt_comparator_t));
for (i=0; i<cortex_m3->dwt_num_comp; i++) for (i = 0; i < cortex_m3->dwt_num_comp; i++)
{ {
cortex_m3->dwt_comparator_list[i].dwt_comparator_address = DWT_COMP0+0x10*i; cortex_m3->dwt_comparator_list[i].dwt_comparator_address = DWT_COMP0 + 0x10 * i;
} }
return ERROR_OK; return ERROR_OK;
@ -1345,7 +1314,7 @@ int cortex_m3_init_arch_info(target_t *target, cortex_m3_common_t *cortex_m3, in
armv7m_common_t *armv7m; armv7m_common_t *armv7m;
armv7m = &cortex_m3->armv7m; armv7m = &cortex_m3->armv7m;
arm_jtag_t * jtag_info = &cortex_m3->jtag_info; arm_jtag_t *jtag_info = &cortex_m3->jtag_info;
/* prepare JTAG information for the new target */ /* prepare JTAG information for the new target */
cortex_m3->jtag_info.chain_pos = chain_pos; cortex_m3->jtag_info.chain_pos = chain_pos;

View File

@ -40,7 +40,6 @@ extern char* cortex_m3_state_strings[];
#define DCB_DCRDR 0xE000EDF8 #define DCB_DCRDR 0xE000EDF8
#define DCB_DEMCR 0xE000EDFC #define DCB_DEMCR 0xE000EDFC
#define DCRSR_WnR (1<<16) #define DCRSR_WnR (1<<16)
#define DWT_CTRL 0xE0001000 #define DWT_CTRL 0xE0001000
@ -107,7 +106,6 @@ extern char* cortex_m3_state_strings[];
#define DFSR_DWTTRAP 4 #define DFSR_DWTTRAP 4
#define DFSR_VCATCH 8 #define DFSR_VCATCH 8
#define FPCR_CODE 0 #define FPCR_CODE 0
#define FPCR_LITERAL 1 #define FPCR_LITERAL 1
#define FPCR_REPLACE_REMAP (0<<30) #define FPCR_REPLACE_REMAP (0<<30)
@ -149,16 +147,16 @@ typedef struct cortex_m3_common_s
int fp_num_code; int fp_num_code;
int fp_code_available; int fp_code_available;
int auto_bp_type; int auto_bp_type;
cortex_m3_fp_comparator_t * fp_comparator_list; cortex_m3_fp_comparator_t *fp_comparator_list;
/* DWT */ /* DWT */
int dwt_num_comp; int dwt_num_comp;
int dwt_comp_available; int dwt_comp_available;
cortex_m3_dwt_comparator_t * dwt_comparator_list; cortex_m3_dwt_comparator_t *dwt_comparator_list;
/* Interrupts */ /* Interrupts */
int intlinesnum; int intlinesnum;
u32 * intsetenable; u32 *intsetenable;
/* /*
u32 arm_bkpt; u32 arm_bkpt;
@ -189,7 +187,6 @@ typedef struct cortex_m3_common_s
void *arch_info; void *arch_info;
} cortex_m3_common_t; } cortex_m3_common_t;
extern void cortex_m3_build_reg_cache(target_t *target); extern void cortex_m3_build_reg_cache(target_t *target);
enum target_state cortex_m3_poll(target_t *target); enum target_state cortex_m3_poll(target_t *target);

View File

@ -25,6 +25,9 @@
* Cortex-M3 TRM, ARM DDI 0337C * * Cortex-M3 TRM, ARM DDI 0337C *
* * * *
***************************************************************************/ ***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "replacements.h" #include "replacements.h"
@ -55,17 +58,17 @@ are immediatley available.
