openocd/src/target/armv4_5.c

1153 lines
32 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "armv4_5.h"
#include "arm_jtag.h"
#include "breakpoints.h"
#include "arm_disassembler.h"
#include "binarybuffer.h"
#include "algorithm.h"
#include "register.h"
static const char *armv4_5_core_reg_list[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "sp_usr", "lr_usr", "pc",
"r8_fiq", "r9_fiq", "r10_fiq", "r11_fiq", "r12_fiq", "sp_fiq", "lr_fiq",
"sp_irq", "lr_irq",
"sp_svc", "lr_svc",
"sp_abt", "lr_abt",
"sp_und", "lr_und",
"cpsr", "spsr_fiq", "spsr_irq", "spsr_svc", "spsr_abt", "spsr_und",
"sp_mon", "lr_mon", "spsr_mon",
};
static const uint8_t arm_usr_indices[17] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
};
static const uint8_t arm_fiq_indices[8] = {
16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
};
static const uint8_t arm_irq_indices[3] = {
23, 24, ARMV4_5_SPSR_IRQ,
};
static const uint8_t arm_svc_indices[3] = {
25, 26, ARMV4_5_SPSR_SVC,
};
static const uint8_t arm_abt_indices[3] = {
27, 28, ARMV4_5_SPSR_ABT,
};
static const uint8_t arm_und_indices[3] = {
29, 30, ARMV4_5_SPSR_UND,
};
static const uint8_t arm_mon_indices[3] = {
37, 38, ARM_SPSR_MON,
};
static const struct {
const char *name;
unsigned short psr;
/* For user and system modes, these list indices for all registers.
* otherwise they're just indices for the shadow registers and SPSR.
*/
unsigned short n_indices;
const uint8_t *indices;
} arm_mode_data[] = {
/* Seven modes are standard from ARM7 on. "System" and "User" share
* the same registers; other modes shadow from 3 to 8 registers.
*/
{
.name = "User",
.psr = ARMV4_5_MODE_USR,
.n_indices = ARRAY_SIZE(arm_usr_indices),
.indices = arm_usr_indices,
},
{
.name = "FIQ",
.psr = ARMV4_5_MODE_FIQ,
.n_indices = ARRAY_SIZE(arm_fiq_indices),
.indices = arm_fiq_indices,
},
{
.name = "Supervisor",
.psr = ARMV4_5_MODE_SVC,
.n_indices = ARRAY_SIZE(arm_svc_indices),
.indices = arm_svc_indices,
},
{
.name = "Abort",
.psr = ARMV4_5_MODE_ABT,
.n_indices = ARRAY_SIZE(arm_abt_indices),
.indices = arm_abt_indices,
},
{
.name = "IRQ",
.psr = ARMV4_5_MODE_IRQ,
.n_indices = ARRAY_SIZE(arm_irq_indices),
.indices = arm_irq_indices,
},
{
.name = "Undefined instruction",
.psr = ARMV4_5_MODE_UND,
.n_indices = ARRAY_SIZE(arm_und_indices),
.indices = arm_und_indices,
},
{
.name = "System",
.psr = ARMV4_5_MODE_SYS,
.n_indices = ARRAY_SIZE(arm_usr_indices),
.indices = arm_usr_indices,
},
/* TrustZone "Security Extensions" add a secure monitor mode.
* This is distinct from a "debug monitor" which can support
* non-halting debug, in conjunction with some debuggers.
*/
{
.name = "Secure Monitor",
.psr = ARM_MODE_MON,
.n_indices = ARRAY_SIZE(arm_mon_indices),
.indices = arm_mon_indices,
},
};
/** Map PSR mode bits to the name of an ARM processor operating mode. */
const char *arm_mode_name(unsigned psr_mode)
{
for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
if (arm_mode_data[i].psr == psr_mode)
return arm_mode_data[i].name;
}
LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
return "UNRECOGNIZED";
}
/** Return true iff the parameter denotes a valid ARM processor mode. */
bool is_arm_mode(unsigned psr_mode)
{
for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
if (arm_mode_data[i].psr == psr_mode)
return true;
}
return false;
}
/** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
int armv4_5_mode_to_number(enum armv4_5_mode mode)
{
switch (mode) {
case ARMV4_5_MODE_ANY:
/* map MODE_ANY to user mode */
case ARMV4_5_MODE_USR:
return 0;
case ARMV4_5_MODE_FIQ:
return 1;
case ARMV4_5_MODE_IRQ:
return 2;
case ARMV4_5_MODE_SVC:
return 3;
case ARMV4_5_MODE_ABT:
return 4;
case ARMV4_5_MODE_UND:
return 5;
case ARMV4_5_MODE_SYS:
return 6;
case ARM_MODE_MON:
return 7;
default:
LOG_ERROR("invalid mode value encountered %d", mode);
return -1;
}
}
/** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
enum armv4_5_mode armv4_5_number_to_mode(int number)
{
switch (number) {
case 0:
return ARMV4_5_MODE_USR;
case 1:
return ARMV4_5_MODE_FIQ;
case 2:
return ARMV4_5_MODE_IRQ;
case 3:
return ARMV4_5_MODE_SVC;
case 4:
return ARMV4_5_MODE_ABT;
case 5:
return ARMV4_5_MODE_UND;
case 6:
return ARMV4_5_MODE_SYS;
case 7:
return ARM_MODE_MON;
default:
LOG_ERROR("mode index out of bounds %d", number);
return ARMV4_5_MODE_ANY;
}
}
char* armv4_5_state_strings[] =
{
"ARM", "Thumb", "Jazelle", "ThumbEE",
};
static const struct armv4_5_core_reg armv4_5_core_reg_list_arch_info[] =
{
{0, ARMV4_5_MODE_ANY, NULL, NULL},
{1, ARMV4_5_MODE_ANY, NULL, NULL},
{2, ARMV4_5_MODE_ANY, NULL, NULL},
{3, ARMV4_5_MODE_ANY, NULL, NULL},
{4, ARMV4_5_MODE_ANY, NULL, NULL},
{5, ARMV4_5_MODE_ANY, NULL, NULL},
{6, ARMV4_5_MODE_ANY, NULL, NULL},
{7, ARMV4_5_MODE_ANY, NULL, NULL},
{8, ARMV4_5_MODE_ANY, NULL, NULL},
{9, ARMV4_5_MODE_ANY, NULL, NULL},
{10, ARMV4_5_MODE_ANY, NULL, NULL},
{11, ARMV4_5_MODE_ANY, NULL, NULL},
{12, ARMV4_5_MODE_ANY, NULL, NULL},
{13, ARMV4_5_MODE_USR, NULL, NULL},
{14, ARMV4_5_MODE_USR, NULL, NULL},
{15, ARMV4_5_MODE_ANY, NULL, NULL},
{8, ARMV4_5_MODE_FIQ, NULL, NULL},
{9, ARMV4_5_MODE_FIQ, NULL, NULL},
{10, ARMV4_5_MODE_FIQ, NULL, NULL},
{11, ARMV4_5_MODE_FIQ, NULL, NULL},
{12, ARMV4_5_MODE_FIQ, NULL, NULL},
{13, ARMV4_5_MODE_FIQ, NULL, NULL},
{14, ARMV4_5_MODE_FIQ, NULL, NULL},
{13, ARMV4_5_MODE_IRQ, NULL, NULL},
{14, ARMV4_5_MODE_IRQ, NULL, NULL},
{13, ARMV4_5_MODE_SVC, NULL, NULL},
{14, ARMV4_5_MODE_SVC, NULL, NULL},
{13, ARMV4_5_MODE_ABT, NULL, NULL},
{14, ARMV4_5_MODE_ABT, NULL, NULL},
{13, ARMV4_5_MODE_UND, NULL, NULL},
{14, ARMV4_5_MODE_UND, NULL, NULL},
{16, ARMV4_5_MODE_ANY, NULL, NULL},
{16, ARMV4_5_MODE_FIQ, NULL, NULL},
{16, ARMV4_5_MODE_IRQ, NULL, NULL},
{16, ARMV4_5_MODE_SVC, NULL, NULL},
{16, ARMV4_5_MODE_ABT, NULL, NULL},
{16, ARMV4_5_MODE_UND, NULL, NULL},
{13, ARM_MODE_MON, NULL, NULL},
{14, ARM_MODE_MON, NULL, NULL},
{16, ARM_MODE_MON, NULL, NULL},
};
/* map core mode (USR, FIQ, ...) and register number to indizes into the register cache */
const int armv4_5_core_reg_map[8][17] =
{
{ /* USR */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
},
{ /* FIQ (8 shadows of USR, vs normal 3) */
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
},
{ /* IRQ */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
},
{ /* SVC */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
},
{ /* ABT */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
},
{ /* UND */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
},
{ /* SYS (same registers as USR) */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
},
{ /* MON */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
}
};
static const uint8_t arm_gdb_dummy_fp_value[12];
/**
* Dummy FPA registers are required to support GDB on ARM.