***************************************************************************/ ***************************************************************************/
/* Scan out and in from target ordered u8 buffers */ /* Scan out and in from target ordered u8 buffers */
int swjdp_scan(arm_jtag_t *jtag_info, u8 chain, u8 reg_addr, u8 RnW, u8 *outvalue, u8 *invalue, u8 *ack) int swjdp_scan(arm_jtag_t *jtag_info, u8 instr, u8 reg_addr, u8 RnW, u8 *outvalue, u8 *invalue, u8 *ack)
{ {
scan_field_t fields[2]; scan_field_t fields[2];
u8 out_addr_buf; u8 out_addr_buf;
jtag_add_end_state(TAP_RTI); jtag_add_end_state(TAP_RTI);
arm_jtag_set_instr(jtag_info, chain, NULL); arm_jtag_set_instr(jtag_info, instr, NULL);
fields[0].device = jtag_info->chain_pos; fields[0].device = jtag_info->chain_pos;
fields[0].num_bits = 3; fields[0].num_bits = 3;
buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr>>1)&0x6) | (RnW&0x1)); buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
fields[0].out_value = &out_addr_buf; fields[0].out_value = &out_addr_buf;
fields[0].out_mask = NULL; fields[0].out_mask = NULL;
fields[0].in_value = ack; fields[0].in_value = ack;
@ -87,22 +90,21 @@ int swjdp_scan(arm_jtag_t *jtag_info, u8 chain, u8 reg_addr, u8 RnW, u8 *outvalu
jtag_add_dr_scan(2, fields, -1, NULL); jtag_add_dr_scan(2, fields, -1, NULL);
return ERROR_OK; return ERROR_OK;
} }
/* Scan out and in from host ordered u32 variables */ /* Scan out and in from host ordered u32 variables */
int swjdp_scan_u32(arm_jtag_t *jtag_info, u8 chain, u8 reg_addr, u8 RnW, u32 outvalue, u32 *invalue, u8 *ack) int swjdp_scan_u32(arm_jtag_t *jtag_info, u8 instr, u8 reg_addr, u8 RnW, u32 outvalue, u32 *invalue, u8 *ack)
{ {
scan_field_t fields[2]; scan_field_t fields[2];
u8 out_value_buf[4]; u8 out_value_buf[4];
u8 out_addr_buf; u8 out_addr_buf;
jtag_add_end_state(TAP_RTI); jtag_add_end_state(TAP_RTI);
arm_jtag_set_instr(jtag_info, chain, NULL); arm_jtag_set_instr(jtag_info, instr, NULL);
fields[0].device = jtag_info->chain_pos; fields[0].device = jtag_info->chain_pos;
fields[0].num_bits = 3; fields[0].num_bits = 3;
buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr>>1)&0x6) | (RnW&0x1)); buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
fields[0].out_value = &out_addr_buf; fields[0].out_value = &out_addr_buf;
fields[0].out_mask = NULL; fields[0].out_mask = NULL;
fields[0].in_value = ack; fields[0].in_value = ack;
@ -133,21 +135,19 @@ int swjdp_scan_u32(arm_jtag_t *jtag_info, u8 chain, u8 reg_addr, u8 RnW, u32 out
jtag_add_dr_scan(2, fields, -1, NULL); jtag_add_dr_scan(2, fields, -1, NULL);
return ERROR_OK; return ERROR_OK;
} }
/* scan_inout_check adds one extra inscan for DPAP_READ commands to read variables */ /* scan_inout_check adds one extra inscan for DPAP_READ commands to read variables */
int scan_inout_check(swjdp_common_t *swjdp, u8 chain, u8 reg_addr, u8 RnW, u8 *outvalue, u8 *invalue) int scan_inout_check(swjdp_common_t *swjdp, u8 instr, u8 reg_addr, u8 RnW, u8 *outvalue, u8 *invalue)
{ {
swjdp_scan(swjdp->jtag_info, instr, reg_addr, RnW, outvalue, NULL, NULL);
swjdp_scan(swjdp->jtag_info, chain, reg_addr, RnW, outvalue, NULL, NULL); if ((RnW == DPAP_READ) && (invalue != NULL))
if ((RnW==DPAP_READ) && (invalue != NULL))
{ {
swjdp_scan(swjdp->jtag_info, SWJDP_IR_DPACC, 0xC, DPAP_READ, 0, invalue, &swjdp->ack); swjdp_scan(swjdp->jtag_info, SWJDP_IR_DPACC, 0xC, DPAP_READ, 0, invalue, &swjdp->ack);
} }
/* In TRANS_MODE_ATOMIC all SWJDP_IR_APACC transactions wait for ack=OK/FAULT and the check CTRL_STAT */ /* In TRANS_MODE_ATOMIC all SWJDP_IR_APACC transactions wait for ack=OK/FAULT and the check CTRL_STAT */
if ((chain == SWJDP_IR_APACC)&&(swjdp->trans_mode == TRANS_MODE_ATOMIC)) if ((instr == SWJDP_IR_APACC) && (swjdp->trans_mode == TRANS_MODE_ATOMIC))
{ {
return swjdp_transaction_endcheck(swjdp); return swjdp_transaction_endcheck(swjdp);
} }
@ -155,17 +155,17 @@ int scan_inout_check(swjdp_common_t *swjdp, u8 chain, u8 reg_addr, u8 RnW, u8 *o
return ERROR_OK; return ERROR_OK;
} }
int scan_inout_check_u32(swjdp_common_t *swjdp, u8 chain, u8 reg_addr, u8 RnW, u32 outvalue, u32 *invalue) int scan_inout_check_u32(swjdp_common_t *swjdp, u8 instr, u8 reg_addr, u8 RnW, u32 outvalue, u32 *invalue)
{ {
swjdp_scan_u32(swjdp->jtag_info, chain, reg_addr, RnW, outvalue, NULL, NULL); swjdp_scan_u32(swjdp->jtag_info, instr, reg_addr, RnW, outvalue, NULL, NULL);