* Register packets require eight obsolete FPA register values.
* Modern ARM cores use Vector Floating Point (VFP), if they
* have any floating point support. VFP is not FPA-compatible.
*/
struct reg arm_gdb_dummy_fp_reg =
{
.name = "GDB dummy FPA register",
.value = (uint8_t *) arm_gdb_dummy_fp_value,
.valid = 1,
.size = 96,
};
static const uint8_t arm_gdb_dummy_fps_value[4];
/**
* Dummy FPA status registers are required to support GDB on ARM.
* Register packets require an obsolete FPA status register.
*/
struct reg arm_gdb_dummy_fps_reg =
{
.name = "GDB dummy FPA status register",
.value = (uint8_t *) arm_gdb_dummy_fps_value,
.valid = 1,
.size = 32,
};
static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
static void arm_gdb_dummy_init(void)
{
register_init_dummy(&arm_gdb_dummy_fp_reg);
register_init_dummy(&arm_gdb_dummy_fps_reg);
}
static int armv4_5_get_core_reg(struct reg *reg)
{
int retval;
struct armv4_5_core_reg *armv4_5 = reg->arch_info;
struct target *target = armv4_5->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = armv4_5->armv4_5_common->read_core_reg(target, armv4_5->num, armv4_5->mode);
if (retval == ERROR_OK)
reg->valid = 1;
return retval;
}
static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct armv4_5_core_reg *armv4_5 = reg->arch_info;
struct target *target = armv4_5->target;
struct armv4_5_common_s *armv4_5_target = target_to_armv4_5(target);
uint32_t value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (reg == &armv4_5_target->core_cache->reg_list[ARMV4_5_CPSR])
{
if (value & 0x20)
{
/* T bit should be set */
if (armv4_5_target->core_state == ARMV4_5_STATE_ARM)
{
/* change state to Thumb */
LOG_DEBUG("changing to Thumb state");
armv4_5_target->core_state = ARMV4_5_STATE_THUMB;
}
}
else
{
/* T bit should be cleared */
if (armv4_5_target->core_state == ARMV4_5_STATE_THUMB)
{
/* change state to ARM */
LOG_DEBUG("changing to ARM state");
armv4_5_target->core_state = ARMV4_5_STATE_ARM;
}
}
if (armv4_5_target->core_mode != (enum armv4_5_mode)(value & 0x1f))
{
LOG_DEBUG("changing ARM core mode to '%s'",
arm_mode_name(value & 0x1f));
armv4_5_target->core_mode = value & 0x1f;
armv4_5_target->write_core_reg(target, 16, ARMV4_5_MODE_ANY, value);
}
}
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = 1;
reg->valid = 1;
return ERROR_OK;
}
static const struct reg_arch_type arm_reg_type = {
.get = armv4_5_get_core_reg,
.set = armv4_5_set_core_reg,
};
/** Marks the contents of the register cache as invalid (and clean). */
int armv4_5_invalidate_core_regs(struct target *target)
{
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
unsigned num_regs = armv4_5->core_cache->num_regs;
struct reg *reg = armv4_5->core_cache->reg_list;
for (unsigned i = 0; i < num_regs; i++, reg++) {
reg->valid = 0;
reg->dirty = 0;
}
/* FIXME don't bother returning a value then */
return ERROR_OK;
}
struct reg_cache* armv4_5_build_reg_cache(struct target *target, struct arm *armv4_5_common)
{
int num_regs = ARRAY_SIZE(armv4_5_core_reg_list_arch_info);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct armv4_5_core_reg *arch_info = calloc(num_regs,
sizeof(struct armv4_5_core_reg));
int i;
if (!cache || !reg_list || !arch_info) {
free(cache);
free(reg_list);
free(arch_info);
return NULL;
}
cache->name = "ARM registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = 0;
for (i = 0; i < num_regs; i++)
{
/* Skip registers this core doesn't expose */
if (armv4_5_core_reg_list_arch_info[i].mode == ARM_MODE_MON
&& armv4_5_common->core_type != ARM_MODE_MON)
continue;
/* REVISIT handle Cortex-M, which only shadows R13/SP */
arch_info[i] = armv4_5_core_reg_list_arch_info[i];
arch_info[i].target = target;
arch_info[i].armv4_5_common = armv4_5_common;
reg_list[i].name = (char *) armv4_5_core_reg_list[i];
reg_list[i].size = 32;
reg_list[i].value = calloc(1, 4);
reg_list[i].type = &arm_reg_type;