if ((RnW==DPAP_READ) && (invalue != NULL)) if ((RnW==DPAP_READ) && (invalue != NULL))
{ {
swjdp_scan_u32(swjdp->jtag_info, SWJDP_IR_DPACC, 0xC, DPAP_READ, 0, invalue, &swjdp->ack); swjdp_scan_u32(swjdp->jtag_info, SWJDP_IR_DPACC, 0xC, DPAP_READ, 0, invalue, &swjdp->ack);
} }
/* In TRANS_MODE_ATOMIC all SWJDP_IR_APACC transactions wait for ack=OK/FAULT and the check CTRL_STAT */ /* In TRANS_MODE_ATOMIC all SWJDP_IR_APACC transactions wait for ack=OK/FAULT and the check CTRL_STAT */
if ((chain == SWJDP_IR_APACC)&&(swjdp->trans_mode == TRANS_MODE_ATOMIC)) if ((instr == SWJDP_IR_APACC) && (swjdp->trans_mode == TRANS_MODE_ATOMIC))
{ {
return swjdp_transaction_endcheck(swjdp); return swjdp_transaction_endcheck(swjdp);
} }
@ -177,17 +177,18 @@ int swjdp_transaction_endcheck(swjdp_common_t *swjdp)
{ {
int waitcount = 0; int waitcount = 0;
u32 ctrlstat; u32 ctrlstat;
u8 ack=0;
scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
jtag_execute_queue(); jtag_execute_queue();
swjdp->ack = swjdp->ack&0x7;
swjdp->ack = swjdp->ack & 0x7;
while (swjdp->ack != 2) while (swjdp->ack != 2)
{ {
if (swjdp->ack==1) if (swjdp->ack == 1)
{ {
waitcount++; waitcount++;
if (waitcount>100) if (waitcount > 100)
{ {
WARNING("Timeout waiting for ACK = OK/FAULT in SWJDP transaction"); WARNING("Timeout waiting for ACK = OK/FAULT in SWJDP transaction");
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
@ -200,42 +201,47 @@ int swjdp_transaction_endcheck(swjdp_common_t *swjdp)
} }
scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
jtag_execute_queue(); jtag_execute_queue();
swjdp->ack = swjdp->ack&0x7; swjdp->ack = swjdp->ack & 0x7;
} }
/* Check for STICKYERR and STICKYORUN */ /* Check for STICKYERR and STICKYORUN */
if (ctrlstat & (SSTICKYORUN|SSTICKYERR)) if (ctrlstat & (SSTICKYORUN | SSTICKYERR))
{ {
DEBUG(" swjdp: CTRL/STAT error 0x%x",ctrlstat); DEBUG("swjdp: CTRL/STAT error 0x%x", ctrlstat);
/* Check power to debug regions */ /* Check power to debug regions */
if ((ctrlstat&0xf0000000)!=0xf0000000) if ((ctrlstat & 0xf0000000) != 0xf0000000)
{ {
ahbap_debugport_init(swjdp); ahbap_debugport_init(swjdp);
} }
else else
{ {
u32 dcb_dhcsr,nvic_shcsr, nvic_bfar, nvic_cfsr; u32 dcb_dhcsr,nvic_shcsr, nvic_bfar, nvic_cfsr;
if (ctrlstat&SSTICKYORUN) ERROR("SWJ-DP OVERRUN - check clock or reduce jtag speed");
if (ctrlstat&SSTICKYERR) ERROR("SWJ-DP STICKY ERROR"); if (ctrlstat & SSTICKYORUN)
ERROR("SWJ-DP OVERRUN - check clock or reduce jtag speed");
if (ctrlstat & SSTICKYERR)
ERROR("SWJ-DP STICKY ERROR");
/* Clear Sticky Error Bits */ /* Clear Sticky Error Bits */
scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_WRITE, swjdp->dp_ctrl_stat|SSTICKYORUN|SSTICKYERR, NULL); scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_WRITE, swjdp->dp_ctrl_stat | SSTICKYORUN | SSTICKYERR, NULL);
scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
jtag_execute_queue(); jtag_execute_queue();
DEBUG("swjdp: status 0x%x", ctrlstat);
/* Can we find out the reason for the error ?? */ /* Can we find out the reason for the error ?? */
ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr); ahbap_read_system_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
ahbap_read_system_atomic_u32(swjdp, NVIC_SHCSR, &nvic_shcsr); ahbap_read_system_atomic_u32(swjdp, NVIC_SHCSR, &nvic_shcsr);
ahbap_read_system_atomic_u32(swjdp, NVIC_CFSR, &nvic_cfsr); ahbap_read_system_atomic_u32(swjdp, NVIC_CFSR, &nvic_cfsr);
ahbap_read_system_atomic_u32(swjdp, NVIC_BFAR, &nvic_bfar); ahbap_read_system_atomic_u32(swjdp, NVIC_BFAR, &nvic_bfar);
//DEBUG("dcb_dhcsr %x, nvic_shcsr %x, nvic_cfsr %x, nvic_bfar %x",dcb_dhcsr,nvic_shcsr,nvic_cfsr,nvic_bfar); ERROR("dcb_dhcsr 0x%x, nvic_shcsr 0x%x, nvic_cfsr 0x%x, nvic_bfar 0x%x", dcb_dhcsr, nvic_shcsr, nvic_cfsr, nvic_bfar);
ERROR("dcb_dhcsr %x, nvic_shcsr %x, nvic_cfsr %x, nvic_bfar %x",dcb_dhcsr,nvic_shcsr,nvic_cfsr,nvic_bfar);
} }
jtag_execute_queue(); jtag_execute_queue();
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
} }
return ERROR_OK; return ERROR_OK;
} }
/*************************************************************************** /***************************************************************************
@ -250,12 +256,10 @@ int swjdp_write_dpacc(swjdp_common_t *swjdp, u32 value, u8 reg_addr)
buf_set_u32(out_value_buf, 0, 32, value); buf_set_u32(out_value_buf, 0, 32, value);
return scan_inout_check(swjdp, SWJDP_IR_DPACC, reg_addr, DPAP_WRITE, out_value_buf, NULL); return scan_inout_check(swjdp, SWJDP_IR_DPACC, reg_addr, DPAP_WRITE, out_value_buf, NULL);
} }
int swjdp_read_dpacc(swjdp_common_t *swjdp, u32 *value, u8 reg_addr) int swjdp_read_dpacc(swjdp_common_t *swjdp, u32 *value, u8 reg_addr)
{ {
scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, reg_addr, DPAP_READ, 0, value); scan_inout_check_u32(swjdp, SWJDP_IR_DPACC, reg_addr, DPAP_READ, 0, value);
return ERROR_OK; return ERROR_OK;
@ -264,9 +268,9 @@ int swjdp_read_dpacc(swjdp_common_t *swjdp, u32 *value, u8 reg_addr)
int swjdp_bankselect_apacc(swjdp_common_t *swjdp,u32 reg_addr) int swjdp_bankselect_apacc(swjdp_common_t *swjdp,u32 reg_addr)
{ {
u32 select; u32 select;
select = (reg_addr&0xFF0000F0); select = (reg_addr & 0xFF0000F0);
if ( select != swjdp->dp_select_value ) if (select != swjdp->dp_select_value)
{ {
swjdp_write_dpacc(swjdp, select, DP_SELECT); swjdp_write_dpacc(swjdp, select, DP_SELECT);
swjdp->dp_select_value = select; swjdp->dp_select_value = select;
@ -317,17 +321,16 @@ int ahbap_read_reg_u32(swjdp_common_t *swjdp, u32 reg_addr, u32 *value)
int ahbap_setup_accessport(swjdp_common_t *swjdp, u32 csw, u32 tar) int ahbap_setup_accessport(swjdp_common_t *swjdp, u32 csw, u32 tar)
{ {
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT; csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
if ( csw != swjdp->ap_csw_value ) if (csw != swjdp->ap_csw_value)
{ {
//DEBUG("swjdp : Set CSW %x",csw); //DEBUG("swjdp : Set CSW %x",csw);
ahbap_write_reg_u32(swjdp, AHBAP_CSW, csw ); ahbap_write_reg_u32(swjdp, AHBAP_CSW, csw );
swjdp->ap_csw_value = csw; swjdp->ap_csw_value = csw;
} }
if ( tar != swjdp->ap_tar_value ) if (tar != swjdp->ap_tar_value)
{ {
//DEBUG("swjdp : Set TAR %x",tar); //DEBUG("swjdp : Set TAR %x",tar);
ahbap_write_reg_u32(swjdp, AHBAP_TAR, tar ); ahbap_write_reg_u32(swjdp, AHBAP_TAR, tar );
swjdp->ap_tar_value = tar; swjdp->ap_tar_value = tar;
} }
@ -349,11 +352,10 @@ int ahbap_setup_accessport(swjdp_common_t *swjdp, u32 csw, u32 tar)
*****************************************************************************/ *****************************************************************************/
int ahbap_read_system_u32(swjdp_common_t *swjdp, u32 address, u32 *value) int ahbap_read_system_u32(swjdp_common_t *swjdp, u32 address, u32 *value)
{ {
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address&0xFFFFFFF0); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0);
ahbap_read_reg_u32(swjdp, AHBAP_BD0|address&0xC, value ); ahbap_read_reg_u32(swjdp, AHBAP_BD0 | (address & 0xC), value );
return ERROR_OK; return ERROR_OK;
} }
@ -374,18 +376,16 @@ int ahbap_read_system_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 *value)
*****************************************************************************/ *****************************************************************************/
int ahbap_write_system_u32(swjdp_common_t *swjdp, u32 address, u32 value) int ahbap_write_system_u32(swjdp_common_t *swjdp, u32 address, u32 value)
{ {
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address&0xFFFFFFF0); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0);
ahbap_write_reg_u32(swjdp, AHBAP_BD0|address&0xC, value ); ahbap_write_reg_u32(swjdp, AHBAP_BD0 | (address & 0xC), value );
return ERROR_OK; return ERROR_OK;
} }
int ahbap_write_system_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 value) int ahbap_write_system_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 value)
{ {
ahbap_write_system_u32(swjdp, address, value); ahbap_write_system_u32(swjdp, address, value);
return swjdp_transaction_endcheck(swjdp); return swjdp_transaction_endcheck(swjdp);
@ -401,53 +401,53 @@ int ahbap_write_system_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 value)
int ahbap_write_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address) int ahbap_write_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
{ {
u32 outvalue; u32 outvalue;
int wcount, blocksize, writecount, errorcount=0, retval=ERROR_OK; int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while ( (address&0x3)&&(count>0) ) while ((address & 0x3) && (count > 0))
{ {
ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