reg_list[i].arch_info = &arch_info[i];
cache->num_regs++;
}
return cache;
}
int armv4_5_arch_state(struct target *target)
{
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
{
LOG_ERROR("BUG: called for a non-ARMv4/5 target");
return ERROR_FAIL;
}
LOG_USER("target halted in %s state due to %s, current mode: %s\ncpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "",
armv4_5_state_strings[armv4_5->core_state],
Jim_Nvp_value2name_simple(nvp_target_debug_reason, target->debug_reason)->name,
arm_mode_name(armv4_5->core_mode),
buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32),
buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
return ERROR_OK;
}
#define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
cache->reg_list[armv4_5_core_reg_map[mode][num]]
COMMAND_HANDLER(handle_armv4_5_reg_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
unsigned num_regs;
struct reg *regs;
if (!is_arm(armv4_5))
{
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED)
{
command_print(CMD_CTX, "error: target must be halted for register accesses");
return ERROR_FAIL;
}
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
if (!armv4_5->full_context) {
command_print(CMD_CTX, "error: target doesn't support %s",
CMD_NAME);
return ERROR_FAIL;
}
num_regs = armv4_5->core_cache->num_regs;
regs = armv4_5->core_cache->reg_list;
for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
const char *name;
char *sep = "\n";
char *shadow = "";
/* label this bank of registers (or shadows) */
switch (arm_mode_data[mode].psr) {
case ARMV4_5_MODE_SYS:
continue;
case ARMV4_5_MODE_USR:
name = "System and User";
sep = "";
break;
case ARM_MODE_MON:
if (armv4_5->core_type != ARM_MODE_MON)
continue;
/* FALLTHROUGH */
default:
name = arm_mode_data[mode].name;
shadow = "shadow ";
break;
}
command_print(CMD_CTX, "%s%s mode %sregisters",
sep, name, shadow);
/* display N rows of up to 4 registers each */
for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
char output[80];
int output_len = 0;
for (unsigned j = 0; j < 4; j++, i++) {
uint32_t value;
struct reg *reg = regs;
if (i >= arm_mode_data[mode].n_indices)
break;
reg += arm_mode_data[mode].indices[i];
/* REVISIT be smarter about faults... */
if (!reg->valid)
armv4_5->full_context(target);
value = buf_get_u32(reg->value, 0, 32);
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
"%8s: %8.8" PRIx32 " ",
reg->name, value);
}
command_print(CMD_CTX, "%s", output);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_armv4_5_core_state_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
if (!is_arm(armv4_5))
{
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (CMD_ARGC > 0)
{
if (strcmp(CMD_ARGV[0], "arm") == 0)
{
armv4_5->core_state = ARMV4_5_STATE_ARM;
}
if (strcmp(CMD_ARGV[0], "thumb") == 0)
{
armv4_5->core_state = ARMV4_5_STATE_THUMB;
}
}
command_print(CMD_CTX, "core state: %s", armv4_5_state_strings[armv4_5->core_state]);
return ERROR_OK;
}
COMMAND_HANDLER(handle_armv4_5_disassemble_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target ? target_to_arm(target) : NULL;
uint32_t address;
int count = 1;
int thumb = 0;
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
switch (CMD_ARGC) {
case 3:
if (strcmp(CMD_ARGV[2], "thumb") != 0)
goto usage;
thumb = 1;
/* FALL THROUGH */
case 2:
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
/* FALL THROUGH */
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
if (address & 0x01) {
if (!thumb) {
command_print(CMD_CTX, "Disassemble as Thumb");
thumb = 1;
}
address &= ~1;
}
break;
default:
usage:
command_print(CMD_CTX,
"usage: arm disassemble <address> [<count> ['thumb']]");
count = 0;
retval = ERROR_FAIL;
}
while (count-- > 0) {
struct arm_instruction cur_instruction;
if (thumb) {
/* Always use Thumb2 disassembly for best handling
* of 32-bit BL/BLX, and to work with newer cores
* (some ARMv6, all ARMv7) that use Thumb2.