outvalue = (*buffer++)<<8*(address&0x3) ; outvalue = (*buffer++) << 8 * (address & 0x3);
ahbap_write_reg_u32(swjdp, AHBAP_DRW, outvalue ); ahbap_write_reg_u32(swjdp, AHBAP_DRW, outvalue );
swjdp_transaction_endcheck(swjdp); swjdp_transaction_endcheck(swjdp);
count--; count--;
address++; address++;
} }
wcount = count>>2; wcount = count >> 2;
count = count-4*wcount; count = count - 4 * wcount;
while (wcount>0) while (wcount > 0)
{ {
/* Adjust to read within 4K block boundaries */ /* Adjust to read within 4K block boundaries */
blocksize = (0x1000-(0xFFF&address))>>2; blocksize = (0x1000 - (0xFFF & address)) >> 2;
if (wcount<blocksize) if (wcount < blocksize)
blocksize = wcount; blocksize = wcount;
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
for (writecount=0; writecount<blocksize; writecount++) for (writecount=0; writecount<blocksize; writecount++)
{ {
ahbap_write_reg(swjdp, AHBAP_DRW, buffer+4*writecount ); ahbap_write_reg(swjdp, AHBAP_DRW, buffer + 4 * writecount );
} }
if (swjdp_transaction_endcheck(swjdp)==ERROR_OK) if (swjdp_transaction_endcheck(swjdp) == ERROR_OK)
{ {
wcount = wcount-blocksize; wcount = wcount - blocksize;
address = address+4*blocksize; address = address + 4 * blocksize;
buffer = buffer + 4*blocksize; buffer = buffer + 4 * blocksize;
} }
else else
{ {
errorcount++; errorcount++;
} }
if (errorcount>1) if (errorcount > 1)
{ {
WARNING("Block read error address %x, count %x", address, count); WARNING("Block read error address %x, count %x", address, count);
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
} }
} }
while (count>0) while (count > 0)
{ {
ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
outvalue = (*buffer++)<<8*(address&0x3) ; outvalue = (*buffer++) << 8 * (address & 0x3);
ahbap_write_reg_u32(swjdp, AHBAP_DRW, outvalue ); ahbap_write_reg_u32(swjdp, AHBAP_DRW, outvalue );
retval = swjdp_transaction_endcheck(swjdp); retval = swjdp_transaction_endcheck(swjdp);
count--; count--;
@ -457,6 +457,27 @@ int ahbap_write_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
return retval; return retval;
} }
int ahbap_write_buf_u16(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
{
u32 outvalue;
int retval = ERROR_OK;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count > 0)
{
ahbap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
outvalue = *((u16*)buffer) << 8 * (address & 0x3);
ahbap_write_reg_u32(swjdp, AHBAP_DRW, outvalue );
retval = swjdp_transaction_endcheck(swjdp);
count -= 2;
address += 2;
buffer += 2;
}
return retval;
}
/***************************************************************************** /*****************************************************************************
* * * *
* ahbap_read_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address) * * ahbap_read_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address) *
@ -467,60 +488,60 @@ int ahbap_write_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
int ahbap_read_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address) int ahbap_read_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
{ {
u32 invalue; u32 invalue;
int wcount, blocksize, readcount, errorcount=0, retval=ERROR_OK; int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while ( (address&0x3)&&(count>0) ) while ((address & 0x3) && (count > 0))
{ {
ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
ahbap_read_reg_u32(swjdp, AHBAP_DRW, &invalue ); ahbap_read_reg_u32(swjdp, AHBAP_DRW, &invalue);
swjdp_transaction_endcheck(swjdp); swjdp_transaction_endcheck(swjdp);
*buffer++ = (invalue>>8*(address&0x3))&0xFF; *buffer++ = (invalue >> 8 * (address & 0x3)) & 0xFF;
count--; count--;
address++; address++;
} }
wcount = count>>2; wcount = count >> 2;
count = count-4*wcount; count = count - 4 * wcount;
while (wcount>0) while (wcount > 0)
{ {
/* Adjust to read within 4K block boundaries */ /* Adjust to read within 4K block boundaries */
blocksize = (0x1000-(0xFFF&address))>>2; blocksize = (0x1000 - (0xFFF & address)) >> 2;
if (wcount<blocksize) if (wcount < blocksize)
blocksize = wcount; blocksize = wcount;
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
/* Scan out first read */ /* Scan out first read */
swjdp_scan(swjdp->jtag_info, SWJDP_IR_APACC, AHBAP_DRW, DPAP_READ, 0, NULL, NULL); swjdp_scan(swjdp->jtag_info, SWJDP_IR_APACC, AHBAP_DRW, DPAP_READ, 0, NULL, NULL);