*/
retval = thumb2_opcode(target, address,
&cur_instruction);
if (retval != ERROR_OK)
break;
} else {
uint32_t opcode;
retval = target_read_u32(target, address, &opcode);
if (retval != ERROR_OK)
break;
retval = arm_evaluate_opcode(opcode, address,
&cur_instruction) != ERROR_OK;
if (retval != ERROR_OK)
break;
}
command_print(CMD_CTX, "%s", cur_instruction.text);
address += cur_instruction.instruction_size;
}
return retval;
}
int armv4_5_register_commands(struct command_context *cmd_ctx)
{
struct command *armv4_5_cmd;
armv4_5_cmd = register_command(cmd_ctx, NULL, "arm",
NULL, COMMAND_ANY,
"generic ARM commands");
register_command(cmd_ctx, armv4_5_cmd, "reg",
handle_armv4_5_reg_command, COMMAND_EXEC,
"display ARM core registers");
register_command(cmd_ctx, armv4_5_cmd, "core_state",
handle_armv4_5_core_state_command, COMMAND_EXEC,
"display/change ARM core state <arm | thumb>");
register_command(cmd_ctx, armv4_5_cmd, "disassemble",
handle_armv4_5_disassemble_command, COMMAND_EXEC,
"disassemble instructions "
"<address> [<count> ['thumb']]");
return ERROR_OK;
}
int armv4_5_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
{
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
int i;
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
*reg_list_size = 26;
*reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
for (i = 0; i < 16; i++)
{
(*reg_list)[i] = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i);
}
for (i = 16; i < 24; i++)
{
(*reg_list)[i] = &arm_gdb_dummy_fp_reg;
}
(*reg_list)[24] = &arm_gdb_dummy_fps_reg;
(*reg_list)[25] = &armv4_5->core_cache->reg_list[ARMV4_5_CPSR];
return ERROR_OK;
}
/* wait for execution to complete and check exit point */
static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
{
int retval;
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
{
return retval;
}
if (target->state != TARGET_HALTED)
{
if ((retval = target_halt(target)) != ERROR_OK)
return retval;
if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
{
return retval;
}
return ERROR_TARGET_TIMEOUT;
}
/* fast exit: ARMv5+ code can use BKPT */
if (exit_point && buf_get_u32(armv4_5->core_cache->reg_list[15].value,
0, 32) != exit_point)
{
LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
return ERROR_TARGET_TIMEOUT;
}
return ERROR_OK;
}
int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info))
{
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
struct armv4_5_algorithm *armv4_5_algorithm_info = arch_info;
enum armv4_5_state core_state = armv4_5->core_state;
enum armv4_5_mode core_mode = armv4_5->core_mode;
uint32_t context[17];
uint32_t cpsr;
int exit_breakpoint_size = 0;
int i;
int retval = ERROR_OK;
LOG_DEBUG("Running algorithm");
if (armv4_5_algorithm_info->common_magic != ARMV4_5_COMMON_MAGIC)
{
LOG_ERROR("current target isn't an ARMV4/5 target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
/* armv5 and later can terminate with BKPT instruction; less overhead */
if (!exit_point && armv4_5->is_armv4)
{
LOG_ERROR("ARMv4 target needs HW breakpoint location");
return ERROR_FAIL;
}
for (i = 0; i <= 16; i++)
{
if (!ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).valid)
armv4_5->read_core_reg(target, i, armv4_5_algorithm_info->core_mode);