for (readcount=0; readcount<blocksize-1; readcount++) for (readcount = 0; readcount < blocksize - 1; readcount++)
{ {
/* Scan out read instruction and scan in previous value */ /* Scan out read instruction and scan in previous value */
swjdp_scan(swjdp->jtag_info, SWJDP_IR_APACC, AHBAP_DRW, DPAP_READ, 0, buffer+4*readcount, &swjdp->ack); swjdp_scan(swjdp->jtag_info, SWJDP_IR_APACC, AHBAP_DRW, DPAP_READ, 0, buffer + 4 * readcount, &swjdp->ack);
} }
/* Scan in last value */ /* Scan in last value */
swjdp_scan(swjdp->jtag_info, SWJDP_IR_DPACC, 0xC, DPAP_READ, 0, buffer+4*readcount, &swjdp->ack); swjdp_scan(swjdp->jtag_info, SWJDP_IR_DPACC, 0xC, DPAP_READ, 0, buffer + 4 * readcount, &swjdp->ack);
if (swjdp_transaction_endcheck(swjdp)==ERROR_OK) if (swjdp_transaction_endcheck(swjdp) == ERROR_OK)
{ {
wcount = wcount-blocksize; wcount = wcount - blocksize;
address += 4*blocksize; address += 4 * blocksize;
buffer += 4*blocksize; buffer += 4 * blocksize;
} }
else else
{ {
errorcount++; errorcount++;
} }
if (errorcount>1) if (errorcount > 1)
{ {
WARNING("Block read error address %x, count %x", address, count); WARNING("Block read error address %x, count %x", address, count);
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
} }
} }
while (count>0) while (count > 0)
{ {
ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
ahbap_read_reg_u32(swjdp, AHBAP_DRW, &invalue ); ahbap_read_reg_u32(swjdp, AHBAP_DRW, &invalue );
retval = swjdp_transaction_endcheck(swjdp); retval = swjdp_transaction_endcheck(swjdp);
*buffer++ = (invalue>>8*(address&0x3))&0xFF; *buffer++ = (invalue >> 8 * (address & 0x3)) & 0xFF;
count--; count--;
address++; address++;
} }
@ -528,35 +549,56 @@ int ahbap_read_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
return retval; return retval;
} }
int ahbap_read_buf_u16(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address)
{
u32 invalue;
int retval = ERROR_OK;
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count > 0)
{
ahbap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
ahbap_read_reg_u32(swjdp, AHBAP_DRW, &invalue );
retval = swjdp_transaction_endcheck(swjdp);
*((u16*)buffer) = (invalue >> 8 * (address & 0x3));
count -= 2;
address += 2;
buffer += 2;
}
return retval;
}
int ahbap_block_read_u32(swjdp_common_t *swjdp, u32 *buffer, int count, u32 address) int ahbap_block_read_u32(swjdp_common_t *swjdp, u32 *buffer, int count, u32 address)
{ {
int readcount, errorcount=0; int readcount, errorcount = 0;
u32 blockmax, blocksize; u32 blockmax, blocksize;
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
while (count>0) while (count > 0)
{ {
/* Adjust to read within 4K block boundaries */ /* Adjust to read within 4K block boundaries */
blocksize = (0x1000-(0xFFF&address))>>2; blocksize = (0x1000 - (0xFFF & address)) >> 2;
if (count<blocksize) if (count < blocksize)
blocksize = count; blocksize = count;
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
for (readcount=0; readcount<blocksize; readcount++) for (readcount = 0; readcount < blocksize; readcount++)
{ {
ahbap_read_reg_u32(swjdp, AHBAP_DRW, buffer+readcount ); ahbap_read_reg_u32(swjdp, AHBAP_DRW, buffer + readcount );
} }
if (swjdp_transaction_endcheck(swjdp)==ERROR_OK) if (swjdp_transaction_endcheck(swjdp) == ERROR_OK)
{ {
count = count-blocksize; count = count - blocksize;
address = address+4*blocksize; address = address + 4 * blocksize;
buffer = buffer + blocksize; buffer = buffer + blocksize;
} }
else else
{ {
errorcount++; errorcount++;
} }
if (errorcount>1) if (errorcount > 1)
{ {
WARNING("Block read error address %x, count %x", address, count); WARNING("Block read error address %x, count %x", address, count);
return ERROR_JTAG_DEVICE_ERROR; return ERROR_JTAG_DEVICE_ERROR;
@ -571,12 +613,12 @@ int ahbap_read_coreregister_u32(swjdp_common_t *swjdp, u32 *value, int regnum)
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
/* ahbap_write_system_u32(swjdp, DCB_DCRSR, regnum); */ /* ahbap_write_system_u32(swjdp, DCB_DCRSR, regnum); */
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR&0xFFFFFFF0); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
ahbap_write_reg_u32(swjdp, AHBAP_BD0|DCB_DCRSR&0xC, regnum ); ahbap_write_reg_u32(swjdp, AHBAP_BD0 | (DCB_DCRSR & 0xC), regnum );
/* ahbap_read_system_u32(swjdp, DCB_DCRDR, value); */ /* ahbap_read_system_u32(swjdp, DCB_DCRDR, value); */