context[i] = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).value, 0, 32);
}
cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32);
for (i = 0; i < num_mem_params; i++)
{
if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
{
return retval;
}
}
for (i = 0; i < num_reg_params; i++)
{
struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
if (!reg)
{
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_INVALID_ARGUMENTS;
}
if (reg->size != reg_params[i].size)
{
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
return ERROR_INVALID_ARGUMENTS;
}
if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
{
return retval;
}
}
armv4_5->core_state = armv4_5_algorithm_info->core_state;
if (armv4_5->core_state == ARMV4_5_STATE_ARM)
exit_breakpoint_size = 4;
else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
exit_breakpoint_size = 2;
else
{
LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
return ERROR_INVALID_ARGUMENTS;
}
if (armv4_5_algorithm_info->core_mode != ARMV4_5_MODE_ANY)
{
LOG_DEBUG("setting core_mode: 0x%2.2x", armv4_5_algorithm_info->core_mode);
buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 5, armv4_5_algorithm_info->core_mode);
armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
}
/* terminate using a hardware or (ARMv5+) software breakpoint */
if (exit_point && (retval = breakpoint_add(target, exit_point,
exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
{
LOG_ERROR("can't add HW breakpoint to terminate algorithm");
return ERROR_TARGET_FAILURE;
}
if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
{
return retval;
}
int retvaltemp;
retval = run_it(target, exit_point, timeout_ms, arch_info);
if (exit_point)
breakpoint_remove(target, exit_point);
if (retval != ERROR_OK)
return retval;
for (i = 0; i < num_mem_params; i++)
{
if (mem_params[i].direction != PARAM_OUT)
if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
{
retval = retvaltemp;
}
}
for (i = 0; i < num_reg_params; i++)
{
if (reg_params[i].direction != PARAM_OUT)
{
struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
if (!reg)
{
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
retval = ERROR_INVALID_ARGUMENTS;
continue;
}
if (reg->size != reg_params[i].size)
{
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
retval = ERROR_INVALID_ARGUMENTS;
continue;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
for (i = 0; i <= 16; i++)
{
uint32_t regvalue;
regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).value, 0, 32);
if (regvalue != context[i])
{
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).name, context[i]);
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).value, 0, 32, context[i]);
ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).valid = 1;
ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).dirty = 1;
}
}
buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
armv4_5->core_state = core_state;
armv4_5->core_mode = core_mode;
return retval;
}
int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
{
return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
}
/**
* Runs ARM code in the target to calculate a CRC32 checksum.
*
* \todo On ARMv5+, rely on BKPT termination for reduced overhead.