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR&0xFFFFFFF0); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
ahbap_read_reg_u32(swjdp, AHBAP_BD0|DCB_DCRDR&0xC, value ); ahbap_read_reg_u32(swjdp, AHBAP_BD0 | (DCB_DCRDR & 0xC), value );
return swjdp_transaction_endcheck(swjdp); return swjdp_transaction_endcheck(swjdp);
} }
@ -586,65 +628,64 @@ int ahbap_write_coreregister_u32(swjdp_common_t *swjdp, u32 value, int regnum)
swjdp->trans_mode = TRANS_MODE_COMPOSITE; swjdp->trans_mode = TRANS_MODE_COMPOSITE;
/* ahbap_write_system_u32(swjdp, DCB_DCRDR, core_regs[i]); */ /* ahbap_write_system_u32(swjdp, DCB_DCRDR, core_regs[i]); */
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR&0xFFFFFFF0); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
ahbap_write_reg_u32(swjdp, AHBAP_BD0|DCB_DCRDR&0xC, value ); ahbap_write_reg_u32(swjdp, AHBAP_BD0 | (DCB_DCRDR & 0xC), value );
/* ahbap_write_system_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR ); */ /* ahbap_write_system_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR ); */
ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR&0xFFFFFFF0); ahbap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
ahbap_write_reg_u32(swjdp, AHBAP_BD0|DCB_DCRSR&0xC, regnum | DCRSR_WnR ); ahbap_write_reg_u32(swjdp, AHBAP_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR );
return swjdp_transaction_endcheck(swjdp); return swjdp_transaction_endcheck(swjdp);
} }
int ahbap_debugport_init(swjdp_common_t *swjdp) int ahbap_debugport_init(swjdp_common_t *swjdp)
{ {
u32 idreg, romaddr, dummy;
u32 idreg, romaddr, dummy; u32 ctrlstat;
u32 ctrlstat; int cnt = 0;
int cnt=0;
DEBUG(""); DEBUG(" ");
swjdp->ap_csw_value = -1; swjdp->ap_csw_value = -1;
swjdp->ap_tar_value = -1; swjdp->ap_tar_value = -1;
swjdp->trans_mode = TRANS_MODE_ATOMIC; swjdp->trans_mode = TRANS_MODE_ATOMIC;
swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT); swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT);
swjdp_write_dpacc(swjdp, SSTICKYERR, DP_CTRL_STAT); swjdp_write_dpacc(swjdp, SSTICKYERR, DP_CTRL_STAT);
swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT); swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT);
swjdp->dp_ctrl_stat = CDBGPWRUPREQ|CSYSPWRUPREQ; swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
swjdp_write_dpacc(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT); swjdp_write_dpacc(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
swjdp_read_dpacc(swjdp, &ctrlstat, DP_CTRL_STAT); swjdp_read_dpacc(swjdp, &ctrlstat, DP_CTRL_STAT);
jtag_execute_queue(); jtag_execute_queue();
/* Check that we have debug power domains activated */ /* Check that we have debug power domains activated */
while (!(ctrlstat & CDBGPWRUPACK) && (cnt++<10)) while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
{ {
DEBUG(" swjdp: wait CDBGPWRUPACK"); DEBUG("swjdp: wait CDBGPWRUPACK");
swjdp_read_dpacc(swjdp, &ctrlstat, DP_CTRL_STAT);
jtag_execute_queue();
usleep(10000);
}
while (!(ctrlstat & CSYSPWRUPACK) && (cnt++<10))
{
DEBUG(" swjdp: wait CSYSPWRUPACK");
swjdp_read_dpacc(swjdp, &ctrlstat, DP_CTRL_STAT); swjdp_read_dpacc(swjdp, &ctrlstat, DP_CTRL_STAT);
jtag_execute_queue(); jtag_execute_queue();
usleep(10000); usleep(10000);
} }
while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
{
DEBUG("swjdp: wait CSYSPWRUPACK");
swjdp_read_dpacc(swjdp, &ctrlstat, DP_CTRL_STAT);
jtag_execute_queue();
usleep(10000);
}
swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT); swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT);
/* With debug power on we can activate OVERRUN checking */ /* With debug power on we can activate OVERRUN checking */
swjdp->dp_ctrl_stat = CDBGPWRUPREQ|CSYSPWRUPREQ|CORUNDETECT; swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
swjdp_write_dpacc(swjdp, swjdp->dp_ctrl_stat , DP_CTRL_STAT); swjdp_write_dpacc(swjdp, swjdp->dp_ctrl_stat , DP_CTRL_STAT);
swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT); swjdp_read_dpacc(swjdp, &dummy, DP_CTRL_STAT);
ahbap_read_reg_u32(swjdp, 0xFC, &idreg ); ahbap_read_reg_u32(swjdp, 0xFC, &idreg);
ahbap_read_reg_u32(swjdp, 0xF8, &romaddr ); ahbap_read_reg_u32(swjdp, 0xF8, &romaddr);
DEBUG("AHB-AP ID Register 0x%x, Debug ROM Address 0x%x",idreg,romaddr); DEBUG("AHB-AP ID Register 0x%x, Debug ROM Address 0x%x", idreg, romaddr);