*/
int arm_checksum_memory(struct target *target,
uint32_t address, uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct armv4_5_algorithm armv4_5_info;
struct reg_param reg_params[2];
int retval;
uint32_t i;
static const uint32_t arm_crc_code[] = {
0xE1A02000, /* mov r2, r0 */
0xE3E00000, /* mov r0, #0xffffffff */
0xE1A03001, /* mov r3, r1 */
0xE3A04000, /* mov r4, #0 */
0xEA00000B, /* b ncomp */
/* nbyte: */
0xE7D21004, /* ldrb r1, [r2, r4] */
0xE59F7030, /* ldr r7, CRC32XOR */
0xE0200C01, /* eor r0, r0, r1, asl 24 */
0xE3A05000, /* mov r5, #0 */
/* loop: */
0xE3500000, /* cmp r0, #0 */
0xE1A06080, /* mov r6, r0, asl #1 */
0xE2855001, /* add r5, r5, #1 */
0xE1A00006, /* mov r0, r6 */
0xB0260007, /* eorlt r0, r6, r7 */
0xE3550008, /* cmp r5, #8 */
0x1AFFFFF8, /* bne loop */
0xE2844001, /* add r4, r4, #1 */
/* ncomp: */
0xE1540003, /* cmp r4, r3 */
0x1AFFFFF1, /* bne nbyte */
/* end: */
0xEAFFFFFE, /* b end */
/* CRC32XOR: */
0x04C11DB7 /* .word 0x04C11DB7 */
};
retval = target_alloc_working_area(target,
sizeof(arm_crc_code), &crc_algorithm);
if (retval != ERROR_OK)
return retval;
/* convert code into a buffer in target endianness */
for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
retval = target_write_u32(target,
crc_algorithm->address + i * sizeof(uint32_t),
arm_crc_code[i]);
if (retval != ERROR_OK)
return retval;
}
armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
armv4_5_info.core_state = ARMV4_5_STATE_ARM;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, count);
/* 20 second timeout/megabyte */
int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
crc_algorithm->address,
crc_algorithm->address + sizeof(arm_crc_code) - 8,
timeout, &armv4_5_info);
if (retval != ERROR_OK) {
LOG_ERROR("error executing ARM crc algorithm");
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
target_free_working_area(target, crc_algorithm);
return retval;
}
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
target_free_working_area(target, crc_algorithm);
return ERROR_OK;
}
/**
* Runs ARM code in the target to check whether a memory block holds
* all ones. NOR flash which has been erased, and thus may be written,
* holds all ones.
*
* \todo On ARMv5+, rely on BKPT termination for reduced overhead.
*/
int arm_blank_check_memory(struct target *target,
uint32_t address, uint32_t count, uint32_t *blank)
{
struct working_area *check_algorithm;
struct reg_param reg_params[3];
struct armv4_5_algorithm armv4_5_info;
int retval;
uint32_t i;
static const uint32_t check_code[] = {
/* loop: */
0xe4d03001, /* ldrb r3, [r0], #1 */
0xe0022003, /* and r2, r2, r3 */
0xe2511001, /* subs r1, r1, #1 */
0x1afffffb, /* bne loop */
/* end: */
0xeafffffe /* b end */
};
/* make sure we have a working area */
retval = target_alloc_working_area(target,
sizeof(check_code), &check_algorithm);
if (retval != ERROR_OK)
return retval;
/* convert code into a buffer in target endianness */
for (i = 0; i < ARRAY_SIZE(check_code); i++) {
retval = target_write_u32(target,
check_algorithm->address
+ i * sizeof(uint32_t),
check_code[i]);
if (retval != ERROR_OK)
return retval;
}
armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
armv4_5_info.core_state = ARMV4_5_STATE_ARM;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, count);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[2].value, 0, 32, 0xff);
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
check_algorithm->address,
check_algorithm->address + sizeof(check_code) - 4,
10000, &armv4_5_info);
if (retval != ERROR_OK) {
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
target_free_working_area(target, check_algorithm);
return retval;
}
*blank = buf_get_u32(reg_params[2].value, 0, 32);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
target_free_working_area(target, check_algorithm);
return ERROR_OK;
}
static int arm_full_context(struct target *target)
{
struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
unsigned num_regs = armv4_5->core_cache->num_regs;
struct reg *reg = armv4_5->core_cache->reg_list;
int retval = ERROR_OK;
for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
if (reg->valid)
continue;
retval = armv4_5_get_core_reg(reg);
}
return retval;
}
int armv4_5_init_arch_info(struct target *target, struct arm *armv4_5)
{
target->arch_info = armv4_5;
armv4_5->common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5->core_state = ARMV4_5_STATE_ARM;
armv4_5->core_mode = ARMV4_5_MODE_USR;
/* core_type may be overridden by subtype logic */
armv4_5->core_type = ARMV4_5_MODE_ANY;
/* default full_context() has no core-specific optimizations */
if (!armv4_5->full_context && armv4_5->read_core_reg)
armv4_5->full_context = arm_full_context;
return ERROR_OK;
}