return ERROR_OK; return ERROR_OK;
} }

View File

@ -44,8 +44,6 @@
#define CSYSPWRUPREQ (1<<30) #define CSYSPWRUPREQ (1<<30)
#define CSYSPWRUPACK (1<<31) #define CSYSPWRUPACK (1<<31)
#define AHBAP_CSW 0x00 #define AHBAP_CSW 0x00
#define AHBAP_TAR 0x04 #define AHBAP_TAR 0x04
#define AHBAP_DRW 0x0C #define AHBAP_DRW 0x0C
@ -56,7 +54,6 @@
#define AHBAP_DBGROMA 0xF8 #define AHBAP_DBGROMA 0xF8
#define AHBAP_IDR 0xFC #define AHBAP_IDR 0xFC
#define CSW_8BIT 0 #define CSW_8BIT 0
#define CSW_16BIT 1 #define CSW_16BIT 1
#define CSW_32BIT 2 #define CSW_32BIT 2
@ -65,17 +62,17 @@
#define CSW_ADDRINC_OFF 0 #define CSW_ADDRINC_OFF 0
#define CSW_ADDRINC_SINGLE (1<<4) #define CSW_ADDRINC_SINGLE (1<<4)
#define CSW_ADDRINC_PACKED (2<<4) #define CSW_ADDRINC_PACKED (2<<4)
#define CSW_HPROT (1<<25) #define CSW_HPROT (1<<25)
#define CSW_MASTER_DEBUG (1<<29) #define CSW_MASTER_DEBUG (1<<29)
#define CSW_DBGSWENABLE (1<<31) #define CSW_DBGSWENABLE (1<<31)
#define TRANS_MODE_NONE 0
/* transaction mode */
#define TRANS_MODE_NONE 0
/* Transaction waits for previous to complete */ /* Transaction waits for previous to complete */
#define TRANS_MODE_ATOMIC 1 #define TRANS_MODE_ATOMIC 1
/* Freerunning transactions with delays and overrun checking */ /* Freerunning transactions with delays and overrun checking */
#define TRANS_MODE_COMPOSITE 2 #define TRANS_MODE_COMPOSITE 2
typedef struct swjdp_reg_s typedef struct swjdp_reg_s
{ {
int addr; int addr;
@ -96,7 +93,7 @@ typedef struct swjdp_common_s
u8 trans_mode; u8 trans_mode;
u8 trans_rw; u8 trans_rw;
u8 ack; u8 ack;
u32 * trans_value; u32 *trans_value;
} swjdp_common_t; } swjdp_common_t;
/* Internal functions used in the module, partial transactions, use with caution */ /* Internal functions used in the module, partial transactions, use with caution */
@ -112,7 +109,6 @@ extern int ahbap_read_system_u32(swjdp_common_t *swjdp, u32 address, u32 *value)
extern int ahbap_write_system_u32(swjdp_common_t *swjdp, u32 address, u32 value); extern int ahbap_write_system_u32(swjdp_common_t *swjdp, u32 address, u32 value);
extern int swjdp_transaction_endcheck(swjdp_common_t *swjdp); extern int swjdp_transaction_endcheck(swjdp_common_t *swjdp);
/* External interface, complete atomic operations */ /* External interface, complete atomic operations */
/* Host endian word transfer of single memory and system registers */ /* Host endian word transfer of single memory and system registers */
extern int ahbap_read_system_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 *value); extern int ahbap_read_system_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 *value);
@ -124,6 +120,11 @@ extern int ahbap_write_block(swjdp_common_t *swjdp, u8 *buffer, int bytecount, u
extern int ahbap_read_coreregister_u32(swjdp_common_t *swjdp, u32 *value, int regnum); extern int ahbap_read_coreregister_u32(swjdp_common_t *swjdp, u32 *value, int regnum);
extern int ahbap_write_coreregister_u32(swjdp_common_t *swjdp, u32 value, int regnum); extern int ahbap_write_coreregister_u32(swjdp_common_t *swjdp, u32 value, int regnum);
extern int ahbap_read_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address);
extern int ahbap_read_buf_u16(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address);
extern int ahbap_write_buf(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address);
extern int ahbap_write_buf_u16(swjdp_common_t *swjdp, u8 *buffer, int count, u32 address);
/* Initialisation of the debug system, power domains and registers */ /* Initialisation of the debug system, power domains and registers */
extern int ahbap_debugport_init(swjdp_common_t *swjdp); extern int ahbap_debugport_init(swjdp_common_t *swjdp);

View File

@ -653,6 +653,7 @@ int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buff
{ {
if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK) if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval; return retval;
return ERROR_OK;
} }
/* handle unaligned head bytes */ /* handle unaligned head bytes */
@ -711,6 +712,7 @@ int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffe
{ {
if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK) if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval; return retval;
return ERROR_OK;
} }
/* handle unaligned head bytes */ /* handle unaligned head bytes */